

ibm.com/redbooks

Using IBM DB2 UDB
with IBM System
Storage N series

Alex Osuna
Jawahar Lal

Roger Sanders
Jeremy Brumer

Exploiting FlexClone technology to
build and use database clones

Creating a database on IBM N
series systems

Using Snapshot and
SnapMirror

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using IBM DB2 UDB with IBM System Storage N
series

December 2006

International Technical Support Organization

SG24-7323-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2006)

This edition applies to the IBM System Storage N series and Data ONTAP Version 7.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . x
Comments welcome. xi

Chapter 1. Introduction to FlexClone . 1
1.1 Purpose and Scope. 2
1.2 Overview of FlexClone technology . 3
1.3 Overview of the SnapMirror technology . 4
1.4 Ensuring consistency for DB2 UDB database (suspended I/O) 5
1.5 The db2inidb command. 6
1.6 The db2relocatedb command . 7
1.7 Advantages of cloning a database using N series FlexClone technology. . 8
1.8 Configuration used for this publication . 10

Chapter 2. Preparation . 11
2.1 General assumptions . 12
2.2 Environment assumptions . 12
2.3 Security and access issues . 13
2.4 Network and storage infrastructure . 14

Chapter 3. Creating a DB2 UDB Database on an IBM N series 19
3.1 Create containers . 20
3.2 Create an instance . 21
3.3 Create the database . 21
3.4 Change location of transaction logs . 22
3.5 Switch from circular logging to archive logging . 22
3.6 Create offline copy . 23

Chapter 4. Cloning a DB2 UDB database in the N series environment . . 25
4.1 Select a database server to access the cloned database 26

4.1.1 Select the production database server and database. 26
4.1.2 Select a database server that has a different DB2 UDB version . . . 27
4.1.3 Select a non-production server without DB2 UDB installed 27

4.2 Clone an offline database on the same storage system 27
4.2.1 Bring the source database offline . 27
© Copyright IBM Corp. 2006. All rights reserved. iii

4.2.2 Create Snapshot copies of the database FlexVol volumes. 28
4.2.3 Start the source database . 29
4.2.4 Clone the FlexVol volumes . 29
4.2.5 Create an export entry for the clone volume 30
4.2.6 Mount the clone volumes . 31
4.2.7 Configuring the cloned database . 33
4.2.8 Catalog the source database if necessary . 35
4.2.9 Verify the database . 35

4.3 Clone an online database on the same storage system 36
4.3.1 Bring the database into a consistent state (suspend writes) 36
4.3.2 Create Snapshot copies of the database FlexVol volumes. 36
4.3.3 Resume normal database operations (resume writes) 37
4.3.4 Clone the FlexVol volumes. . 37
4.3.5 Create NFS export entries for the cloned volumes 38
4.3.6 Mount the cloned volumes . 38
4.3.7 Configuring the cloned database . 40
4.3.8 Verify the database . 42

4.4 Clone an offline database to a remote storage system 42
4.4.1 Configure SnapMirror . 43
4.4.2 Initialize SnapMirror . 45
4.4.3 Create clones of the FlexVol volumes. 48
4.4.4 Create NFS export entries for the cloned volumes 51
4.4.5 Mount the clone volumes . 51
4.4.6 Configure the cloned database . 52
4.4.7 Catalog the source database . 55
4.4.8 Verify the cloned database . 55

4.5 Clone an online database to a remote storage system 56
4.5.1 Configure and initialize SnapMirror . 56
4.5.2 Bring the source database into a consistent state (suspend writes) . 56
4.5.3 Create Snapshot copies of the FlexVol volumes 57
4.5.4 Resume normal database operations (resume writes) 57
4.5.5 Update the SnapMirror destination . 57
4.5.6 Create clone volumes using Snapshot copies 58
4.5.7 Create NFS export entries for the cloned volumes 59
4.5.8 Mount the cloned volumes . 59
4.5.9 Configure the cloned database . 61
4.5.10 Verify the cloned database . 63

Chapter 5. Cloning a DB2 UDB database in the SAN environment 65
5.1 Clone an offline database on the same storage system 66

5.1.1 Bring the source database offline . 66
5.1.2 Create Snapshot copies of the FlexVol volumes 66
5.1.3 Start the source database . 66
iv Using IBM DB2 UDB with IBM System Storage N series

5.1.4 Create clone volumes using Snapshot copies 67
5.1.5 Create new mapping for the LUNs.. 67
5.1.6 Mount the FlexClone volume LUNs . 70
5.1.7 Configure the cloned database . 71

5.2 Clone an online database on the same storage system 74
5.2.1 Bring the source database into a consistent state (suspend writes) . 74
5.2.2 Create Snapshot copies of the FlexVol volumes 74
5.2.3 Resume normal database operation (resume writes) 75
5.2.4 Clone the FlexVol volumes using Snapshot copies 75
5.2.5 Create new mapping for the LUNs . 75
5.2.6 Mount the LUNs that reside on the FlexClone volumes 77
5.2.7 Configure the cloned database . 78

5.3 Clone an offline database to a remote storage system 80
5.3.1 Configure and initialize SnapMirror . 80
5.3.2 Bring the database offline . 81
5.3.3 Create Snapshot copies of the FlexVol volumes 81
5.3.4 Update the SnapMirror destination volumes 81
5.3.5 Create FlexClone volumes using Snapshot copies. 82
5.3.6 Create new mapping for LUNs that reside on the clone volumes . . . 83
5.3.7 Mount the FlexClone volume LUNs . 85
5.3.8 Renaming the cloned database . 86

5.4 Clone an online database to a remote storage system 88
5.4.1 Set up and initialize SnapMirror . 88
5.4.2 Bring the database into a consistent state (suspend writes) 89
5.4.3 Create Snapshot copies . 89
5.4.4 Resume normal operations for the database (resume writes) 89
5.4.5 Update the SnapMirror destination volumes 90
5.4.6 Create clone volumes using Snapshot copies 90
5.4.7 Create new mapping for LUNs that reside on the clone volumes . . . 91
5.4.8 Mount the LUN devices. 93
5.4.9 Configure the cloned database . 94

5.5 Conclusions. 97

Appendix A. Configuring UNIX to access cloned and source databases in
an NAS environment . 99

A.1 Create a mount point for each clone volume . 100
A.2 Define mount options . 100
A.3 Change ownership . 101
A.4 Rename the clone database . 101
A.5 Check whether the database is cataloged . 102
A.6 The db2relocatedb command . 103

Appendix B. Configuring UNIX to access cloned and source databases in
 Contents v

an SAN environment . 105
B.1 List the LUN mappings . 106
B.2 Remove the old mappings . 106
B.3 Create new mappings . 107
B.4 Bring the clone online . 107
B.5 Create Mount point . 107
B.6 Refresh the driver . 108
B.7 Obtain LUN device names . 108
B.8 Mount the LUN devices. 108
B.9 Change ownership . 109
B.10 Rename a cloned database . 109
B.11 Checking whether database is cataloged . 110
B.12 Recatalog the database . 111

Related publications . 113
IBM Redbooks . 113
Other publications . 113
Online resources . 114
How to get IBM Redbooks . 114
Help from IBM . 114

Index . 115
vi Using IBM DB2 UDB with IBM System Storage N series

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
developerWorks®
ibm.com®
AIX®

DB2 Universal Database™
DB2®
IBM®
OS/2®

Redbooks™
System Storage™
Tivoli®

The following terms are trademarks of other companies:

Snapshot, Network Appliance, SnapMirror, FilerView, Data ONTAP, NetApp, and the Network Appliance
logo are trademarks or registered trademarks of Network Appliance, Inc. in the U.S. and other countries.

NetApp, Snapshot, Data ONTAP, SnapMirror, FilerView, Network Appliance, The Network Appliance logo,
the bolt design,Camera-to-Viewer, Center-to-Edge, ContentDirector, ContentFabric, NetApp Availability
Assurance, NetApp ProTech Expert, NOW, NOW NetApp on the Web, RoboCache, RoboFiler,
SecureAdmin, Serving Data by Design, Smart SAN,The evolution of storage, Virtual File Manager, and Web
Filer are trademarks of Network Appliance, Inc. in the U.S. and other countries. All other brands or products
are trademarks or registered trademarks of their respective holders and should be treated as such.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii Using IBM DB2 UDB with IBM System Storage N series

Preface

Database cloning is the process by which you create an exact copy of a DB2®
database, either by physically copying the data or by performing what is known
as a redirected restore.

Database cloning is performed frequently by database administrators to provide
near-production data for various business needs such as application
development, QA testing, and report generation. Traditional methods of cloning a
database pose various challenges, including system downtime and degraded
system performance during the cloning process. Additionally, a large amount of
storage space is required to store each clone. Furthermore, the maintenance
overhead can be enormous if each cloned database requires a frequent data
refresh.

This IBM® Redbook describes the process used to create a clone of an IBM DB2
UDB database using FlexClone technology. This book also covers creating a
database clone on a disaster recovery site that has replicated data using Data
ONTAP® SnapMirror® technology.

This book is meant for database administrators, database developers, database
designers, and storage administrators.

The team that wrote this redbook
This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO),
Poughkeepsie Center.

Alex Osuna is a Project Leader at the ITSO, Tucson, Arizona. He writes
extensively and teaches IBM classes worldwide on all areas of storage. Before
joining the ITSO, he was a Systems Engineer with Tivoli®. He has been involved
with storage for over 26 years and the IT industry for over 28 years in areas of
service, planning, early ship programs, Advanced Technical Support, and
Systems Engineering. He holds over 10 certifications from IBM, Microsoft®, and
Red Hat.

Jawarhar Lal is an Alliance engineer for IBM DB2 at Network Appliance™ Inc.,
RTP, North Carolina. He holds a Masters degree in Computer Science from
University of Rajasthan, Jaipur (India). Currently, he is working on his MBA
degree from Kenan Flagler Business School, UNC Chapel Hill, North Carolina.
© Copyright IBM Corp. 2006. All rights reserved. ix

He has been involved in storage and IT industry over 11 years, in areas of
database programming, modeling, designing, administration, performance tuning
and storage integration. He writes extensively on storage and databases
integration. He is an IBM DB2 UDB Certified DBA and holds four other
certifications from IBM and Oracle.

Roger Sanders is a Senior Manager with IBM Alliance Engineering with Network
Appliance, Inc. He has been designing and developing databases and database
applications for more than 20 years and has been working with DB2 Universal
Database™ and its predecessors since it was first introduced on the IBM PC (as
part of OS/2® 1.3 Extended Edition). He has written articles for IDUG Solutions
Journal and Certification Magazine, authored DB2 tutorials for the IBM
developerWorks® Web site, presented at several International DB2 User's
Group (IDUG) and regional DB2 User's Group (RUG) conferences, taught
classes on DB2 Fundamentals and Database Administration (DB2 8.1 for
Linux®, UNIX®, and Windows®), and is the author of nine books on DB2 and
one book on ODBC. Roger is also a member of the DB2 Certification Exam
development team and the author of a regular column (Distributed DBA) in DB2
Magazine.

Jeremy Brumer has been working with the DB2 system verification test
department in the IBM Toronto Lab for the last six years. His areas of expertise
include high availability solutions and DB2's integration with N-series.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
x Using IBM DB2 UDB with IBM System Storage N series

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii Using IBM DB2 UDB with IBM System Storage N series

Chapter 1. Introduction to FlexClone

Database cloning is a process by which you can create an exact copy of a DB2
database. You can either physically copy the data or perform a redirected
restore. Database cloning is performed frequently by database administrators to
provide near-production quality data for various business needs such as
application development, QA testing, and report generation. Traditional methods
of cloning a database pose various challenges, including system downtime and
degraded system performance during the cloning process illustrated in
Figure 1-1. Additionally, a large amount of storage space is required to store
each clone. Furthermore, the maintenance overhead can be enormous if each
cloned database requires a frequent data refresh.

In this era of high system availability, organizations cannot afford extended
downtime and degraded performance for their production systems. Therefore,
the ability to create a usable database clone quickly and with virtually no impact
on the production system is extremely important.

FlexClone is an advanced and proven technology that helps database and
system administrators deliver a near-instantaneous, point-in-time copy of the
production database. The database cloning process is completed in a few
seconds, with virtually no performance impact on the production system. The
cloned database is similar to the production database in all aspects. However,
unlike a traditional database clone, a FlexClone database consumes no extra
disk space at the time of creation.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

Figure 1-1 Cloning before FlexClone

1.1 Purpose and Scope

This book describes the process used to create a clone of an IBM DB2 UDB
database using FlexClone technology. It also covers creating a database clone
on a disaster recovery site that has replicated data using Data ONTAP
SnapMirror technology. Specifically, the following topics are covered in this
document:

� Creating an IBM DB2 UDB database on a IBM N Series storage system.

� Creating a clone of an offline DB2 UDB database on same aggregate.

� Creating a clone of an online DB2 UDB database on same aggregate.

� Creating a clone of an offline DB2 UDB database on a remote (disaster
recovery) site.

� Creating a clone of an online DB2 UDB database on a remote (disaster
recovery) site

Cloning Before: FlexClone

Production

Mirrored Copy

Test 1

…

Dev N

…

Test NTest 2

Dev 1 Dev 2

Challenges
Copies consume lots
of disk
– < 10% unique data

Copies take a lot
of time
– Slower time to market
2 Using IBM DB2 UDB with IBM System Storage N series

1.2 Overview of FlexClone technology

FlexClone, depicted in Figure 1-2, is a powerful new feature that adds a new
level of agility and efficiency to storage operations by allowing an individual to
create an instant clone of a flexible volume (FlexVol volume). A FlexClone volume
is a writable point-in-time image of a FlexVol volume or another FlexClone
volume. With FlexClone, it takes only a few seconds to create a clone of a
FlexVol volume, the original production volume. Such a volume can be created
without interrupting access to the parent volume upon which the clone is based.
The clone volume uses space very efficiently, allowing both the original FlexVol
volume and the FlexClone volume to share common data, storing only the data
that changes between the original volume and the clone. This provides a huge
potential saving in storage space, resources, and cost. In addition, a FlexClone
volume has all the features and capabilities of a regular FlexVol volume, including
the ability to be grown or shrunk and the ability to be the source of another
FlexClone volume. A database clone can be created simply by creating a clone
of the FlexVol volumes that are used for the database's data and transaction
logs.

Figure 1-2 FlexClone
 Chapter 1. Introduction to FlexClone 3

1.3 Overview of the SnapMirror technology

Data ONTAP SnapMirror technology provides an efficient way to transfer data
from one IBM N Series storage system to another, as in Figure 1-3. The storage
system from which data is transferred is called the SnapMirror source, and the
storage system to which data is transferred is called the SnapMirror destination.
A SnapMirror source and its corresponding destination can reside on the same
storage system or on two separate storage systems that are miles apart,
provided that both storage systems are able to communicate with each other
over a network. Data changes made at the SnapMirror source are replicated
continuously at the SnapMirror destination to keep the data at both locations
synchronized.

Figure 1-3 SnapMirror technology in action

Data ONTAP provides both asynchronous and synchronous SnapMirror
functionality. With asynchronous SnapMirror, each write is acknowledged as
soon as it is written to NVRAM at the source, even if the destination has not yet
received and processed the request. Normally data changes at the SnapMirror
source are copied to the destination periodically, based on the schedule defined
in the /etc/snapmirror.conf file that resides on the destination storage system.

With synchronous SnapMirror, each time a transaction attempts to write data to
disk, the data is sent to both the SnapMirror source and the SnapMirror
destination in parallel. Not until both storage systems have committed the write to

N Series to N Series
Synchronous SnapMirror

. .
4 Using IBM DB2 UDB with IBM System Storage N series

NVRAM does the system acknowledge that the transaction is complete. In other
words, the application that initiated the write must wait until it receives the
acknowledgement from both the source and destination storage systems before
it can continue.

A detailed discussion of SnapMirror is beyond the scope of this book. For further
information about SnapMirror technology, refer to the IBM Redpaper N Series
Snapshot: a Technical Discussion, REDP-4132.

http://www.redbooks.ibm.com/abstracts/redp4132.html?Open

1.4 Ensuring consistency for DB2 UDB database
(suspended I/O)

To obtain a consistent Snapshot™ copy for an online recoverable DB2 UDB
database, all write operations must be suspended before invoking the Data
ONTAP snapshot command. IBM DB2 UDB 7.1 (FixPak 2) and later provides
support for temporarily suspending writes to the database by executing the SET
WRITE SUSPEND command. This functionality allows an individual to suspend
temporarily all writes to the database and its transaction log files before creating
a Snapshot copy. Read-only transactions are able to continue running against
the database while it is in write-suspended state. However, some transactions
may be forced to wait if they require disk I/O for example, to flush dirty pages
from the buffer pool or to flush log records from the log buffer. These transactions
proceed normally when write operations on the database are resumed.

To suspend write operations to a database, connect to the database and execute
the following command:

set write suspend for database

After you create Snapshot copies of the FlexVol volumes using the snapshot
command, resume write operations to a database by executing the following
command on the database server:

set write resume for database
 Chapter 1. Introduction to FlexClone 5

http://www.redbooks.ibm.com/abstracts/redp4132.html?Open

1.5 The db2inidb command

Along with the SET WRITE command, the db2inidb command was introduced in
DB2 UDB 7.1 FixPak 2. This command is used primarily to initialize a snapshot
copy of a database; in the context of creating a clone of a DB2 UDB database
from a Snapshot copy, the purpose of db2inidb is to initialize the clone database
as a snapshot image. The syntax for the db2inidb command is as follows:

db2inidb [DatabaseAlias] as [snapshot|standby|mirror] <relocate using [ConfigFile]>

Where the following variables are defined as:

� Database Alias identifies the alias assigned to the snapshot (secondary)
database that is to be initialized.

� ConfigFile identifies a configuration file that contains information about how
the database files contained in the snapshot copy of the database are to be
relocated when the snapshot image is initialized.

The db2inidb command can also be used to change that database name,
database instance name, and tablespace header information based on the user
provided configuration file. The configuration file must adhere to the format in
Example 1-1.

Example 1-1 Configuration file

DB_NAME=oldName,newName
DB_PATH=oldPath,newPath
INSTANCE=oldInst,newInst
NODENUM=nodeNumber
LOG_DIR=oldDirPath,newDirPath
CONT_PATH=oldContPath1,newContPath1
CONT_PATH=oldContPath2,newContPath2

STORAGE_PATH= oldStoragePath1,newStoragePath1
STIRAGE_PATH= oldStoragePath2,newStoragePath2

Note: Parameters shown in angle brackets (< >) are optional. Parameters or
options shown in square brackets ([]) are required and must be provided. A
comma followed by ellipses (…) indicates that the preceding parameter can be
repeated multiple times.
6 Using IBM DB2 UDB with IBM System Storage N series

The sample configuration file looks similar to Example 1-2.

Example 1-2 Sample configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

For example, to initialize a DB2 database named mydbcl, you would execute the
following command at the database server:

db2inidb mydbcl as snapshot

A second example, to initialize a clone DB2 database named mydbcl, and
change the database name, database instance name, and tablespace header
information using configuration file named config.txt, you would execute the
following command at the database server:

db2inidb mydbcl as snapshot relocate using config.txt

It is important to note that db2inidb is never run on the production or the parent
database. Instead, it must only be executed against the clone database.

1.6 The db2relocatedb command

The db2relocatedb command allows a database administrator (DBA) to change
the location of one or more tablespace containers or an entire database, without
having to perform a backup and a redirected restore operation. It also provides a
way to rename a database and change the instance to which a database
belongs, per specifications in a configuration file that is provided by the user.

When executed, this command makes the necessary changes to the DB2
instance and the appropriate database support files. From the clone database
perspective, it is used to rename the clone database, change the DB2 instance
with which the clone is associated, and change the tablespace container
metadata for the tablespace containers that are associated with the clone.

Note: It is important to note that if the database has automatic storage
enabled, you must specify changes to the location of the database storage
paths (using the STORAGE_PATH parameter), not the tablespace containers
(using the CONT_PATH parameter).
 Chapter 1. Introduction to FlexClone 7

To rename a clone database and update the metadata for its tablespace
containers, you would execute the following command on the database server:

db2relocatedb -f [ConfigFile]

Where ConfigFile identifies the name of a configuration file that contains
information that is needed to alter the DB2-specific metadata stored in files
associated with a database.

The configuration file used must follow the same format specified in 1.5, “The
db2inidb command” on page 6.

For example, to relocate a DB2 database using a configuration file named
config.txt, you would execute the following command on the database server:

db2relocatedb -f config.txt

1.7 Advantages of cloning a database using
N series FlexClone technology

There are abundant business needs that require production or near-production
quality data. These needs can be satisfied by creating a clone of the production
database. The added overhead and the complexities associated with the
traditional method of creating a clone database pose immense challenges for
database and storage administrators. However, N series FlexClone technology
has made the database cloning process so simple and easy that a clone can be
created in couple of seconds without creating any system overhead. The clone
database created using the N series FlexClone feature resides on the same
storage system as the parent database.

The following list describes some of the key business requirements that can
benefit greatly from a clone database created using FlexClone technology:

� Writable Disaster Recovery Destination: Generally, a disaster recovery site is
equipped with systems that have almost the same capacity and power as the
production systems and is not accessible until disaster strikes.

The capacity and power of the disaster recovery site systems can be used for
various purposes such as reporting, data mining, testing, and development by
making the replicated data accessible without affecting the data replication
process.

� Reporting Environment: Business reports need read-only access to the
production database. Normally, reporting environments have near-production
quality data and are refreshed based on a frequency, every night, for
8 Using IBM DB2 UDB with IBM System Storage N series

example. By cloning a disaster recovery site, you can deliver a highly-efficient
and low-cost reporting environment.

� Database Software and Application Upgrade Test: Applications upgrades and
database software patches can be tested on the cloned database before they
are implemented into production.

� Data Mining: Data-mining software and operations can be implemented with
great flexibility because both reads and writes are allowed on a cloned
database.

� Data Warehouse/Data Mart: In typical data warehouse architecture, data from
operational data stores (ODS) are copied to staging areas. The staging area
is used for performing cleansing and transformation, and as the data source
for data load into the data warehouse database.

By creating a clone of the replicated data at the disaster recovery site or at a
production database, you can provide a staging area that can be refreshed
quickly and can be used for cleansing and transformation of the data.

� Standby Database: Immediately resume read-write workload on discovering
corruption in the production dataset by mounting the clone instead. You need
to use database features such as DB2 write-suspend mode to prepare the
database volumes transparently for cloning by delaying write activity to the
database. This delay is necessary because databases must maintain a point
of consistency.

� Application Testing: Enterprise production data is growing exponentially and
the applications testing is not performed on near-production data because of
the size of the data and maintenance overhead. Therefore, some real-life
system problems go undetected during the testing phase of the system. By
providing a cloned database, you can deliver near-production data for
application testing and avoid production issues.

� Online Database Backup: The clone database is a picture image of the
database file system at the time the clone was created. If necessary, the
primary database can be restored from the system picture created for the
clone. Alternatively, applications can point directly to the clone database.
 Chapter 1. Introduction to FlexClone 9

1.8 Configuration used for this publication

The information presented in this book has been tested only with a specific
hardware and software configuration. Network Appliance (NetApp®) and IBM
have tested IBM DB2 UDB V8.2 for Linux. Hosts used for these tests were
running RHEL 4.0. NetApp has not tested this configuration with other
combinations of hardware and UNIX flavors. There can be significant differences
in your environment configuration and setup that will alter the procedures
necessary to accomplish the objective outlined in this book. If you find that any of
the procedures described in this paper do not work in your environment, please
contact this author immediately.
10 Using IBM DB2 UDB with IBM System Storage N series

Chapter 2. Preparation

This chapter describes the set up work that we performed before starting the
tests. This setup includes assumptions about the conditions of the operating
environment and the equipment.

2

© Copyright IBM Corp. 2006. All rights reserved. 11

2.1 General assumptions

In order to take maximum advantage of the procedures and steps described in
this publication, it is assumed that you are familiar with the following:

� Commands and operations of Data ONTAP and the IBM N series storage
system

� Administration and operations of an IBM DB2 UDB instance and database as
well DB2 utilities such as db2inidb and db2relocatedb

� UNIX system administration commands

� Understanding of file and block access protocols such as Fibre Channel and
iSCSI

It is assumed that the IBM N Series storage systems used are licensed for NFS,
FCP, iSCSI, FlexClone, and SnapMirror. Additionally, license keys for
SnapMirror sync are required for both source and destination storage systems, if
synchronous SnapMirror is to be used.

It is also assumed that the UNIX hosts used to access the production database
and the cloned database have the following software and utilities installed:

� IBMM DB2 UDB ESE V8

� For a SAN environment, a supported HBA, SanSurfer utility, and host attach
kit are installed and configured. Host attach kits can be downloaded from the
from the IBM Web site:

http://www-03.ibm.com/servers/storage/support/allproducts/downloadin
g.html

2.2 Environment assumptions

This technical report covers cloning of an IBM DB2 UDB Enterprise Server
Edition V8 database running under UNIX with database storage on a IBM N
Series storage system. The sample scripts and steps in this publication assume
the following:

� The name of the storage system containing the production database is
srcstore.

� The name of the storage system used as the SnapMirror destination is
dststore.

� The database host system used to access the production database is hostsrc.

� The database host system used to access the clone database is hostdst.
12 Using IBM DB2 UDB with IBM System Storage N series

http://www-03.ibm.com/servers/storage/support/allproducts/downloading.html

� The name of the source database is mydb.

� The name of the cloned database is mydbcl.
� The name of the aggregate on the storage systems is dbaggr.
� The name of the FlexVol volume used to store the production database table

data is dbdata.

� The name of the FlexVol volume used to store the production database
transaction logs is dblogs.

� The name of the clone volume that is created from the FlexVol volume named
dbdata is dbdata_cl.

� The name of the clone volume that is created from the FlexVol volume named
dblogs is dblogs_cl.

� The mount points used for the production database are /mnt/dbdata and
/mnt/dblogs.

� The mount points used to mount the volumes used for the clone database are
/mnt/dbdata_cl and /mnt/dblogs_cl.

The scripts contained in this document might require significant modifications to
run under your version of UNIX.

2.3 Security and access issues

You need to make sure that each FlexVol volume used for the DB2 UDB
database's data and transaction logs have their security style set to UNIX. The
security style can be updated by executing the following command on the
storage system:

qtree security [FlexVolPath] unix

Where FlexVolPath identifies the flexible volume path on the storage system that
is used for the database.

For example, to update the security style of a FlexVol volume named dbdata, you
would execute the following command on the storage system:

qtree security /vol/db2data unix
 Chapter 2. Preparation 13

2.4 Network and storage infrastructure

Figure 2-1 illustrates a simple basic architecture used to create a clone of a DB2
UDB database in the UNIX, NetApp FAS, or IBM N Series storage system
environment.

Figure 2-1 Basic architecture

SnapMirror® ..

Linux host (hostsrc)
FC Link

Linux host (hostdst)
1 GBE

TC
P/

IP

X

14 Using IBM DB2 UDB with IBM System Storage N series

A FlexClone volume of a FlexVol volume, also known as FlexClone volume,
resides in the same aggregate as the parent FlexVol volume. Figure 2-2
illustrates that both the parent volumes and the clone volumes reside in the
aggregate named dbaggr.

Figure 2-2 Both the source and clone volumes reside in the same aggregate

The FlexClone feature, combined with SnapMirror, enables database and
storage administrators to create a clone on another aggregate or on another
storage system.

db data

mydb

dblog G

db data_ol

Mydb_d

Dblog G_ol

dbaggr
 Chapter 2. Preparation 15

Figure 2-3 illustrates the use of SnapMirror to replicate the data from the source
volume to the destination volume, creating a clone on the destination storage
system.

Figure 2-3 Clone database volumes on the second NetApp FAS or IBM N Series storage
system

db data

mydb

dblog t

SRCSTORE DSTSTORE

dbaggr

db data

mydb

dblog t

db data_ol

mydb_d

Dblog G_ol

dbaggr

SnapMirror

SnapMirror
16 Using IBM DB2 UDB with IBM System Storage N series

Figure 2-4 Illustrates the steps necessary to create a clone of database in a IBM
N series storage system environment.

Figure 2-4 Cloning DB2 database in NetApp FAS or IBM N Series storage system
environment

IBM Systems6

Create Snapshop copies of the FlexVols
Used for the source database

Create clone of the FlexVol volumes
Using Snapshot copies

Verify the cloned database using
db2dart tool

Mount the clone volume to the database
server

Bring the source database offline

Configure the cloned database

Start the source database

(1)

(2)

(3)

(4)

(5)

(6)

(7)

X XX
X

X

XX
X

X

XX
X

X

XX
X

X

XX
X

X

XX
X

X

XX
X

X

Steps to clone Offline DB2 Database Steps to clone a Online DB2 Database

Create Snapshop copies of the FlexVols
Used for the source database

Create clone of the FlexVol volumes
using Snapshot copies

Mount the clone volume to the database
server

Bring the source database into a
Consistent state (suspend writes)

Configure the cloned database

Resume normal operations for source
Database (resume writes)

(1)

(2)

(3)

(4)

(5)

(6)

X XX
X

X

XX
X

X

XX
X

X

XX
X

X

XX
X

X

XX
X

X

Verify the cloned database using
db2dart tool(7) X

X

X
X

 Chapter 2. Preparation 17

18 Using IBM DB2 UDB with IBM System Storage N series

Chapter 3. Creating a DB2 UDB
Database on an IBM N series

To create a DB2 UDB database on a IBM N-Series storage system, you need to
perform a few configuration steps on the database server and the IBM N-Series
storage system.

3

© Copyright IBM Corp. 2006. All rights reserved. 19

3.1 Create containers

After configuring the database server and the storage system, you need to create
the following storage containers and objects on your storage system.

� An aggregate named dbaggr1

Figure 3-1 dbaggr1

� Flexible volumes named dbdata and dblogs within aggregate dbaggr

For SAN environments, you need to perform the following additional steps:

� Create a LUN named /vol/dbdata/data within FlexVol volume dbdata.

� Create a LUN named /vol/dblogs/logs within FlexVol volume dblogs.

� Create an igroup named dbhost1_fcp_igp for the database server dbhost1.

� On the storage system named dbstore1, create mappings for the LUNs
named /vol/dbdata/data and /vol/dbdata/logs to the igroup named
dbhost1_fcp_igp, using ID 0 and 1 respectively.

After you complete these initial steps, the storage system should be ready to
receive a DB2 UDB database, which you can create by completing the steps in
the following sections.

IBM Systems
20 Using IBM DB2 UDB with IBM System Storage N series

3.2 Create an instance

If an instance does not already exist, log in as the user root on the database
server and create a DB2 instance by executing the following command:

[DB2Dir]/instance/db2icrt -u [FencedID] [InstanceName]

Where the following conditions are defined:

� DB2Dir identifies the directory where the DB2 UDB software was installed:

– On AIX®, the DB2 installation directory for version 8.1 is
/usr/opt/db2_08_01.

– On all other UNIX-based operating systems, the installation directory for
version 8.1 is /opt/IBM/db2/V8.1.

� FencedID identifies the ID of the user under which fenced user-defined
functions and fenced stored procedures will run.

� InstanceName identifies the name that is to be assigned to the new instance.

For example, to create a database instance named db2inst1, you would execute
the following command on the database server:

/opt/IBM/db2/V8.1/instance/db2icrt -u db2inst1 db2inst1

3.3 Create the database

Log in as the database instance owner and execute the following command on
the database server:

db2 "create database [DatabaseName] on [MountPoint]"

Where the following terms are defined:

� DatabaseName identifies the name that is to be assigned to the new
database once it has been created.

� MountPoint identifies the mount point location where the new database is to
be created.

For example, to create a database named mydb on a storage system volume that
is mounted on a mount point named /mnt/dbdata, you would execute the
following command on the database server:

 db2 "create database mydb on /mnt/dbdata"
 Chapter 3. Creating a DB2 UDB Database on an IBM N series 21

3.4 Change location of transaction logs

It is not a good practice to leave transaction log files in their default location on
the default volume. In fact, when a DB2 UDB database is stored on an IBM N
Series storage system volume, the transaction log files for the database should
be stored on a separate volume. To change the location where transaction log
files are stored, execute the following command at the database server:

db2 update db cfg for [DatabaseName] using NEWLOGPATH [NewLogLocation]

Where the following terms are defined:

� DatabaseName identifies the name assigned to the database whose log file
storage location is to be changed.

� NewLogLocation identifies the new location where the database's transaction
log files are to be stored.

For example, to change the log directory from the default location to a directory
named /mnt/dblogs, you would execute the following command on the database
server:

db2 update db cfg for mydb using NEWLOGPATH /mnt/dblogs

3.5 Switch from circular logging to archive logging

By default, DB2 UDB uses a circular logging mechanism for the database, and
the transaction logs are stored in a subdirectory where the database was
created. However, most production databases run in archive logging mode to
support roll-forward recovery. Switching a DB2 UDB V8 database from circular
logging to archive logging is easy, and it can be done by updating the primary log
archive method configuration parameter (named LOGARCHMETH1).

You can update the LOGARCHMETH1 configuration parameter by executing the
following command on the database server:

db2 update db cfg for [DatabaseName] using LOGARCHMETH1
DISK:[ArchiveDir]

Note: The new log path setting will not become effective until all the users are
disconnected and the database is deactivated. When first connection is made
after reactivating the database, the database manager will move the
transaction log files to the new location.
22 Using IBM DB2 UDB with IBM System Storage N series

In this command, the following terms are defined:

� DatabaseName identifies the name assigned to the database whose logging
method is to be changed.

� ArchiveDir identifies the directory (location) where archived transaction log
files are to be stored.

For example, to enable archive logging for the DB2 database named mydb and
place the archive file in a directory named /mnt/dbarch1/mydb, you would
execute the following command on the database server:

db2 update db cfg for mydb using LOGARCHMETH1 DISK:/mnt/dbarch1/mydb

If you want to retain a second copy of archive log files on another disk, you need
to update the secondary log archive method configuration parameter, named
LOGARCHMETH2. You can update the LOGARCHMETH2 configuration
parameter by executing the following command on the database server:

db2 update db cfg for [DatabaseName] using LOGARCHMETH2
DISK:[ArchiveDir]

Where the following terms are defined:

� DatabaseName identifies the name assigned to the database for which duplex
logging is to be enabled.

� ArchiveDir identifies the directory (location) where the second copy of the
archived transaction log files is to be stored.

For example, to store and maintain a second set of archive logs for a DB2
database named mydb in a directory named /mnt/dbarch2/mydb, you would
execute the following command on the database server:

db2 update db cfg for mydb using LOGARCHMETH2 DISK:/mnt/dbarch2/mydb

3.6 Create offline copy

After the logging method is changed from circular to archival, the database is
placed into Backup Pending state and can no longer be used until a full offline
backup copy of the database has been created. You can create an offline backup
copy of the database by executing the following commands on the database
server:

db2 force application all
db2 backup database [DatabaseName] to [BackupDir]
 Chapter 3. Creating a DB2 UDB Database on an IBM N series 23

In these command, the following terms are defined:

� DatabaseName identifies the name assigned to the database that is to be
backed up.

� BackupDir identifies the directory (location) where backup images are to be
stored.

For example, to create an offline backup copy of the database named mydb, you
would execute the following command on the database server:

db2 force application all
db2 backup database mydb to /dbbackup

After completing these steps, the production database is ready. You can create
database objects and start using the database.
24 Using IBM DB2 UDB with IBM System Storage N series

Chapter 4. Cloning a DB2 UDB
database in the N series
environment

This chapter discusses cloning databases in DB2 using IBM N series systems.

4

© Copyright IBM Corp. 2006. All rights reserved. 25

4.1 Select a database server to access the
cloned database

You need to select a database server that will be used to access the cloned
database. You have the following choices:

4.1.1 Select the production database server and database

Select the database server which accesses the production (parent) database. In
this case, you can uses existing DB2 instance or create a new one using the
same DB2 UDB V8 code as the production instance. In order to create new DB2
instance you need to complete the following steps:

1. Switch the authority to the user root and create a user named db2instc on the
database server by executing the following command:

useradd -c "DB2 clone db instance owner" -u 710 -g db2adm -G db2adm
db2instc -p db2instc

The new user will own the DB2 instance used to access the cloned database.

2. Now create a new DB2 instance using the same DB2 code as the production
database instance. In order to do that you need execute the following
command on the database server:

[DB2InstallationPath]/instance/db2icrt -u [FencedUser]
[InstanceName]

Where the following terms are defined:

– DB2InstallationPath identifies the directory where the DB2 UDB V8 code
was installed.

– FencedUser identifies the ID of the user under which fenced user-defined
functions and fenced stored procedures will run.

– InstanceName identifies the name that is to be assigned to the new
instance.

For example, if the DB2 UDB V8 were installed in /opt/IBM/db2/V8.1
directory, you would execute the following command on the database server
to create a DB2 instance named db2instc:

/opt/IBM/db2/V8.FP11/instance/db2icrt -u db2instc db2instc

a. Check the list of instances and DB2 UDB code used by executing the
following command on the database server.

/opt/IBM/db2/V8.FP11/instance/db2ilist -a
26 Using IBM DB2 UDB with IBM System Storage N series

The output from the command should look similar to Example 4-1.

Example 4-1 The db2ilist output

db2inst1 32 /opt/IBM/db2/V8.1
db2instc 32 /opt/IBM/db2/V8.1

4.1.2 Select a database server that has a different DB2 UDB version

A database server other than the production database server, which has a
different version of DB2 UDB from that of the production DB2 UDB Version. In
this case, you need to install the same DB2 UDB V8 code as the production
database on the database server and create a database instance as described in
the 4.1.1, “Select the production database server and database” on page 26. The
new instance name can be same as the production DB2 instance provided there
is no other instance with the same name on this server.

4.1.3 Select a non-production server without DB2 UDB installed

A non-production server is a database server other than the production database
server that does not have DB2 UDB installed.

In this case, you must install the same DB2 UDB V8 code as the production
database on the database server and create a database instance as described in
4.1.1, “Select the production database server and database” on page 26. The
new instance name can be same as the production DB2 instance.

4.2 Clone an offline database on the same
storage system

To clone a database that is offline, complete the steps in the following sections.

4.2.1 Bring the source database offline

To bring the database offline, terminate all the application connections to the
database that is to be cloned by executing the following command on the
database server:

db2 force applications all
 Chapter 4. Cloning a DB2 UDB database in the N series environment 27

For example, to terminate all application connections, execute the following
command on the database server:

db2 force applications all

4.2.2 Create Snapshot copies of the database FlexVol volumes

Create a Snapshot copy of each FlexVol volume that is used for the production
database by executing the following command on the storage system:

snap create [VolName] [SnapName]

Where the following terms are defined:

� VolName identifies the name assigned to the FlexClone volume that is to be
created.

� SnapName identifies the name that is assigned to the Snapshot copy.

For example, to create a Snapshot copy named dbdata_snap01 for a FlexVol
volume named dbdata, execute the following command on the storage system:

snap create dbdata dbdata_cl_snp01

The result is shown in Figure 4-1.

Figure 4-1 Snapshot results
28 Using IBM DB2 UDB with IBM System Storage N series

It is recommended that you develop a naming convention and assign a
meaningful name to the Snapshot copies that are created for cloning purposes.

4.2.3 Start the source database

When the Snapshot copies of the FlexVol volumes of the source database are
created, you can connect to the source database and start using it.

4.2.4 Clone the FlexVol volumes

Create a clone of each FlexVol volume using the Snapshot copies created on
step 4.2.2, “Create Snapshot copies of the database FlexVol volumes” on
page 28. Create a clone volume by executing this command on the storage
system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Where the following variables are defined:

� CloneVol identifies the name of the FlexClone volume that is being created.

� ParentVol identifies the name of the FlexVol volume that is source for the
clone volume.

� ParentSnap identifies the name of the parent FlexVol volume snapshot that is
used as source for the clone volume.

For example, to create a clone volume of a FlexVol volume named dblogs using
the Snapshot copy named dbdata_cl_snp.01, execute the following command on
the N series storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.01

Verify the clone you just created with the following command. You can see the
results in Example 4-2.

vol status dbdata_cl

Example 4-2 The vol status command

itsotuc2> vol status dbdata_cl
 Volume State Status Options
 dbdata_cl online raid_dp, flex create_ucode=on,
 convert_ucode=on
 Clone, backed by volume 'dbdata', snapshot
'dbdata_cl_snp.01'
 Containing aggregate: 'aggr0'
 Chapter 4. Cloning a DB2 UDB database in the N series environment 29

The Snapshot copy that is used as the base for the clone volume cannot be
deleted as long as the clone volume exists.

4.2.5 Create an export entry for the clone volume

To mount a clone volume to the database server, you must create an export
entry for it in the /etc/exports file that resides on the IBM N Series storage
system. The export entry can be created by executing the following command on
the IBM N Series storage system:

exportfs -p rw=[HostName],root=[HostName] [PathName]

Where the following variables are defined:

� HostName identifies the name assigned to the database server.
� PathName identifies the name assigned to the flexible volume.

For example, to create an export entry for a clone volume named dbdata_cl and
allow root access from the database server named hostdst for it, execute the
following command on the storage system:

exportfs -p rw=hostdst,root=hostdst /vol/dbdata_cl

Repeat this step to create an export entry for each clone volume that is used for
the clone database.

Note: A Snapshot copy is not required to create a clone of a FlexVol volume. If
you do not explicitly create a Snapshot copy and specify it when executing the
vol clone command, a Snapshot copy will be implicitly created and used for
the clone volume. A Snapshot copy created implicitly will have a system
assigned name. We recommend explicitly creating a Snapshot and assigning
it a meaningful name before creating a clone FlexVol volume.
30 Using IBM DB2 UDB with IBM System Storage N series

You can verify your exports with FilerView® in Figure 4-2.

Figure 4-2 Verifying the exports

4.2.6 Mount the clone volumes

The clone database can be accessed from the same database server that is
used to access the source database, or from a completely different server. The
scenarios described in this paper were produced using a second database sever
to access the clone database.

To access the clone database, you must mount the clone volumes to a database
server. First, you must create a mount point for each clone volume and append a
mount entry to the /etc/fstab file. The mount entry should specify the mount
options, and it should look similar to the following:

[StorageSystemName]:[FlexVolName] [MountPoint] nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

Where the following variables are defined as:

� StorageSystemName identifies the name assigned to the storage system that is
used for the database storage.

� FlexVolName identifies the name assigned to the clone volume.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 31

� MountPoint identifies the name assigned to the mount location that is used to
mount the flexible volume on the database server.

For example, for a clone volume named dbdata_cl that resides on a storage
system named srcstore, you would append the following entry to the /etc/fstab
file on the database sever:

srcstore:dbdata_cl /mnt/dbdata_cl nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

After appending the mount entry, you can mount the clone volume by executing
the following command on the database server:

mount [MountPoint]

Where MountPoint identifies the name assigned to the mount location that is
used to mount the flexible volume on the database server.

For example, to mount a clone volume that has mount entry specified in the
/etc/fstab file, you would execute the following command on the second
database server named hostdst:

mount /mnt/dbdata_cl

The database servers we used had a Linux operating system.

In order to operate DB2 successfully, the DB2 instance owner should have
ownership of the file systems on the clone volume that is mounted on the
database server. Ownership can be changed by executing the following
command on the database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

� InstanceOwner identifies the name assigned to the user who owns the
database instance.

� InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

� FileSystem identifies the name of the files system whose ownership is
changed.

For example, to change ownership of the file system mounted on the mount point
named /mnt/dbdata_cl, execute the following command on the second database
server:

chown -R db2inst1:db2adm /mnt/dbdata_cl
32 Using IBM DB2 UDB with IBM System Storage N series

4.2.7 Configuring the cloned database

The clone volumes created in 4.2.4, “Clone the FlexVol volumes” on page 29 and
mounted in 4.2.6, “Mount the clone volumes” on page 31 are going to be used as
the storage containers for the cloned database. You can skip the parts 1 on
page 40 and 2 on page 41 of this step if the following two conditions are true for
your environment:

� The name of the DB2 instance used for the clone database is the same as the
production or source database instance name.

� The mount points that are used to mount the clone volumes have the same
name as the mount points that are used to mount volumes of the production
database.

1. By default when the database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n

Where the following terms are defined:

– DBDir identifies the name assigned to the directory or device upon which
the database is created.

– InstanceName identifies the name assigned to the DB2 instance to which
the database belongs.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory:

/mnt/dbdata/db2inst1/NODE0000

For a database server, the DB2 instance name must be unique. Therefore,
you have to create a DB2 instance with a new name if an existing DB2
instance name is the same as the production DB2 instance name. To access
the clone database from a different instance name, you must change the
default tablespace container's path name by executing following command on
the database server:

mv [DBDir]/[OldInstanceName]/NODE000n [DBDir]/[NewInstanceName]/NODE000n

Where the following variables are defined:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– OldInstanceName identifies the name assigned to the DB2 instance to
which the production database belongs.

– NewInstanceName identifies the name assigned to the DB2 instance to
which the clone database belongs.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 33

For example, to access the clone database from the instance named
db2instc, execute the following command on the database server to change
the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Change the database name and tablespace containers header information
using the db2inidb command as specified in 1.5, “The db2inidb command” on
page 6. To do this, you must create a configuration file that identifies the
source database information and specifies the new clone database
information. A sample configuration file for this scenario should look similar to
Example 4-3.

Example 4-3 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata . The clone database is to be
renamed to mydbcl; it has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline during the Snapshot copy process, the
clone database becomes available after executing db2start. The production
database was offline during the Snapshot creation process, therefore, you
can connect to the clone database and start using it.
34 Using IBM DB2 UDB with IBM System Storage N series

4.2.8 Catalog the source database if necessary

If the cloned database is accessed from same DB2 instance as the production
database on the production database server, then on execution the
db2relocatedb command uncatalogs the source database. Therefore, you must
catalog the source database by executing the following command on the
database server:

db2 "catalog database [DatabaseName] as [DatabaseAlias] on [FileSystem]"

Where the following terms are defined:

� DatabaseName identifies the name assigned to the database that is being
cataloged.

� DatabaseAlias identifies the alias name assigned to the database that is
being cataloged.

� FileSystem specifies the path on which the database being cataloged
resides.

For example, to recatalog a source database named mydb that resides on file
system named /mnt/dbdata, execute the following command on the database
server:

db2 "catalog database mydb as mydb on /mnt/dbdata"

4.2.9 Verify the database

After performing the previous steps, check the entire clone database for
architectural correctness. You can do that by executing the following command
on the database server:

db2dart [DatabaseName] /db

Where DatabaseName identifies the name of the clone database used for the test
environment.

For example, to test the cloned database named mydbcl, execute the following
command on the database server:

db2dart mydbcl /db

The db2dart utility inspects the entire database for architectural correctness and
generates a detailed report. The report is generated in the
<$HOME>/sqllib/db2dump/DART0000/ directory. There is a summary at the end
of report. Read the summary and check to see if there are any errors.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 35

The additional information about accessing a cloned database from the same
database server as the source is described in Appendix A, “Configuring UNIX to
access cloned and source databases in an NAS environment” on page 99.

4.3 Clone an online database on the same storage
system

After reading 4.2, “Clone an offline database on the same storage system” on
page 27 you should have a fair understanding of cloning an offline DB2
database. In this section, you learn how to clone an online DB2 database by
completing the following steps.

4.3.1 Bring the database into a consistent state (suspend writes)

In this scenario, the source database is online. Therefore, to prevent partial page
writes while database cloning is in progress, the database write operations must
be temporarily suspended by executing the following command on the database
server:

db2 set write suspend for database

The set write suspend for database command causes the DB2 database
manager to suspend all write operations to tablespace containers and log files
that are associated with the current database. Read-only transactions continue
uninterrupted, provided that they do not request a resource that is being held by
the suspended I/O process. The FlexVol volume clone process is completed very
quickly, so the database does not need to stay in write suspend mode for more
than a few seconds.

4.3.2 Create Snapshot copies of the database FlexVol volumes

Next, create a Snapshot copy of each FlexVol volume that is used for the
production database.

A Snapshot copy of a FlexVol volume can be created by executing the following
command on the storage system:

snap create [VolName] [SnapName]

Where the following variables are defined:

� VolName identifies the name assigned to the FlexClone volume that is to be
created.

� SnapName identifies the name that is assigned to the Snapshot copy.
36 Using IBM DB2 UDB with IBM System Storage N series

For example, to create a Snapshot copy named dbdata_snap.1 for a FlexVol
volume named dbdata, execute the following command on the storage system:

snap create dbdata dbdata_cl_snp.1

It is recommended that you develop a naming convention and assign a
meaningful name to the Snapshot copies that are created for cloning purpose.

4.3.3 Resume normal database operations (resume writes)

After Snapshot copies are created, you must resume write operations to the
database by executing the following command on the database server:

set write resume for database

4.3.4 Clone the FlexVol volumes.

Create a clone of each FlexVol volume using the Snapshot copies created in
4.3.2, “Create Snapshot copies of the database FlexVol volumes” on page 36. A
clone volume can be created by executing the following command on the storage
system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Where the following variables are defined:

� CloneVol identifies the name of the FlexClone volume that is being created.

� ParentVol identifies the name of the FlexVol volume that is source for the
clone volume.

� ParentSnap identifies the name of the parent FlexVol volume snapshot that is
used as source for the clone volume.

For example, to create a clone volume of a FlexVol volume named dblogs using
the Snapshot copy named dbdata_cl_snp.01, execute the following command
on the N series storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.01

The Snapshot copy that is used as the base for the clone volume cannot be
deleted as long as the clone volume exists.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 37

4.3.5 Create NFS export entries for the cloned volumes

In order to mount a clone volume to the database server, you must create an
export entry for it in the /etc/exports file that resides on the storage system. The
export entry can be created by executing the following command on the storage
system:

exportfs -p rw=[HostName],root=[HostName] [PathName]

Where the following variables are defined as:

� HostName identifies the database server name that will use these clone
volumes as storage.

� PathName identifies the clone volume path.

For example, to create an export entry for a clone volume named dbdata_cl and
allow root access to it from a database server named dbhost1, you would
execute the following command on the storage system:

exportfs -p rw=dbhost1,root=dbhost1 /vol/dbdata_cl

Repeat this step to create an export entry for each clone volume that is to be
used for the database in the test environment.

4.3.6 Mount the cloned volumes

To access the clone database, you must mount the clone volume to a database
server. First, you create a mount point for each clone volume and append a
mount entry to the /etc/fstab file. The mount entry should specify the mount
options, and it should look similar to Example 4-4.

Example 4-4 The /etc/fstab file

[StorageSystemName]:[FlexVolName] [MountPoint] nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

Note: A Snapshot copy is not required to create a clone of a FlexVol volume. If
you do not explicitly create a Snapshot copy and specify it when executing the
vol clone command, a Snapshot copy will be implicitly created and used for
the clone volume. A Snapshot copy created implicitly will have a system
assigned name. We authors recommend explicitly creating a Snapshot and
assigning it a meaningful name before creating a clone FlexVol volume.
38 Using IBM DB2 UDB with IBM System Storage N series

In this example, the following terms are defined:

� StorageSystemName identifies the name assigned to the storage system that is
used for the database storage.

� FlexVolName identifies the name assigned to the clone volume.

� MountPoint identifies the name assigned to the mount location that is used to
mount the flexible volume on the database server.

For example, for a clone volume named dbdata_cl that resides on a storage
system named srcstore, append the following entry to the /etc/fstab file on the
database sever:

srcstore:dbdata_cl /mnt/dbdata_cl nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

After appending the mount entry, you can mount the clone volume by executing
the following command on the database server:

mount [MountPoint]

Where MountPoint identifies the name assigned to the mount location that is
used to mount the flexible volume on the database server.

For example, to mount a clone volume with the mount entry specified in the
/etc/fstab file, execute the following command on the second database server,
named hostdst:

mount /mnt/dbdata_cl

The database servers we used had Linux operating systems.

To operate DB2 successfully, the DB2 instance owner should have ownership of
the file systems on the clone volume that is mounted on the database server.
Ownership can be changed by executing the following command on the
database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

� InstanceOwner identifies the name assigned to the user who owns the
database instance.

� InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

� FileSystem identifies the name of the files system whose ownership is
changed.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 39

For example, to change ownership of the file system mounted on the mount point
named /mnt/dbdata_cl, you would execute the following command on the
second database server:

chown -R db2inst1:db2adm /mnt/dbdata_cl

4.3.7 Configuring the cloned database

You use the clone volumes that you created in 4.3.4, “Clone the FlexVol
volumes.” on page 37 and mount in 4.3.6, “Mount the cloned volumes” on
page 38 as the storage containers for the cloned database. You can skip the
steps 1 and 2 if following two conditions are true for your environment:

� The name of the DB2 instance used for the clone database is same as the
production or source database instance name.

� The mount points that are used to mount the clone volumes have same name
as the mount points that are used to mount volumes of the production
database.

To configure the cloned database, follow these steps:

1. By default when database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– InstanceName identifies the name assigned to the DB2 instance to which
the database belongs.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory.

/mnt/dbdata/db2inst1/NODE0000

For a database server, the DB2 instance name must be unique. Therefore,
you must create a DB2 instance with a new name if an existing DB2 instance
name is the same as the production DB2 instance name. To access the clone
database from a different instance name, you must change the default
tablespace container's path name by executing following command on the
database server:

mv [DBDir]/[OldInstanceName]/NODE000n [DBDir]/[NewInstanceName]/NODE000n
40 Using IBM DB2 UDB with IBM System Storage N series

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– OldInstanceName identifies the name assigned to the DB2 instance to
which the production database belongs.

– NewInstanceName identifies the name assigned to the DB2 instance to
which the clone database belongs.

For example, to access the clone database from the instance named
db2instc, you would execute the following command on the database server
to change the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Change the database name and tablespace containers header information
using the db2inidb command as specified in 1.5, “The db2inidb command” on
page 6. To do this, you must create a configuration file that identifies the
source database information and specifies the new clone database
information. A sample configuration file for this scenario looks similar to that
shown in Example 4-5.

Example 4-5 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata . The clone database is to be
renamed to mydbcl; it has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline during the Snapshot copy process, the
clone database becomes available after executing db2start.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 41

If the production database was online during the Snapshot creation process,
you must use the db2inidb utility to initialize the clone database as a
snapshot. You can do this by executing the following command on the
database server:

db2inidb database [DatabaseName] as snapshot

Where DatabaseName identifies the name of the clone database that is going
to be used for the test environment. For example, to initialize a clone
database named mydbcl, execute the following commands on the database
server:

db2inidb mydbcl as snapshot

4.3.8 Verify the database

After performing the previous steps, you must check the entire database for
architectural correctness. You can do so by executing the following command on
the database server:

db2dart [DatabaseName] /db

Where DatabaseName identifies the name of the clone database used for the test
environment. For example, to test the database named mydbcl, execute the
following command on the database server:

db2dart [mydbcl] /db

4.4 Clone an offline database to a remote storage
system

The FlexClone feature combined with SnapMirror (Figure 4-3 on page 43) makes
it possible to clone a DB2 database on a remote IBM N Series storage system
over the network or on another aggregate of the same IBM N Series storage
system. This section describes the steps necessary to clone a database on the
second storage system at a remote location.
42 Using IBM DB2 UDB with IBM System Storage N series

Figure 4-3 SnapMirror utilization

4.4.1 Configure SnapMirror

To configure SnapMirror, complete the following steps on the SnapMirror source
and the SnapMirror destination IBM N Series storage system:

1. Add licenses for SnapMirror and SnapMirror sync on the source and
destination IBM N Series storage system by executing the following
command:

license add [licenseCode]

Where licenseCode identifies the license key for the product or feature that is
provided to you by the NetApp or IBM sales representative. For example, to
enable a SnapMirror license key, execute the following command on the
storage system:

License add 1234ABCDE

.SnapMirror®

.

Application Disaster Recovery

Any-to-any mirroring;
from low- to high-end

Scalable replication
frequency

Bandwidth efficient;
mirror over existing IP
network

Primary
Storage

FC or
IP SAN

Secondary
Storage

Remote DR
 Chapter 4. Cloning a DB2 UDB database in the N series environment 43

Verify the license through FilerView, as shown in Figure 4-4.

Figure 4-4 License manager

2. Enable the SnapMirror feature by executing the following command on the
SnapMirror source and destination storage systems:

snapmirror on

Alternatively, you can use this command:

options snapmirror.enable on

Verify options with the following command:

options snapmirror

The output looks similar to that shown in Example 4-6.

Example 4-6 The options snapmirror command

itsotuc2> options snapmirror
snapmirror.access host=192.168.2.2
snapmirror.checkip.enable off
snapmirror.delayed_acks.enable on
snapmirror.enable on
snapmirror.log.enable on

1234ABCDE
44 Using IBM DB2 UDB with IBM System Storage N series

3. On the SnapMirror source storage system, create a snapmirror.allow file that
resides in the /vol/vol0/etc directory and append an entry for the SnapMirror
destination storage system. The entries in the snapmirror.allow file should
look similar to the following:

[DestinationStorageSystemName]

Where DestinationStorageSystemName identifies the name assigned to the
SnapMirror destination storage system.

For example, to append an entry for the storage system named dststore, add
the following entry to the snapmirror.allow file on the SnapMirror source
storage system:

dststore

4. Create a configuration file named snapmirror.conf that resides in the
/volvol0/etc directory on the destination storage system. The configuration file
is used to identify the source storage system, source volume, destination
volume, and SnapMirror schedule. A snippet from a snapmirror.conf file looks
similar to that shown in Example 4-7.

Example 4-7 A snippet from a snapmirror.conf file

#---
file name: snapmirror.conf
Description: This file resides on a destination storage system and
consists of SnapMirror configuration details. Entry format is as follows:
src_filer:[vol | qtreepath] dest_filer:[vol | qtreepath] argument schedule
#---
srcstore:dbdata dststore:dbdata - 0 * * 1-5
srcstore:dblogs dststore:dblogs - 0 * * 1-5
srcstore:dblog1 dststore:dblog1 - sync -- synchronous SnapMirror

If the word sync is specified in the snapmirror.conf file instead of a definitive
schedule, that implies synchronous Snapmirror configuration for that particular
volume.

4.4.2 Initialize SnapMirror

As noted earlier, the initialization process transfers data, including all Snapshot
copies, from the source volume to the destination volume for the first time.
Thereafter, only changed blocks are transferred. In order to initialize the
SnapMirror relationship, you must restrict the destination volume by executing
the following command on the destination storage system:

vol restrict [VolumeName]
 Chapter 4. Cloning a DB2 UDB database in the N series environment 45

Where VolumeName identifies the name assigned to the volume that is being used
as the SnapMirror destination. For example, to restrict a SnapMirror destination
volume named dbdata, you would execute the following command on the
destination storage system:

vol restrict dbdata

Verify the execution of the command with the following command;

vol status dbdata

Example 4-8 shows the output from this command.

Example 4-8 Output from the vol status command

vol status dbdata
Volume State Status Options
dbdata restricted raid_dp, flex
 Volume has clones: dbdata_cl
 Containing aggregate: 'aggr0'

After restricting the destination FlexVol volumes, you must initialize the
SnapMirror relationship for each volume that is used for the database by
executing the following command on the destination storage system:

snapmirror initialize -S
[SourceStorageSystem]:[VolumeName][DestinationStorageSystem]:[VolumeName]

Where the following variables are defined as:

� SourceStorageSystem identifies the name assigned to the SnapMirror source
storage system.

� VolumeName identifies the name assigned to the volume that is the SnapMirror
source/destination.

� DestinationStorageSystem identifies the name assigned to the SnapMirror
destination storage system.

For example, to initialize the SnapMirror relationship that is specified in the
configuration file for the volume named dbdata, execute the following command
on the destination storage system:

snapmirror initialize -S srcstore:dbdata dststore:dbdata
46 Using IBM DB2 UDB with IBM System Storage N series

You can accomplish the same thing through FilerView (Figure 4-5).

Figure 4-5 SnapMirror creation

The SnapMirror initialize command creates a Snapshot copy of the source
volume and transfers data from the source to the destination volume. After
baseline data transfer is finished, the destination volume data is available in
read-only mode.

The progress of SnapMirror can be checked by executing the following
command on the storage system:

snapmirror status

IBM Systems2
 Chapter 4. Cloning a DB2 UDB database in the N series environment 47

The output from this command should look similar to that shown in Example 4-9
or Figure 4-6.

Example 4-9 Output from the snapmirror status command

snapmirror status
snapmirror is on.
Source Destination State Lag Status
srcstore:dbdata dststore:dbdata SnapMirrored 00:07:33 Idle
srcstore:dblogs dststore:dblogs Uninitialized - Transferring(116 MB
done)

Figure 4-6 SnapMirror Status

4.4.3 Create clones of the FlexVol volumes

Create clones of the FlexVol volumes on the remote storage system.In the
SnapMirror relationship, the destination volumes are read-only; therefore, to
create a clone database on a remote IBM N series storage system, you need to
create Snapshot copies of the FlexVol volumes on the SnapMirror source
storage system and update the SnapMirror relationship manually. The
SnapMirror update operation replicates data, including Snapshot copies, to the
48 Using IBM DB2 UDB with IBM System Storage N series

SnapMirror destination storage system, and the replicated Snapshot copy can be
used to create the clone volume. Here are the detailed steps:

1. Bring the database offline by terminating all the application connections to the
database by executing the following command on the database server:

db2 force applications all

2. Create a Snapshot copy for each volume that is used for the database by
executing the following command on the SnapMirror source storage system:

snap create [VolumeName] [SnapName]

Where the following variables are defined as:

– VolumeName identifies the name assigned to the FlexVol volume on the
SnapMirror storage system that is used for the database.

– SnapName identifies the name assigned to the Snapshot copy of the
FlexVol volume that is used as the source for the clone volume.

For example, to create a Snapshot copy named dbdata_cl_snap.1 of a
volume named dbdata, execute the following command on the SnapMirror
source storage system:

snap create dbdata dbdata_cl_snap.1

You should name the Snapshot copy in a way that it describes its intended
use. Naming the Snapshot copy appropriately helps to avoid unintended
deletion of it from the source storage system.

3. After Snapshot copies of the FlexVol volumes of the source database are
created, connect to the database and start using it.

4. Replicate the Snapshot copy created in step 2 on page 49 to the SnapMirror
destination volume. In order to do so, you must update the SnapMirror
relationship manually by executing the following command on the destination
storage system:

snapmirror <-S [SourceStorageSystem]:[VolumeName]> update
[DestinationStorageSystem]:[VolumeName]

Where the following variables are defined as:

– SourceStorageSystem identifies the name assigned to the SnapMirror
source storage system.

– DestinationStorageSystem identifies the name assigned to the
SnapMirror destination storage system.

– VolumeName identifies the name assigned to the source or destination
volume in the SnapMirror relationship.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 49

For example, to update SnapMirror for a volume named dbdata, execute the
following command on the SnapMirror destination storage system named
dststore:

snapmirror -S srcstore:dbdata update dststore:dbdata

When the update command is executed for asynchronous SnapMirror, an update
is immediately started from the source to the destination to update the
destination volume with the contents of the source volume, including Snapshot
copies.

For synchronous SnapMirror, the Snapshot copy created on the source volume
becomes visible on the destination volume immediately. Therefore, manual
update is not required.

After the SnapMirror update, each destination volume has a Snapshot copy that
was created on the source storage system and replicated to the destination. You
can create a clone volume from the Snapshot copy by executing the following
command on the destination storage system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Where the following variables are defined as:

� CloneVol identifies the name of the FlexClone volume that is being created.

� ParentVol identifies the name of the FlexVol volume that is the source for the
clone volume.

� ParentSnap identifies the name of the parent FlexVol volume Snapshot copy
that is used as the source for the clone volume.

For example, to create a clone volume named dbdata_cl from the Snapshot copy
named dbdata_cl_snp.1 of the volume named dbdata, execute the following
command on the destination storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.1

Important: Snapshot copies are also created automatically for SnapMirror
update purpose. It is recommended not to use these automatically created
Snapshot copies to create a clone volume.

Important: The Snapshot copy on the SnapMirror source storage system
should not be deleted; otherwise, the SnapMirror relationship will fail.
50 Using IBM DB2 UDB with IBM System Storage N series

4.4.4 Create NFS export entries for the cloned volumes

To mount a clone volume to the database server, you must create an export
entry for it in the /etc/exports file that resides on the NetApp FAS or IBM N Series
storage system. The export entry can be created by executing the following
command on the IBM N series storage system:

exportfs -p rw=[HostName],root=[HostName] [PathName]

Where the following variables are defined as:

� HostName identifies the name assigned to the database server.
� PathName identifies the name assigned to the flexible volume.

For example, to create an export entry for a clone volume named dbdata_cl and
allow root access from the database server named hostdst for it, execute the
following command on the storage system:

exportfs -p rw=hostdst,root=hostdst /vol/dbdata_cl

Repeat this step to create an export entry for each clone volume that is used for
the clone database.

4.4.5 Mount the clone volumes

To access the clone database, you must mount it to a database server.

1. Create a mount point for each clone volume and append a mount entry to the
/etc/fstab file. The mount entry should specify the mount options and it should
look similar to the following:

[StorageSystemName]:[FlexVolName] [MountPoint] nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

Where the following variables are defined as:

– StorageSystemName identifies the name assigned to the storage system
that is used for the database storage.

– FlexVolName identifies the name assigned to the clone volume.

– MountPoint identifies the name assigned to the mount location that is used
to mount the flexible volume on the database server.

For example, for a clone volume named dbdata_cl that resides on the
storage system named srcstore, append the following entry to the /etc/fstab
file on the database sever:

srcstore:dbdata_cl /mnt/dbdata_cl nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0
 Chapter 4. Cloning a DB2 UDB database in the N series environment 51

2. After appending the mount entry, you can mount the clone volume by
executing the following command on the database server:

mount [MountPoint]

Where MountPoint identifies the name assigned to the mount location that is
used to mount the flexible volume on the database server.

For example, to mount a clone volume that has mount entry specified in the
/etc/fstab file, execute the following command on the second database server
named hostdst:

mount /mnt/dbdata_cl

The database servers we used had Linux operating systems.

3. In order to operate DB2 successfully, the DB2 instance owner should have
ownership of the file systems on the clone volumes that are mounted on the
database server. Ownership can be changed by executing the following
command on the database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

– InstanceOwner identifies the name assigned to the user who owns the
database instance.

– InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

– FileSystem identifies the name of the files system whose ownership is to
be changed.

For example, to change ownership of the file system mounted on the mount
point named /mnt/dbdata_cl, execute the following command on the
database server named hostdst:

chown -R db2inst1:db2adm /mnt/dbdata_cl

4.4.6 Configure the cloned database

You use the clone volumes that you created in 4.4.3, “Create clones of the
FlexVol volumes” on page 48 and mount in the 4.4.5, “Mount the clone volumes”
on page 51 in this section as the storage containers for the cloned database. You
can skip steps 1 and 2 if following two conditions are true for your environment:

� The name of the DB2 instance used for the clone database is same as the
production or source database instance name.

� The mount points that are used to mount the clone volumes have same name
as the mount points that are used to mount volumes of the production
database.
52 Using IBM DB2 UDB with IBM System Storage N series

To configure the cloned database, follow these steps:

1. By default when database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– InstanceName identifies the name assigned to the DB2 instance to which
the database belongs.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory.

/mnt/dbdata/db2inst1/NODE0000

For a database server the DB2 instance name has to be unique. Therefore,
you must create a DB2 instance with a new name if an existing DB2 instance
name is the same as the production DB2 instance name. To access the clone
database from a different instance name, you must change the default
tablespace container's path name by executing following command on the
database server:

mv [DBDir]/[OldInstanceName]/NODE000n [DBDir]/[NewInstanceName]/NODE000n

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– OldInstanceName identifies the name assigned to the DB2 instance to
which the production database belongs.

– NewInstanceName identifies the name assigned to the DB2 instance to
which the clone database belongs.

For example, to access the clone database from the instance named
db2instc, you would execute the following command on the database server
to change the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Change the database name and tablespace containers header information
using the db2inidb command as specified in section 1.4. To do this, you will
need to create a configuration file that identifies the source database
information and specifies the new clone database information. A sample
configuration file for this scenario should look similar to that shown in
Example 4-10.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 53

Example 4-10 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata. The clone database is to be
renamed to mydbcl. It has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline while the Snapshot copies were
created, the clone database becomes available after executing db2start.

The production database was offline during the Snapshot creation process.
Therefore, you can connect to the clone database and start using it.

4. Catalog the source database.

If the cloned database is accessed from same DB2 instance as the
production database on the production database server, then on execution
the db2relocatedb command uncatalogs the source database. Therefore, you
need to catalog the source database by executing the following command on
the database server:

db2 "catalog database [DatabaseName] as [DatabaseAlias] on
[FileSystem]"

Where the following variables are defined as:

– DatabaseName identifies the name assigned to the database that is being
cataloged.

– DatabaseAlias identifies the alias name assigned to the database that is
being cataloged.

– FileSystem specifies the path on which the database being cataloged
resides.
54 Using IBM DB2 UDB with IBM System Storage N series

For example, to recatalog a source database named mydb that resides on file
system named /mnt/dbdata, you would execute the following command on
the database server:

db2 "catalog database mydb as mydb on /mnt/dbdata"

4.4.7 Catalog the source database

If the cloned database is accessed from same DB2 instance as the production
database on the production database server, then, on execution, the
db2relocatedb command uncatalogs the source database. Therefore, you must
catalog the source database by executing the following command on the
database server:

db2 "catalog database [DatabaseName] as [DatabaseAlias] on [FileSystem]"

Where the following variables are defined as:

� DatabaseName identifies the name assigned to the database that is being
cataloged.

� DatabaseAlias identifies the alias name assigned to the database that is
being cataloged.

� FileSystem specifies the path on which the database being cataloged
resides.

For example, to recatalog a source database named mydb that resides on file
system named /mnt/dbdata, execute the following command on the database
server:

db2 "catalog database mydb as mydb on /mnt/dbdata"

4.4.8 Verify the cloned database

After performing the previous steps, you must check the entire database for
architectural correctness. You can do so by executing the following command on
the database server:

db2dart [DatabaseName] /db

Where DatabaseName identifies the name of the clone database used for the test
environment.

For example, to test the database named mydbcl, execute the following
command on the database server:

db2dart mydbcl /db
 Chapter 4. Cloning a DB2 UDB database in the N series environment 55

The db2dart utility inspects the entire database for architectural correctness and
generates a detailed report. The report is generated in the
<$HOME>/sqllib/db2dump/DART0000/ directory. Read the summary at the end
of the report to see if there are any errors.

If the source and the clone database need to be accessed from the same
database server, then you must complete the additional steps described in
Appendix A, “Configuring UNIX to access cloned and source databases in an
NAS environment” on page 99.

4.5 Clone an online database to a remote storage
system

In this section, you learn how to create a clone database on a remote storage
system when the source database is online. The step-by-step cloning process is
described in the following subsections.

4.5.1 Configure and initialize SnapMirror

The steps necessary to configure and initialize a SnapMirror relationship are
described in 4.4.1, “Configure SnapMirror” on page 43 and 4.4.2, “Initialize
SnapMirror” on page 45 respectively. After completing these steps, you should
have working SnapMirror relationships for the volumes that are used for the
database to be cloned.

4.5.2 Bring the source database into a consistent state
(suspend writes)

The source database is online. Therefore, to prevent partial page writes while
database cloning is in progress, you must suspend the write operations to the
database temporarily by executing the following command on the database
server:

db2 set write suspend for database

The set write suspend for database command causes the DB2 database
manager to suspend all write operations to tablespace containers and log files
that are associated with the current database. Read-only transactions continue
uninterrupted, provided that they do not request a resource that is being held by
the suspended I/O process. The cloning process is completed very quickly, so
the database does not need to stay in write suspend mode for more than a few
seconds.
56 Using IBM DB2 UDB with IBM System Storage N series

4.5.3 Create Snapshot copies of the FlexVol volumes

Create a Snapshot copy of each FlexVol volume that is used for the source
database by executing the following command on the source storage system:

snap create [VolName] [SnapName]

Where the following variables are defined as:

� VolName identifies the name assigned to the FlexClone volume that is to be
created.

� SnapName identifies the name that is assigned to the Snapshot copy.

For example, to create a Snapshot copy named dbdata_cl_snap01 for a FlexVol
volume named dbdata, you would execute the following command on the storage
system:

snap create dbdata dbdata_cl_snp.1

It is recommended that you develop a naming convention and assign a
meaningful name to the Snapshot copies that are created for cloning purposes.

4.5.4 Resume normal database operations (resume writes)

After the Snapshot copies are created, you must resume write operations to the
database by executing the following command on the database server:

db2 set write resume for database

4.5.5 Update the SnapMirror destination

Update the SnapMirror destination volumes manually by executing the following
command on the destination storage system:

snapmirror < -S [SourceStorageSystem]:[VolumeName]> update
[DestinationStorageSystem]:[VolumeName]

Important: The Snapshot copies are created on the SnapMirror source
storage system.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 57

Where the following variables are defined as:

� SourceStorageSystem identifies the name assigned to the SnapMirror source
storage system.

� VolumeName identifies the name assigned to the volume that is being used as
the SnapMirror destination.

� DestinationStorageSystem identifies the name assigned to the SnapMirror
destination storage system.

For example, to update SnapMirror for a volume named dbdata, execute the
following command on the SnapMirror destination storage system named
dststore:

snapmirror -S srcstore:dbdata update dststore:dbdata

Update the SnapMirror relationship for each volume that is used for the
database.

When the update command is executed for an asynchronous SnapMirror, an
update is immediately started from the source to the destination to update the
destination volume with the contents of the source volume, including Snapshot
copies.

For synchronous SnapMirror, the Snapshot copy created on the source volume
becomes available on the destination volume immediately; therefore, manual
update is not required.

4.5.6 Create clone volumes using Snapshot copies

After the SnapMirror update, each destination volume has a Snapshot copy that
was created on the source storage system and replicated to the destination. A
clone volume can be created from the Snapshot copy by executing the following
command on the destination storage system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Where the following variables are defined as:

� CloneVol identifies the name of the FlexClone volume that is being created.

� ParentVol identifies the name of the FlexVol volume that is the source for the
clone volume.

Important: Snapshot copies are also created automatically for SnapMirror
update purposes. It is recommended not to use these automatically created
Snapshot copies to create a clone volume.
58 Using IBM DB2 UDB with IBM System Storage N series

� ParentSnap identifies the name of the parent FlexVol volume Snapshot copy
that is used as the source for the clone volume.

For example, to create a clone volume named dbdata_cl from the Snapshot
copy named dbdata_cl_snp.1 of the volume named dbdata, execute the
following command on the destination storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.1

4.5.7 Create NFS export entries for the cloned volumes

To mount a clone volume to the database server, you must create an export
entry for it in the /etc/exports file that resides on the NetApp FAS or IBM N Series
storage system. The export entry can be created by executing the following
command on the IBM N Series storage system:

exportfs -p rw=[HostName],root=[HostName] [PathName]

Where the following variables are defined as:

� HostName identifies the name assigned to the database server.
� PathName identifies the name assigned to the flexible volume.

For example, to create an export entry for a clone volume named dbdata_cl and
allow root access from the database server named hostdst for it, execute the
following command on the storage system:

exportfs -p rw=hostdst,root=hostdst /vol/dbdata_cl

Repeat this step to create an export entry for each clone volume that is used for
the clone database.

4.5.8 Mount the cloned volumes

To access the clone database, you must mount the clone volumes to a database
server. First, you create a mount point for each clone volume and append a
mount entry to the /etc/fstab file. The mount entry should specify the mount
options, and it should look similar to the following:

[StorageSystemName]:[FlexVolName] [MountPoint] nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

Important: The Snapshot copy on the SnapMirror source storage system
should not be deleted; otherwise, the SnapMirror relationship will fail.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 59

Where the following variables are defined as:

� StorageSystemName identifies the name assigned to the storage system that is
used for the database storage.

� FlexVolName identifies the name assigned to the clone volume.

� MountPoint identifies the name assigned to the mount location that is used to
mount the flexible volume on the database server.

For example, for a clone volume named dbdata_cl that resides on a storage
system named srcstore, append the following entry to the /etc/fstab file on the
database sever:

srcstore:dbdata_cl /mnt/dbdata_cl nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

After appending the mount entry, you can mount the clone volume by executing
the following command on the database server:

mount [MountPoint]

Where MountPoint identifies the name assigned to the mount location that is
used to mount the flexible volume on the database server.

For example, to mount a clone volume that has a mount entry specified in the
/etc/fstab file, execute the following command on the second database
server named hostdst:

mount /mnt/dbdata_cl

The database servers we used had a Linux operating system.

To operate DB2 successfully, the DB2 instance owner should have ownership of
the file systems on the clone volume that is mounted on the database server.
Ownership can be changed by executing the following command on the
database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

� InstanceOwner identifies the name assigned to the user who owns the
database instance.

� InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

� FileSystem identifies the name of the files system whose ownership is
changed.
60 Using IBM DB2 UDB with IBM System Storage N series

For example, to change ownership of the file system mounted on the mount point
named /mnt/dbdata_cl, execute the following command on the database server
named hostdst:

chown -R db2inst1:db2adm /mnt/dbdata_cl

4.5.9 Configure the cloned database

The clone volumes created in the 4.5.6, “Create clone volumes using Snapshot
copies” on page 58 and mount in the 4.5.8, “Mount the cloned volumes” on
page 59 of this section are used as the storage containers for the cloned
database in this section. You can skip the part (A) and (B) of this step if following
two conditions are true for your environment:

� The name of the DB2 instance used for the clone database is same as the
production or source database instance name.

� The mount points that are used to mount the clone volumes have the same
name as the mount points that are used to mount volumes of the production
database.

1. By default when database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– InstanceName identifies the name assigned to the DB2 instance to which
the database belongs.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory.

/mnt/dbdata/db2inst1/NODE0000

For a database server the DB2 instance name has to be unique. Therefore,
you have to create a DB2 instance with a new name if an existing DB2
instance name is same as the production DB2 instance name. In order to
access the clone database from a different instance name you need to
change the default tablespace container's path name by executing following
command on the database server:

mv [DBDir]/[OldInstanceName]/NODE000n
[DBDir]/[NewInstanceName]/NODE000n
 Chapter 4. Cloning a DB2 UDB database in the N series environment 61

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– OldInstanceName identifies the name assigned to the DB2 instance to
which the production database belongs.

– NewInstanceName identifies the name assigned to the DB2 instance to
which the clone database belongs.

For example, to access the clone database from the instance named
db2instc, execute the following command on the database server to change
the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Change the database name and tablespace containers header information
using the db2inidb command as specified in section 1.4. To do this, you must
create a configuration file that identifies the source database information and
specifies the new clone database information. A sample configuration file for
this scenario should look similar to that shown in Example 4-11.

Example 4-11 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata. The clone database is to be
renamed to mydbcl; it has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline during the Snapshot copy process, the
clone database becomes available after executing db2start.
62 Using IBM DB2 UDB with IBM System Storage N series

The production database was online when the Snapshot copies were created.
Therefore, you need to use the db2inidb utility to initialize the clone database
as a snapshot. You can do this by executing the following command on the
database server:

db2inidb database [DatabaseName] as snapshot

Where DatabaseName identifies the name of the clone database that is going
to be used for the test environment.

For example, to initialize a clone database named mydbcl, execute the
following commands on the database server:

db2inidb mydbcl as snapshot

4.5.10 Verify the cloned database

After performing the previous steps, you must check the entire database for
architectural correctness. You can do so by executing the following command on
the database server:

db2dart [DatabaseName] /db

Where DatabaseName identifies the name of the clone database used for the test
environment.

For example, to test the database named mydbcl, execute the following
command on the database server:

db2dart mydbcl /db

The db2dart utility inspects the entire database for architectural correctness and
generates a detailed report. The report is generated in the
<$HOME>/sqllib/db2dump/DART0000/ directory. Read the summary at the end
of the report and check to see if there are any errors.

If the source and the clone database must be accessed from the same database
server, then you must complete the additional steps described in Appendix A,
“Configuring UNIX to access cloned and source databases in an NAS
environment” on page 99.
 Chapter 4. Cloning a DB2 UDB database in the N series environment 63

64 Using IBM DB2 UDB with IBM System Storage N series

Chapter 5. Cloning a DB2 UDB
database in the SAN
environment

This chapter discusses cloning DB2 databases in SAN environments.

5

© Copyright IBM Corp. 2006. All rights reserved. 65

5.1 Clone an offline database on the same
storage system

To clone a DB2 database that is offline, complete the steps in this section.

5.1.1 Bring the source database offline

Bring the database offline by terminating all the application connections to the
database that is to be cloned by executing the following command on the
database server:

db2 force applications all

For example, to terminate all application connections, you would execute the
following command on the database server:

db2 force applications all

5.1.2 Create Snapshot copies of the FlexVol volumes

Create a Snapshot copy of each volume that is used for the database by
executing the following command on the source storage system:

snap create [VolName] [SnapName]

Where the following variables are defined as:

� VolName identifies the name assigned to the FlexClone volume that is to be
created.

� SnapName identifies the name that is assigned to the Snapshot copy.

For example, to create a Snapshot copy named dbdata_snap.01for a FlexVol
volume named dbdata, you would execute the following command on the
storage system:

snap create dbdata dbdata_cl_snp.01

It is recommended that you develop a naming convention and assign a
meaningful name to the Snapshot copies that are created for cloning purposes.

5.1.3 Start the source database

After the Snapshot copies of the FlexVol volumes of the source database are
created, you can connect to the source database and start using it.
66 Using IBM DB2 UDB with IBM System Storage N series

5.1.4 Create clone volumes using Snapshot copies

After the Snapshot copies are created, you must create a clone of each FlexVol
volume that contains the database's data or transaction log files by executing the
following command on the storage system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Where the following variables are defined as:

� CloneVol identifies the name assigned to the new clone volume.

� ParentVol identifies the name assigned to the FlexVol volume that is to be
cloned.

� ParentSnap identifies the name assigned to the snapshot copy that is used as
the base for the clone volume.

For example, to create a clone volume of a FlexVol volume named dblogs
using the Snapshot copy named dbdata_cl_snp.01, execute the following
command on the storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.01

For example, to create a clone volume of a FlexVol volume named dbdata,
you would execute the following command on the storage system:

vol clone create dbdata_cl -s volume -b dbdata

A Snapshot copy that is used as the base for the clone volume cannot be
deleted as long as the clone exists.

5.1.5 Create new mapping for the LUNs.

When a clone volume is created, by default, LUNs residing on it have the same
mapping as the source FlexVol volume LUNs, and they are placed offline. You
can see the LUN status by executing the following command on the storage
system:

lun show

Note: A Snapshot copy is not required to create a clone of a FlexVol
volume. If you do not explicitly create a Snapshot copy and specify it when
executing the vol clone command, a Snapshot copy will be implicitly
created and used for the clone volume. A Snapshot copy created implicitly
will have a system assigned name. We recommend explicitly creating a
Snapshot and assigning it a meaningful name before creating a clone
FlexVol volume.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 67

The output from the lun show command should look similar to that shown in
Example 5-1.

Example 5-1 Output from the lun show command

lun show
/vol/dbdata/data 15g (16106127360) (r/o, online, mapped)
/vol/dbdata_cl/data 15g (16106127360) (r/w, offline, mapped)

The LUN mappings can be listed by executing the following command on the
storage system:

lun show -m

The output from the lun show -m command should look similar to that shown in
Example 5-2.

Example 5-2 Output from the lun show -m command

lun show -m
LUN path Mapped to LUN ID Protocol

/vol/dbdata/data host_src_fcp_igp 0 FCP
/vol/dbdata_cl/data host_src_fcp_igp 0 FCP

You can see from the output that the LUNs on the clone volume have the same
mapping as the parent.

The FlexClone volume LUNs can be accessed from the same database server
used to access the source database, or from a completely different server. The
scenarios described in this paper were produced using a second database sever
to access the clone database.

To access the clone database from a second database server, you must
complete the following steps:

1. Remove the old mapping for each LUN that exists on the clone volume by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName]

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– GroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.
68 Using IBM DB2 UDB with IBM System Storage N series

For example, to remove old mapping for a LUN named /vol/dbdata_cl/data
from an igroup named host_src_fcp_igp, execute the following command on
the storage system:

lun unmap /vol/dbdata_cl/data host_src_fcp_igp

You should see a message similar to that shown in Example 5-3.

Example 5-3 Messages from lun unmap

Thu Aug 3 09:37:10 MST [lun.map.unmap:info]: LUN
/vol/voldbdata_cl/data unmapped from
initiator group host_src_fcp_igp

2. Create a new mapping for the LUNs on the clone volume by using a new ID
and, mapping them to a new igroup, or both. A LUN mapping can be created
by executing the following command on the storage system:

lun map [LunPath] [iGroupName] [LunId]

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

– LunId identifies a numeric ID that is assigned to the LUN for mapping it to
a specific initiator group.

For example, to map a LUN named /vol/dbdata_cl/data to an igroup named
host_dst_fcp_igp, execute the following command on the storage system:

lun map /vol/dbdata_cl/data host_dst_fcp_igp 0

You will see messages similar to that shown in Example 5-4.

Example 5-4 Message from lun map

lun map: auto-assigned host_dst_fcp_igp=4

3. After remapping, each LUN that is on the clone volume and that is used for
the clone database needs to be brought online by executing the following
command on the storage system:

lun online [LunPath]

Where LunPath identifies the name assigned to the new clone volume.

For example, to bring a LUN named /vol/dbdata_cl/data online, execute the
following command on the storage system:

lun online /vol/dbdata_cl/data
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 69

5.1.6 Mount the FlexClone volume LUNs

To mount the FlexClone volume LUNs, follow these steps:

1. Refresh the HBA driver on the database server. For example, to refresh a
Qlogic FC HBA on a Linux database host, you would execute the following
commands on the database server:

modprobe -r qla2300
modprobe -v qla2300

You should see messages similar to that shown in Example 5-5.

Example 5-5 Messages from modprobe

insmod /lib/modules/2.6.9-34.ELsmp/kernel/drivers/scsi/scsi_transport_fc.ko
insmod /lib/modules/2.6.9-34.ELsmp/kernel/drivers/scsi/qla2xxx/qla2xxx.ko
insmod /lib/modules/2.6.9-34.ELsmp/kernel/drivers/scsi/qla2xxx/qla2300.ko

For any other operating system (OS) and HBA, refer to the OS reference
manual and the HBA installation guide.

2. Obtain the device names for the LUNs by executing the following command
on the database server that is to be used to access the clone database:

sanlun lun show

You should receive a output similar to Example 5-6.

Example 5-6 Output sanlun lun show command

sanlun lun show
filer: lun-pathname device filename adapter Protocol lun size lun state
itsotuc2: /vol/db2data/lun hdisk14 fcs1 FCP 39.9g (42858446848) GOOD
itsotuc2: /vol/db2datanfs/lun hdisk16 fcs1 FCP 8.0g (8571060224) GOOD
itsotuc2: /vol/db2logs/lun hdisk15 fcs1 FCP 23.9g (25715277824) GOOD
itsotuc2: /vol/db2datacl/lun hdisk18 fcs1 FCP 39.9g (42858446848) GOOD
itsotuc2: /vol/db2logsnfs/lun hdisk17 fcs1 FCP 8.0g (8571060224) GOOD
itsotuc2: /vol/db2logscl/lun hdisk19 fcs1 FCP 23.9g (25715277824) GOOD

3. Mount LUN devices by executing the following command on the database
server:

mount [DeviceName] [MountPoint]

Where the following variables are defined as:

– DeviceName identifies the name assigned to the new clone volume.

– MountPoint identifies the name assigned to the mount point that is used to
mount the LUN device.
70 Using IBM DB2 UDB with IBM System Storage N series

For example, to mount a LUN device that is identified by the name /dev/sdb
by the database server, execute the following command on the database
server:

mount /dev/sdb /mnt/dbdata

4. To operate DB2 successfully, the DB2 instance owner should have ownership
of the LUN file systems mounted on the database server. Ownership can be
changed by executing the following command on the database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

– InstanceOwner identifies the name assigned to the user who owns the
database instance.

– InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

– FileSystem identifies the name of the file system whose ownership is
changed.

For example, to change ownership of the file system mounted on the mount
point named /mnt/dbdata_cl, execute the following command on the
database server named hostdst:
chown -R db2inst1:db2adm /mnt/dbdata_cl

5.1.7 Configure the cloned database

You use the LUNs that resides on the FlexClone volume that you created in 5.1.4,
“Create clone volumes using Snapshot copies” on page 67 and mounted in 5.1.6,
“Mount the FlexClone volume LUNs” on page 70 as the storage containers for
the cloned database. You can skip steps 1 and 2 if following two conditions are
true for your environment:

� The name of the DB2 instance used for the clone database is same as the
production or source database instance name.

� The mount points that are used to mount the LUNs on the FlexClone volumes
have the same name as the mount points that are used to mount the LUNs on
the FlexVol volumes used for the production database.

To configure the cloned database, follow these steps:

1. By default when database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 71

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– InstanceName identifies the name assigned to the DB2 instance to which
the database belongs.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory.

/mnt/dbdata/db2inst1/NODE0000

For a database server, the DB2 instance name must be unique. Therefore,
you must create a DB2 instance with a new name if an existing DB2 instance
name is same as the production DB2 instance name. In order to access the
clone database from a different instance name, you must change the default
tablespace container's path name by executing following command on the
database server:

mv [DBDir]/[OldInstanceName]/NODE000n [DBDir]/[NewInstanceName]/NODE000n

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– OldInstanceName identifies the name assigned to the DB2 instance to
which the production database belongs.

– NewInstanceName identifies the name assigned to the DB2 instance to
which the clone database belongs.

For example, to access the clone database from the instance named
db2instc, you would execute the following command on the database server
to change the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Change the database name and tablespace containers header information
using the db2inidb command as specified in 1.5, “The db2inidb command” on
page 6. To do this, you must create a configuration file that identifies the
source database information and specifies the new clone database
information.
72 Using IBM DB2 UDB with IBM System Storage N series

A configuration file for this scenario should look similar to that shown in
Example 5-7.

Example 5-7 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata. The clone database is to be
renamed to mydbcl. It has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline while the Snapshot copies were
created, the clone database becomes available after executing db2start.

The production database was offline during the Snapshot creation process.
Therefore, you can connect to the clone database and start using it.

After these steps, your database is ready to use and you can connect and verify
the database.

If the source and the clone database need to be accessed from the same
database server, then you must complete the additional steps described in the
Appendix B, “Configuring UNIX to access cloned and source databases in an
SAN environment” on page 105.

In this scenario, the LUNs on the clone volume are accessed using FCP, but they
can be accessed using the iSCSI access protocol, as well.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 73

5.2 Clone an online database on the same
storage system

To create a clone on an online DB2 database on the same storage system in a
SAN environment, complete the steps in this section.

5.2.1 Bring the source database into a consistent state
(suspend writes)

In this scenario, the source database is online. Therefore, to prevent partial page
writes while database cloning is in progress, the write operations to the database
need to be temporarily suspended by executing the following command on the
database server:

db2 set write suspend for database

The set write suspend for database command causes the DB2 database
manager to suspend all write operations to the current database. Read-only
transactions continue uninterrupted, provided that they do not request a resource
that is being held by the suspended I/O process. The FlexVol volume clone
process is completed very quickly, so the database doesn't need to stay in write
suspend mode for more than a few seconds.

5.2.2 Create Snapshot copies of the FlexVol volumes

The LUNs reside within a FlexVol volume. Therefore, you need to create a
Snapshot copy for each FlexVol volume that consists of LUNs that are used for
the production database. A Snapshot copy of a FlexVol volume can be created
by executing the following command on the storage system

snap create [VolName] [SnapName]

Where the following variables are defined as:

� VolName identifies the name assigned to the FlexClone volume that is to be
created.

� SnapName identifies the name that is assigned to the Snapshot copy.

For example, to create a Snapshot copy named dbdata_snap01 for a FlexVol
volume named dbdata, execute the following command on the storage system:

snap create dbdata dbdata_cl_snp.1

It is recommended that you develop a naming convention and assign a
meaningful name to the Snapshot copies that are created for cloning purposes.
74 Using IBM DB2 UDB with IBM System Storage N series

5.2.3 Resume normal database operation (resume writes)

After you create Snapshot copies, you must resume write operations to the
database by executing the following command on the database server:

set write resume for database

5.2.4 Clone the FlexVol volumes using Snapshot copies

Next, create a clone of each FlexVol volume by using the Snapshot copies
created in step 5.2.2, “Create Snapshot copies of the FlexVol volumes” on
page 74. A clone volume can be created by executing the following command on
the storage system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Where the following variables are defined as:

� CloneVol identifies the name of the FlexClone volume that is being created.

� ParentVol identifies the name of the FlexVol volume that is the source for the
clone volume.

� ParentSnap identifies the name of the parent FlexVol volume Snapshot copy
that is used as the source for the clone volume.

For example, to create a clone of a FlexVol volume named dblogs by using its
existing Snapshot copy named dbdata_cl_snp.1, execute the following
command on the storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.1

The Snapshot copy that is used as the base for the clone volume cannot be
deleted as long as the clone volume exists.

5.2.5 Create new mapping for the LUNs

As noted earlier, a clone volume is a writable Snapshot copy, and at the time of
clone creation, it has data that is exactly similar to that of the source volume. The
LUNs on the clone volume have the same mapping as the LUNs on the source
volume, and they are set offline. To create new mapping for LUNs on the
FlexClone volumes, complete following steps:

1. Remove the old mapping for each LUN that exists on the clone volume by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName]
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 75

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

For example, to remove old mapping for a LUN named /vol/dbdata_cl/data
from an igroup named host_src_fcp_igp, execute the following command on
the storage system:

lun unmap /vol/dbdata_cl/data host_src_fcp_igp

2. Create a new mapping for the LUNs on the clone volume by using a new ID, r
by mapping them to a new igroup, or both. Create a LUN mapping by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName] [LunId]

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

– LunId identifies a numeric ID that is assigned to the LUN for mapping it to
a specific initiator group.

For example, to map a LUN named /vol/dbdata_cl/data to an igroup
named host_dst_fcp_igp, execute the following command on the storage
system:

lun map /vol/dbdata_cl/data host_dst_fcp_igp 0

3. After remapping, each LUN that is on the clone volume and that is used for
the clone, the database needs to be brought online by executing the following
command on the storage system:

lun online [LunPath]

Where LunPath identifies the name assigned to the new clone volume.

For example, to bring a LUN named /vol/dbdata_cl/data online, execute
the following command on the storage system:

lun online /vol/dbdata_cl/data
76 Using IBM DB2 UDB with IBM System Storage N series

5.2.6 Mount the LUNs that reside on the FlexClone volumes

To mount the LUNs that reside on the FlexClone volumes, complete following
steps:

1. Refresh the HBA driver on the database server. For example, to refresh a
Qlogic FC HBA on a Linux database host, execute the following commands
on the database server:

modprobe -r qla2300
modprobe -v qla2300

For any other operating system (OS) and HBA, refer to the OS reference
manual and the HBA installation guide.

2. Obtain the LUN device names by executing the following command on the
database server that is to be used to access the clone database:

sanlun lun show

3. Mount the LUN devices by executing the following command on the database
server:

mount [DeviceName] [MountPoint]

Where the following variables are defined as:

– DeviceName identifies the name assigned to the new clone volume.

– MountPoint identifies the name assigned to the mount point that is used to
mount the LUN device.

For example, to mount a LUN device that is identified by the name /dev/sdb
by the database server, you would execute the following command on the
database server:

mount /dev/sdb /mnt/dbdata

4. To operate DB2 successfully, the DB2 instance owner should have ownership
of the LUN file systems mounted on the database server. Ownership can be
changed by executing the following command on the database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

– InstanceOwner identifies the name assigned to the user who owns the
database instance.

– InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

– FileSystem identifies the name of the files system whose ownership is
changed.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 77

For example, to change ownership of the file system mounted on the mount
point named /mnt/dbdata_cl, execute the following command on the
database server named hostdst:
chown -R db2inst1:db2adm /mnt/dbdata_cl

5.2.7 Configure the cloned database

You use the clone volumes that you created in 5.2.4, “Clone the FlexVol volumes
using Snapshot copies” on page 75 and mounted in 5.2.6, “Mount the LUNs that
reside on the FlexClone volumes” on page 77 as the storage containers for the
cloned database. You can skip steps 1 and 2 if following two conditions are true
for your environment:

� The name of the DB2 instance used for the clone database is same as the
production or source database instance name.

� The mount points that are used to mount the clone volumes have same name
as the mount points that are used to mount volumes of the production
database.

To configure the cloned database, follow these steps:

1. By default when database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory/device the database is
created on.

– InstanceName identifies the name assigned to the DB2 instance to which
the database belongs.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory.

/mnt/dbdata/db2inst1/NODE0000

For a database server the DB2 instance name has to be unique. Therefore,
you have to create a DB2 instance with a new name if an existing DB2
instance name is same as the production DB2 instance name. In order to
access the clone database from a different instance name you need to
change the default tablespace container's path name by executing following
command on the database server:

mv [DBDir]/[OldInstanceName]/NODE000n [DBDir]/[NewInstanceName]/NODE000n
78 Using IBM DB2 UDB with IBM System Storage N series

Where:

– DBDir identifies the name assigned to the directory or device to which the
database is created.

– OldInstanceName identifies the name assigned to the DB2 instance to
which the production database belongs.

– NewInstanceName identifies the name assigned to the DB2 instance to
which the clone database belongs.

For example, to access the clone database from the instance named
db2instc, execute the following command on the database server to change
the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Change the database name and tablespace containers header information
using the db2inidb command as specified in 1.5, “The db2inidb command” on
page 6. To do this, create a configuration file that identifies the source
database information and specifies the new clone database information. A
sample configuration file for this scenario should look similar to that shown in
Example 5-8.

Example 5-8 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata. The clone database is to be
renamed to mydbcl. It has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline during the Snapshot copy process, the
clone database becomes available after executing db2start.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 79

The production database was online when the Snapshot copies were created.
Therefore, you need to use the db2inidb utility to initialize the clone database
as a snapshot. You can do this by executing the following command on the
database server:

db2inidb database [DatabaseName] as snapshot

Where DatabaseName identifies the name of the clone database that is going
to be used for the test environment.

For example, to initialize a clone database named mydbcl, execute the
following commands on the database server:

db2inidb mydbcl as snapshot

After you perform these steps, the clone database is ready for use. You can
connect to the database and perform data verification.

If the source and the clone database need to be accessed from the same
database host, then complete the additional steps described in Appendix B,
“Configuring UNIX to access cloned and source databases in an SAN
environment” on page 105.

In this scenario, the LUNs on the clone volume are accessed using FCP, but they
can be accessed using the iSCSI access protocol as well.

5.3 Clone an offline database to a remote
storage system

To create a clone on the second storage system at a remote location, complete
the steps in this section.

5.3.1 Configure and initialize SnapMirror

The steps necessary to set up and initialize a SnapMirror relationship are
described in 4.4.1, “Configure SnapMirror” on page 43 and 4.4.2, “Initialize
SnapMirror” on page 45 respectively. After completing these steps, you should
have working SnapMirror relationships for the volumes that are used for the
database to be cloned.

In the SnapMirror relationship, the destination volumes are read-only. Therefore,
to create a clone of the destination volume, you need a Snapshot copy that is
created on the SnapMirror source and is replicated to the destination volume.
Such a Snapshot copy can be obtained by completing the steps in this section.
80 Using IBM DB2 UDB with IBM System Storage N series

5.3.2 Bring the database offline

Terminate all the application connections to the database by executing the
following command on the database server:

db2 force applications all

5.3.3 Create Snapshot copies of the FlexVol volumes

The LUNs reside within a FlexVol volume. Therefore, create a Snapshot copy for
each FlexVol volume that consists of LUNs that are used for the production
database. A Snapshot copy of a FlexVol volume can be created by executing the
following command on the storage system:

snap create [VolName] [SnapName]

Where the following variables are defined as:

� VolName identifies the name assigned to the FlexClone volume that is to be
created.

� SnapName identifies the name that is assigned to the Snapshot copy.

For example, to create a Snapshot copy named dbdata_snap01 for a FlexVol
volume named dbdata, execute the following command on the storage system:

snap create dbdata dbdata_cl_snp.1

It is recommended that you develop a naming convention and assign a
meaningful name to the Snapshot copies that are created for cloning purpose.

5.3.4 Update the SnapMirror destination volumes

Update the SnapMirror destination volumes manually by executing the following
command on the destination storage system:

snapmirror < -S [SourceStorageSystem]:[VolumeName]> update
[DestinationStorageSystem]:[VolumeName]

Where the following variables are defined as:

� SourceStorageSystem identifies the name assigned to the SnapMirror source
storage system.

� VolumeName identifies the name assigned to the SnapMirror source or
destination volume.

� DestinationStorageSystem identifies the name assigned to the SnapMirror
destination storage system.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 81

For example, to update SnapMirror for a volume named dbdata, execute the
following command on the SnapMirror destination storage system named
dststore:

snapmirror -S srcstore:dbdata update dststore:dbdata

Update the SnapMirror relationship for each volume that is used for the
database.

For asynchronous SnapMirror, an update is immediately started from the source
to the destination to update the destination volume with the contents of the
source volume, including Snapshot copies.

For synchronous SnapMirror, the Snapshot copy created on the source volume
becomes visible on the destination volume immediately; therefore, manual
update is not required.

5.3.5 Create FlexClone volumes using Snapshot copies

After the SnapMirror update, each destination volume has a Snapshot copy that
was created on the SnapMirror source storage system and replicated to the
destination. A clone volume can be created from the Snapshot copy by executing
the following command on the destination storage system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Where the following variables are defined as:

� CloneVol identifies the name of the FlexClone volume that is being created.

� ParentVol identifies the name of the FlexVol volume that is source for the
clone volume.

� ParentSnap identifies the name of the parent FlexVol volume Snapshot copy
that is used as the source for the clone volume.

For example, to create a clone volume named dbdata_cl from the Snapshot copy
named dbdata_cl_snp.1 of the volume named dbdata, execute the following
command on the destination storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.1

Important: The Snapshot copies are also created automatically for
SnapMirror update purposes. It is recommended not to use these
automatically created Snapshot copies to create a clone volume.

Important: The Snapshot copy on the SnapMirror source storage system
should not be deleted; otherwise, the SnapMirror relationship will fail.
82 Using IBM DB2 UDB with IBM System Storage N series

5.3.6 Create new mapping for LUNs that reside on
the clone volumes

When a clone volume is created, by default, LUNs residing on it have the same
mapping as the source FlexVol volume LUNs, and they are placed offline. You
can see the LUN status by executing the following command on the storage
system:

lun show

The output from the lun show command should look similar to that shown in
Example 5-9.

Example 5-9 Output from the lun show command

lun show
/vol/dbdata/data 15g (16106127360) (r/o, online, mapped)
/vol/dbdata_cl/data 15g (16106127360) (r/w, offline, mapped)

The LUN mappings can be listed by executing the following command on the
storage system:

lun show -m

The output from the lun show -m command should look similar to that shown in
Example 5-10.

Example 5-10 Output from the lun show -m command

lun show -m
LUN path Mapped to LUN ID Protocol

/vol/dbdata/data host_src_fcp_igp 0 FCP
/vol/dbdata_cl/data host_src_fcp_igp 0 FCP

You can see from the output that the LUNs on the clone volume have the same
mapping as the parent.

The FlexClone volume LUNs can be accessed from the same database server
that is used to access the source database, or from a completely different server.
The scenarios described in this paper were produced using a second database
sever to access the clone database.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 83

To access the clone database from a second database server, complete the
following steps:

1. Remove the old mapping for each LUN that exists on the clone volume by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName]

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

For example, to remove the old mapping for a LUN named
/vol/dbdata_cl/data from an igroup named host_src_fcp_igp, execute the
following command on the storage system:

lun unmap /vol/dbdata_cl/data host_src_fcp_igp

2. Create a new mapping for the LUNs on the clone volume by using a new ID
and by mapping them to a new igroup. A LUN mapping can be created by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName] [LunId]

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

– LunId identifies a numeric ID that is assigned to the LUN for mapping it to
a specific initiator group.

For example, to map a LUN named /vol/dbdata_cl/data to an igroup named
host_dst_fcp_igp, execute the following command on the storage system:

lun map /vol/dbdata_cl/data host_dst_fcp_igp 0

3. After remapping, each LUN that is on the clone volume and that is used for
the clone database must be brought online by executing the following
command on the storage system:

lun online [LunPath

Where LunPath identifies the name assigned to the new clone volume.

For example, to bring a LUN named /vol/dbdata_cl/data online, you would
execute the following command on the storage system:

lun online /vol/dbdata_cl/data
84 Using IBM DB2 UDB with IBM System Storage N series

5.3.7 Mount the FlexClone volume LUNs

To mount the LUNs that reside on the FlexClone volumes, complete following
steps:

1. Refresh the HBA driver on the database server. For example, to refresh a
Qlogic FC HBA on a Linux database host, execute the following commands
on the database server:

modprobe -r qla2300
modprobe -v qla2300

For any other operating system (OS) and HBA, refer to the OS reference
manual and the HBA installation guide.

2. Obtain the device names for the LUNs by executing the following command
on the database server that is to be used to access the clone database:

sanlun lun show

3. Mount LUN devices by executing the following command on the database
server:

mount [DeviceName] [MountPoint]

Where the following variables are defined as:

– DeviceName identifies the name assigned to the new clone volume.

– MountPoint identifies the name assigned to the mount location that is used
to mount the LUN device.

For example, to mount a LUN device named /dev/sdb to a mount location
named /mnt/dbdata_cl, execute the following command on the database
server:

mount /dev/sdb /mnt/dbdata_cl

4. In order to operate DB2 successfully, the DB2 instance owner should have
ownership of the LUN file systems mounted on the database server. Change
the ownership by executing the following command on the database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

– InstanceOwner identifies the name assigned to the user who owns the
database instance.

– InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

– FileSystem identifies the name of the files system whose ownership is
changed.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 85

For example, to change ownership of the file system mounted on the mount
point named /mnt/dbdata_cl, execute the following command on the database
server named hostdst:
chown -R db2inst1:db2adm /mnt/dbdata_cl

5.3.8 Renaming the cloned database

Rename the clone database and update the tablespace containers header
information. You are going to use the LUNs that reside on the FlexClone volume
that you created and mounted as the storage containers for the cloned database.
You can skip steps 1 and 2 if the following two conditions are true for your
environment:

� The name of the DB2 instance that you used for the clone database is same
as the production or source database instance name.

� The mount points that are used to mount the LUNs on the FlexClone volumes
have the same name as the mount points that are used to mount the LUNs on
the FlexVol volumes used for the production database.

To rename the cloned database, follow these steps:

1. By default when database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n

where:

– DBDir identifies the name assigned to the directory/device the database is
created on.

– InstanceName identifies the name assigned to the DB2 instance the
database belongs to.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory.

/mnt/dbdata/db2inst1/NODE0000

For a database server the DB2 instance name has to be unique. Therefore,
you have to create a DB2 instance with a new name if an existing DB2
instance name is same as the production DB2 instance name. In order to
86 Using IBM DB2 UDB with IBM System Storage N series

access the clone database from a different instance name you need to
change the default tablespace container's path name by executing following
command on the database server:

mv [DBDir]/[OldInstanceName]/NODE000n
[DBDir]/[NewInstanceName]/NODE000n

where:

– DBDir identifies the name assigned to the directory/device the database is
created on.

– OldInstanceName identifies the name assigned to the DB2 instance the
production database belongs to.

– NewInstanceName identifies the name assigned to the DB2 instance the
clone database belongs to.

For example, to access the clone database from the instance named
db2instc, you would execute the following command on the database server
to change the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Now you need to change the database name and tablespace containers
header information using the db2inidb command as specified in 1.5, “The
db2inidb command” on page 6. To do this, you need to create a configuration
file that identifies the source database information and specifies the new
clone database information. A sample configuration file for this scenario
should look similar to that shown in Example 5-11.

Example 5-11 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata . The clone database is to be
renamed to mydbcl. It has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 87

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline while the Snapshot copies were created,
the clone database becomes available after executing db2start.

The production database was offline during the Snapshot creation process.
Therefore, you can connect to the clone database and start using it.

If the source and the clone database need to be accessed from the same
database host, then you need to complete the additional steps described in the
Appendix B, “Configuring UNIX to access cloned and source databases in an
SAN environment” on page 105.

In this scenario, the LUNs on the clone volume are accessed using FCP, but they
can be accessed using the iSCSI access protocol as well.

5.4 Clone an online database to a remote storage
system

In this section, you learn how to create a clone database on the remote storage
system when the source database is online. The step-by-step cloning process is
described in the following subsections.

5.4.1 Set up and initialize SnapMirror

The steps necessary to set up and initialize a SnapMirror relationship are
described in 4.4.1, “Configure SnapMirror” on page 43 and 4.4.2, “Initialize
SnapMirror” on page 45 respectively. After completing the steps described in
these sections, you should have working SnapMirror relationships for the
volumes that are used for the database to be cloned.

In the SnapMirror relationship, the destination volumes are read-only. Therefore,
to create a clone of the destination volume, you need a Snapshot copy that is
created on the SnapMirror source and that is replicated to the destination
volume. Such a Snapshot copy can be obtained by completing the following
steps.
88 Using IBM DB2 UDB with IBM System Storage N series

5.4.2 Bring the database into a consistent state (suspend writes)

In this scenario, the source database is online. Therefore, to prevent partial page
writes while the database Snapshot copy process is in progress, the write
operations to the database need to be temporarily suspended by executing the
following command on the database server:

db2 set write suspend for database

The SET WRITE SUSPEND FOR DATABASE command causes the DB2
database manager to suspend all write operations to the current database.
Read-only transactions continue uninterrupted, provided that they do not request
a resource that is being held by the suspended I/O process. The FlexVol volume
clone process is completed very quickly, so the database doesn't need to stay in
write suspend mode for more than a few seconds

5.4.3 Create Snapshot copies

Create Snapshot copies of the volumes that are used for the database. The
LUNs reside within a FlexVol volume. Therefore, you must create a Snapshot
copy for each FlexVol volume that consists of LUNs that are used for the
production database. A Snapshot copy of a FlexVol volume can be created by
executing the following command on the storage system:

snap create [VolName] [SnapName]

Where the following variables are defined as:

� VolName identifies the name assigned to the FlexClone volume that is to be
created.

� SnapName identifies the name that is assigned to the Snapshot copy.

For example, to create a Snapshot copy named dbdata_snap01 for a FlexVol
volume named dbdata, execute the following command on the storage system:

snap create dbdata dbdata_cl_snp.1

It is recommended that you develop a naming convention and assign a
meaningful name to the Snapshot copies that are created for cloning purpose.

5.4.4 Resume normal operations for the database (resume writes)

After you create Snapshot copies, you must resume write operations to the
database by executing the following command on the database server:

set write resume for database
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 89

5.4.5 Update the SnapMirror destination volumes

Update the SnapMirror destination volumes manually by executing the following
command on the destination storage system:

snapmirror < -S [SourceStorageSystem]:[VolumeName]> update
[DestinationStorageSystem]:[VolumeName]

Where the following variables are defined as:

� SourceStorageSystem identifies the name assigned to the SnapMirror source
storage system.

� VolumeName identifies the name assigned to the volume that is being used as
the SnapMirror destination.

� DestinationStorageSystem identifies the name assigned to the SnapMirror
destination storage system.

For example, to update SnapMirror for a volume named dbdata, execute the
following command on the SnapMirror destination storage system named
dststore:

snapmirror -S srcstore:dbdata update dststore:dbdata

Update the SnapMirror relationship for each volume that is used for the
database.

For asynchronous SnapMirror, an update is immediately started from the source
to the destination to update the destination volume with the contents of the
source volume, including Snapshot copies.

For synchronous SnapMirror, the Snapshot copy created on the source volume
becomes visible on the destination volume immediately; therefore, manual
update is not required.

5.4.6 Create clone volumes using Snapshot copies

After the SnapMirror update, each destination volume has a Snapshot copy that
was created on the SnapMirror source storage system and replicated to the
destination. A clone volume can be created from the Snapshot copy by executing
the following command on the destination storage system:

vol clone create [CloneVol] -s volume -b [ParentVol] <ParentSnap>

Important: The Snapshot copies are also created automatically for
SnapMirror update purposes. It is recommended that you not use these
automatically created Snapshot copies to create a clone volume.
90 Using IBM DB2 UDB with IBM System Storage N series

Where the following variables are defined as:

� CloneVol identifies the name of the FlexClone volume that is being created.

� ParentVol identifies the name of the FlexVol volume that is source for the
clone volume.

� ParentSnap identifies the name of the parent FlexVol volume Snapshot copy
that is used as source for the clone volume.

For example, to create a clone volume named dbdata_cl from the Snapshot copy
named dbdata_cl_snp.1 of the volume named dbdata, execute the following
command on the destination storage system:

vol clone create dbdata_cl -s volume -b dbdata dbdata_cl_snp.1

5.4.7 Create new mapping for LUNs that reside on the clone volumes

When a clone volume is created, by default, LUNs residing on it have the same
mapping as the source FlexVol volume LUNs, and they are placed offline. You
can see the LUN status by executing the following command on the storage
system:

lun show

The output from the lun show command should look similar to Example 5-12.

Example 5-12 Output from the lun show command

lun show
/vol/dbdata/data 15g (16106127360) (r/o, online, mapped)
/vol/dbdata_cl/data 15g (16106127360) (r/w, offline, mapped)

The LUN mappings can be listed by executing the following command on the
storage system:

lun show -m

Important: The Snapshot copy on the SnapMirror source storage system
should not be deleted; otherwise, the SnapMirror relationship will fail.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 91

The output from the lun show -m command should look similar to Example 5-13.

Example 5-13 Output from the lun show -m command

lun show -m
LUN path Mapped to LUN ID Protocol

/vol/dbdata/data host_src_fcp_igp 0 FCP
/vol/dbdata_cl/data host_src_fcp_igp 0 FCP

You can see from the output that the LUNs on the clone volume have the same
mapping as the parent.

The FlexClone volume LUNs can be accessed from the same database server
that is used to access the source database, or from a completely different server.
The scenarios described in this paper were produced using a second database
sever to access the clone database.

In order to access the clone database from a second database server, complete
the following steps:

1. Remove the old mapping for each LUN that exists on the clone volume by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName]

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

For example, to remove the old mapping for a LUN named
/vol/dbdata_cl/data from an igroup named host_src_fcp_igp, you would
execute the following command on the storage system:

lun unmap /vol/dbdata_cl/data host_src_fcp_igp

2. Create a new mapping for the LUNs on the clone volume by using a new ID,
mapping them to a new igroup, or both. A LUN mapping can be created by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName] [LunId]

Where the following variables are defined as:

– LunPath identifies the name assigned to the new clone volume.

– iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.
92 Using IBM DB2 UDB with IBM System Storage N series

– LunId identifies a numeric ID that is assigned to the LUN for mapping it to
a specific initiator group.

For example, to map a LUN named /vol/dbdata_cl/data to an igroup named
host_dst_fcp_igp, execute the following command on the storage system:

lun map /vol/dbdata_cl/data host_dst_fcp_igp 0

3. After remapping, each LUN that is on the clone volume and that is used for
the clone database must be brought online by executing the following
command on the storage system:

lun online [LunPath]

Where LunPath identifies the name assigned to the new clone volume.

For example, to bring a LUN named /vol/dbdata_cl/data online, execute
the following command on the storage system:

lun online /vol/dbdata_cl/data

5.4.8 Mount the LUN devices

In order to mount the LUNs that reside on the FlexClone volumes, complete
following steps:

1. Refresh the HBA driver on the database server. For example, to refresh a
Qlogic FC HBA on a Linux database host, execute the following commands
on the database server:

modprobe -r qla2300
modprobe -v qla2300

For any other operating system (OS) and HBA, refer to the OS reference
manual and the HBA installation guide.

2. Obtain the device names for the LUNs by executing the following command
on the database server that is to be used to access the clone database:

sanlun lun show

3. Mount LUN devices by executing the following command on the database
server:

mount [DeviceName] [MountPoint]

Where the following variables are defined as:

– DeviceName identifies the name assigned to the new clone volume.

– MountPoint identifies the name assigned to the mount location that is used
to mount the LUN device.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 93

For example, to mount a LUN device named /dev/sdb to a mount location
named /mnt/dbdata_cl, execute the following command on the database
server:

mount /dev/sdb /mnt/dbdata_cl

4. In order to operate DB2 successfully, the DB2 instance owner should have
ownership of the LUN file systems mounted on the database server. You can
change the ownership by executing the following command on the database
server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

– InstanceOwner identifies the name assigned to the user who owns the
database instance.

– InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

– FileSystem identifies the name of the files system whose ownership is
changed.

For example, to change ownership of the file system mounted on the mount
point named /mnt/dbdata_cl, execute the following command on the database
server named hostdst:
chown -R db2inst1:db2adm /mnt/dbdata_cl

5.4.9 Configure the cloned database

You use the clone volumes that you created as the storage containers for the
cloned database. You can skip steps 1 and 2 if following two conditions are true
for your environment:

� The name of the DB2 instance used for the clone database is same as the
production or source database instance name.

� The mount points that are used to mount the clone volumes have same name
as the mount points that are used to mount volumes of the production
database.

To configure the cloned database, follow these steps:

1. By default when database is created, the tablespaces containers for the
default tablespaces (SYSCATSPACE, TEMPSPACE1, and USERSPACE1)
reside in the following directory:

[DBDir]/[InstanceName]/NODE000n
94 Using IBM DB2 UDB with IBM System Storage N series

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– InstanceName identifies the name assigned to the DB2 instance to which
the database belongs.

For example, if the DB2 instance name is db2inst1 and the database was
created on the directory named /mnt/dbdata, the default tablespace
containers will reside in the following directory.

/mnt/dbdata/db2inst1/NODE0000

For a database server the DB2 instance name must be unique. Therefore,
you have to create a DB2 instance with a new name if an existing DB2
instance name is same as the production DB2 instance name.

To access the clone database from a different instance name you must
change the default tablespace container's path name by executing the
following command on the database server:

mv [DBDir]/[OldInstanceName]/NODE000n
[DBDir]/[NewInstanceName]/NODE000n

Where the following variables are defined as:

– DBDir identifies the name assigned to the directory or device on which the
database is created.

– OldInstanceName identifies the name assigned to the DB2 instance to
which the production database belongs.

– NewInstanceName identifies the name assigned to the DB2 instance to
which the clone database belongs.

For example, to access the clone database from the instance named
db2instc, execute the following command on the database server to change
the path:

mv /mnt/dbdata_cl/db2inst1 /mnt/dbdata_cl/db2instc

2. Change the database name and tablespace containers header information
using the db2inidb command as specified in 1.5, “The db2inidb command” on
page 6. To do this, you must create a configuration file that identifies the
source database information and specifies the new clone database
information.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 95

A configuration file for this scenario should look similar to Example 5-14.

Example 5-14 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1,db2instc
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*

In this configuration file, the source database name is mydb and it has its logs
on /mnt/dblogs and data on /mnt/dbdata. The clone database is to be
renamed to mydbcl. It has its data on /mnt/dbdata_cl and logs on
/mnt/dblogs_cl. The source database instance name is db2inst1 and clone
database instance name is db2instc.

Save the configuration file as /home/db2inst1/dbrelocate.cfg and execute the
following command on the database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

3. Start the database manager instance you created for the migration test
environment by executing the following command on the database server:

db2start

If the production database was offline during the Snapshot copy process, the
clone database becomes available after executing db2start.

The production database was online when the Snapshot copies were created.
Therefore, use the db2inidb utility to initialize the clone database as a
snapshot. You can do this by executing the following command on the
database server:

db2inidb database [DatabaseName] as snapshot

Where DatabaseName identifies the name of the clone database that is going
to be used for the test environment.

For example, to initialize a clone database named mydbcl, execute the
following commands on the database server:

db2inidb mydbcl as snapshot

After completing these steps, the cloned database is ready. You can connect to
the database and start using it.

If the source and the clone database need to be accessed from the same
database host, then you must complete the additional steps described in
Appendix B, “Configuring UNIX to access cloned and source databases in an
SAN environment” on page 105.
96 Using IBM DB2 UDB with IBM System Storage N series

In this scenario, the LUNs on the clone volume are accessed using FCP, but they
can be accessed using the iSCSI access protocol as well.

5.5 Conclusions

The storage system offers the DB2 database administrator a compelling
advantage and an elegant solution for database cloning. Use of the FlexVol
clone feature combined with SnapMirror, enables database cloning at a remote
storage system. The clone database can be used in multiple ways:

� To take load off the production database
� To use in the reporting environment
� To perform data mining
� To perform production-environment troubleshooting
� To refresh the test and development environment
� To work closely with live production data
� To enable easier and more convenient disaster recovery

Database cloning using N series technology is very easy and simple, sparing
database administrators from working late hours and weekends just to replicate
data for various IT operations. The storage space is used efficiently with
Snapshot technology, which translates into savings in terms of dollars.
 Chapter 5. Cloning a DB2 UDB database in the SAN environment 97

98 Using IBM DB2 UDB with IBM System Storage N series

Appendix A. Configuring UNIX to access
cloned and source
databases in an NAS
environment

In order to access the clone database and the source database from the same
database server, complete the steps in this appendix.

A

© Copyright IBM Corp. 2006. All rights reserved. 99

A.1 Create a mount point for each clone volume
Execute the following command on the database server to create a mount point:

mkdir -p [MountPoint]

Where MountPoint identifies the name assigned to the mount location on the
database server.

For example, to create a mount point named /mnt/db2data_cl, execute the
following command on the database server:

mkdir -p /mnt/dbdata_cl

A.2 Define mount options
Define the mount options in the appropriate file for your operating system. For
example, for Linux you define mount options in the /etc/fstab file. The mount
should look similar to the following:

[StorageSystemName]:[FlexVolName] [MountPoint] nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

Where the following variables are defined as:

� StorageSystemName identifies the name assigned to the storage system that is
used for the database storage.

� FlexVolName identifies the name assigned to the clone volume.

� MountPoint identifies the name assigned to the mount location that is used to
mount the flexible volume on the database server.

For example, for a clone volume named dbdata_cl that resides on a IBM N
Series storage system named srcstore, append the following mount entry to the
/etc/fstab file on the database sever:

srcstore:dbdata_cl /mnt/dbdata_cl nfs
hard,rw,nointr,rsize=32768,wsize=32768,bg,vers=3,tcp 0 0

The mount entry should specify the IBM recommended mount options.

After appending the mount entry, you can mount the clone volume by executing
the following command on the database server:

mount [MountPoint]

Where MountPoint identifies the name assigned to the mount location that is
used to mount the flexible volume on the database server.
100 Using IBM DB2 UDB with IBM System Storage N series

For example, to mount a clone volume that has mount entry specified in the
/etc/fstab file, execute the following command on the second database server
named hostdst:
mount /mnt/dbdata_cl

The database servers that we used had the Linux operating system.

A.3 Change ownership
In order to operate DB2 successfully, the DB2 instance owner should have
ownership of the file systems on the clone volume that is mounted on the
database server. Change the ownership by executing the following command on
the database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

� InstanceOwner identifies the name assigned to the user who owns the
database instance.

� InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

� FileSystem identifies the name of the files system whose ownership is
changed.

For example, to change ownership of the file system mounted on the mount point
named /mnt/dbdata_cl, execute the following command on the database server
named hostdst:
chown -R db2inst1:db2adm /mnt/dbdata_cl

A.4 Rename the clone database
The clone database has the old database name and old tablespace container
information. You must rename the clone database and update its tablespace
header information to represent the new database and new tablespace
containers. The db2relocatedb utility allows you to rename a database as well as
to update the tablespace header information.

To rename the clone database:

1. Create a configuration file specifying both the new and old database names
and tablespace containers. The configuration file should look similar to
Example A-1.
 Appendix A. Configuring UNIX to access cloned and source databases in an NAS environment 101

Example: A-1 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
STORAGE_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/

2. Save the file as dbrelocate.cfg and grant execute permission on it. If the
database was offline during the Snapshot copy process, then modify the
database information by executing the db2relocatedb command:

db2relocatedb -f [ConfigFile]

Where ConfigFile identifies the name of the user-created configuration file
based on that specifies new and old database information.

For example, to update the tablespace containers information and rename
the clone database using the sample configuration file named
/home/db2inst1/dbrelocate.cfg, execute the following command on the
database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

A.5 Check whether the database is cataloged
Check whether the database is cataloged correctly by executing the following
command on the database server that is used to access the clone database:

db2 list db directory

Note: When the db2inidb command with the relocate using option, is
executed, it internally calls the db2relocatedb tool and can be used to
relocate a database. As noted earlier, the db2inidb utility is used only to
initialize a clone database that was created from an online database.
102 Using IBM DB2 UDB with IBM System Storage N series

The output from this command should look similar to that shown in Example A-2.

Example: A-2 Output from the db2 list command

System Database Directory
 Number of entries in the directory = 1

Database 1 entry:
 Database alias = MYPRD_CL
 Database name = MYPRD_CL
 Local database directory = /mnt/dbdata_cl
 Database release level = a.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0

A.6 The db2relocatedb command
Upon execution of the db2relocatedb command, the source database is
automatically uncatalogged. You must recatalog the source database by
executing the following command on the database server:

db2 "catalog database [DatabaseName] as [DatabaseAlias] on
[FileSystem]"

Where the following variables are defined as:

� DatabaseName identifies the name assigned to the database that is being
cataloged.

� DatabaseAlias identifies the alias name assigned to the database that is
being cataloged.

� FileSystem specifies the path on which the database being cataloged
resides.

For example, to recatalog a source database named mydb that resides on the file
system named /mnt/dbdata, execute the following command on the database
server:

db2 "catalog database mydb as mydb on /mnt/dbdata"

After completing the steps in this appendix, you should be able to access both
the source and the cloned databases from the same database server.
 Appendix A. Configuring UNIX to access cloned and source databases in an NAS environment 103

104 Using IBM DB2 UDB with IBM System Storage N series

Appendix B. Configuring UNIX to access
cloned and source
databases in an SAN
environment

This appendix discusses how to access the clone database from the same
database server.

B

© Copyright IBM Corp. 2006. All rights reserved. 105

B.1 List the LUN mappings
List the LUN mappings by executing the following command from the IBM N
Series storage system:

lun show -m

The output from the lun show -m command should look similar to that shown in
Example B-1.

Example: B-1 Output from lun show -m command

lun show -m
LUN path Mapped to LUN ID Protocol

/vol/dbdata/data host_src_fcp_igp 0 FCP

You can see from the output that the LUNs on the clone volume have the same
mapping as the parent.

B.2 Remove the old mappings
Remove the old mapping for each LUN that exists on the clone volume by
executing the following command on the storage system:

lun unmap [LunPath] [iGroupName]

Where the following variables are defined as:

� LunPath identifies the name assigned to the new clone volume.

� iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

For example, to remove old mapping for a LUN named /vol/dbdata_cl/data
from an igroup named host_src_fcp_igp, execute the following command on the
storage system:

lun unmap /vol/dbdata_cl/data host_src_fcp_igp
106 Using IBM DB2 UDB with IBM System Storage N series

B.3 Create new mappings
Create a new mapping for the LUNs on the FlexClone volume by using a new ID
and, by mapping them to a new igroup, or both. A LUN mapping can be created
by executing the following command on the storage system:

lun unmap [LunPath] [iGroupName] [LunId]

Where the following variables are defined as

� LunPath identifies the name assigned to the new clone volume.

� iGroupName identifies the name assigned to the initiator group for the
database host that is used to access the database.

� LunId identifies a numeric ID that is assigned to the LUN for mapping it to a
specific initiator group.

For example, to map a LUN named /vol/dbdata_cl/data to an igroup named
host_dst_fcp_igp, execute the following command on the storage system:

lun map /vol/dbdata_cl/data host_dst_fcp_igp 0

B.4 Bring the clone online
After remapping, each LUN that is on the clone volume and that is used for the
clone database must be brought online by executing the following command on
the storage system:

lun online [LunPath]

Where LunPath identifies the name assigned to the new clone volume.

For example, to bring a LUN named /vol/dbdata_cl/data online, execute the
following command on the storage system:

lun online /vol/dbdata_cl/data

B.5 Create Mount point
Create a mount point for each of the clone volumes by executing the following
command on the database server:

mkdir -p [MountPoint]

Where MountPoint identifies the name assigned to the mount location on the
database server.
 Appendix B. Configuring UNIX to access cloned and source databases in an SAN environment 107

For example, to create a mount point named /mnt/db2data_cl, execute the
following command on the database server:

mkdir -p /mnt/dbdata_cl

B.6 Refresh the driver
Refresh the HBA driver on the database server. For example, to refresh a Qlogic
FC HBA on a Linux database host, you would execute the following commands
on the database server:

modprobe -r qla2300
modprobe -v qla2300

For any other operating system (OS) and HBA, refer to the OS reference manual
and the HBA installation guide.

B.7 Obtain LUN device names
Obtain the LUN device names by executing the following command on the
database server that is to be used to access the clone database:

sanlun lun show

B.8 Mount the LUN devices
Mount the LUN devices by executing the following command on the database
server:

mount [DeviceName] [MountPoint]

Where the following variables are defined as:

� DeviceName identifies the name assigned to the new clone volume.

� MountPoint identifies the name assigned to the mount point that is used to
mount the LUN device.

For example, to mount a LUN device that is identified by a name /dev/sdb by the
database server, execute the following command on the database server:

mount /dev/sdb /mnt/dbdata
108 Using IBM DB2 UDB with IBM System Storage N series

B.9 Change ownership
In order to operate DB2 successfully, the DB2 instance owner should have
ownership of the LUN file systems mounted on the database server. Ownership
can be changed by executing the following command on the database server:

chown -R [InstanceOwner]:[InstanceOwnerGroup] [FileSystem]

Where the following variables are defined as:

� InstanceOwner identifies the name assigned to the user who owns the
database instance.

� InstanceOwnerGroup identifies the name assigned to the user's group that
owns the database instance.

� FileSystem identifies the name of the file system whose ownership is being
changed.

For example, to change ownership of the file system mounted on the mount point
named /mnt/dbdata_cl, execute the following command on the database server
named hostdst:
chown -R db2inst1:db2adm /mnt/dbdata_cl

B.10 Rename a cloned database
The cloned database has the old database name and old tablespace container
information. You must rename the cloned database and update its tablespace
header information to represent the new database and new tablespace
containers. The db2relocatedb utility allows you to rename a database as well as
update the tablespace header information. To rename a cloned database:

1. Create a configuration file specifying both new and old database names and
tablespace containers. The configuration file should look similar to that shown
in Example B-2.

Example: B-2 Configuration file

DB_NAME=mydb,mydbcl
DB_PATH=/mnt/dbdata,/mnt/dbdata_cl
INSTANCE=db2inst1
NODENUM=0
LOG_DIR=/mnt/dblogs/NODE0000,/mnt/dblogs_cl/NODE0000
CONT_PATH=/mnt/dbdata/*,/mnt/dbdata_cl/*
 Appendix B. Configuring UNIX to access cloned and source databases in an SAN environment 109

2. Save the file as dbrelocate.cfg, grant execute permission if necessary, and
execute the db2relocatedb command as follows:

db2relocatedb -f [ConfigFile]

Where ConfigFile identifies the name assigned to the user-created
configuration file that is used to relocate the database.

For example, to update the tablespace containers information and rename
the clone database using the sample configuration file named
/home/db2inst1/dbrelocate.cfg, execute the following command on the
database server:

db2relocatedb -f /home/db2inst1/dbrelocate.cfg

B.11 Checking whether database is cataloged
Check whether the database is cataloged correctly by executing the following
command on the database server:

db2 list db directory

The output from this command should look similar to that shown in Example B-3.

Example: B-3 Output from the db2 list command

db2 list db directory
 System Database Directory
 Number of entries in the directory = 1

Database 1 entry:
 Database alias = MYPRD_CL
 Database name = MYPRD_CL
 Local database directory = /mnt/dbdata_cl
 Database release level = a.00
Comment =
 Directory entry type = Indirect
Catalog database partition number = 0
 Alternate server hostname =
110 Using IBM DB2 UDB with IBM System Storage N series

B.12 Recatalog the database
Upon execution of the db2relocatedb command, the source database is
automatically uncatalogged. Recatalog the source DB2 database. Now you can
access both source and cloned database from the same database server.

db2 "catalog database mydb as mydb on /mnt/dbdata"

After completing the steps in this appendix, you should be able to access both
the source and the cloned databases from the same database server.
 Appendix B. Configuring UNIX to access cloned and source databases in an SAN environment 111

112 Using IBM DB2 UDB with IBM System Storage N series

Related publications

We consider the publications that we list in this section to be particularly suitable
for a more detailed discussion of the topics that we discuss in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 114. Note that some of the documents that we reference
here might be available in softcopy only.

� Using the IBM System Storage N Series with IBM Tivoli Storage Manager,
SG24-7243

� IBM Storage System N series Antivirus Scanning Best Practices Guide,
REDP-4084

� Setting up CIFS and Joining the Active Directory, REDP-4074

� Multiprotocol Data Access with IBM System Storage N series, REDP-4176

Other publications
These publications are also relevant as further information sources:

� IBM System Storage N3700 Installation and Setup
Instructions,GA32-0517-02

� IBM System Storage N series N3700 Hardware and Service
Guide,GA32-0515-02

� IBM System Storage N series Introduction and Planning Guide,
GA32-0543-01
© Copyright IBM Corp. 2006. All rights reserved. 113

Online resources
These Web sites are also relevant as further information sources:

� IBM NAS for your storage infrastructure

http://www-03.ibm.com/servers/storage/nas/

� Support for System Storage™ N3700

http://www-03.ibm.com/servers/storage/support/nas/n3700/

� Support for System Storage N5200

http://www-03.ibm.com/servers/storage/support/nas/n5200/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
114 Using IBM DB2 UDB with IBM System Storage N series

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-03.ibm.com/servers/storage/nas/
http://www-03.ibm.com/servers/storage/support/nas/n3700/
http://www-03.ibm.com/servers/storage/support/nas/n5200/

Index

A
application testing 9
archive logging 22
ArchiveDir 23

B
BackupDir 24
to 23

C
circular logging 22
clone database

renaming 86, 101, 109
verifying 55

clone online
bringing 107

clone volumes
mounting 31, 51

clone volumes using Snapshot copies
creating 58, 90

cloned database
configuring 33, 40, 52, 61, 94

cloned volumes
mounting 38

clones of the FlexVol volumes
creating 48

CloneVol 67

D
data mining 9
data ONTAP SnapMirror 2, 4
data warehouse/data mart 9
database

verifying 35, 42
database cataloging

checking 102, 110
database cloning 1
database into a consistent state (suspend writes)

bringing 36
database server

different DB2 UDB version
selecting 27
© Copyright IBM Corp. 2006. All rights reserved.
database software and application upgrade test 9
db2

"create database 21
backup database 23
"catalog database mydb as mydb on /mnt/dbda-
ta" 35
"create database mydb on /mnt/dbdata" 21
backup database mydb to /dbbackup 24
force application all 23–24

DB2 UDB Database in the N series Environment
cloning 25

DB2 UDB Database in the SAN Environment
cloning 65

DB2Dir
 21

db2inidb
 12
command 6
mydbcl as snapshot 7
mydbcl as snapshot relocate using config.txt 7

db2relocatedb
 12
command 7, 103

dbaggr 15
dbaggr1 20
dbdata 20
DBDir

 33
dblogs 20
DestinationStorageSystem 46

E
environment assumptions 12
export entry for the clone volume

creating 30

F
FCP 12
FencedID 21
Fiber Channel 12
FilerView™ 31
FileSystem 32
FlexClone
 115

 1
technology 3
volume LUNs

mounting 85
FlexClone volumes using Snapshot copies

creating 82
FlexVol volumes

cloning 29
FlexVolName 31
FlexVolPath 13
qtree security 13

G
GroupName 68

I
IBMM DB2 UDB ESE V8 12
InstanceName

 21, 33
InstanceOwner 32
InstanceOwnerGroup 32
iSCSI

 12

L
LUN devices

mounting 93, 108
names

obtaining 108
LUN mappings

listing 106
LunPath 68

M
mount options

defining 100
mount point

creating 107
mount point for each clone volume

creating 100
MountPoint 32
on 21

N
NetApp

 10
FAS 14

Network Appliance 10
network and storage infrastructure 14
new mapping for LUNs

creating 67
new mapping for LUNs that reside on the clone vol-
umes

creating 83, 91
new mappings

creating 107
NewInstanceName 33
NFS 12
NFS export entries for the cloned volumes

creating 51, 59
non production server without DB2 UDB installed

selecting 27
normal database operations (resume writes)

 37, 57, 89

O
offline copy

creating 23
offline database

on the same storage system
cloning 66

to a remote storage system
cloning 42, 80

old mappings
removing 106

OldInstanceName 33
online database

on the same storage system
cloning 36

to a remote storage system
cloning 56, 88

online database backup 9
ownership

changing 101, 109

P
ParentSnap

 29, 67
ParentVol

 29, 67

Q
qtree security /vol/db2data unix 13
116 Using IBM DB2 UDB with IBM System Storage N series

R
recataloging the database 111
Redbooks Web site 114

Contact us xi
refresh driver 108
reporting environment 8
RHEL 4.0 10

S
security and access issues 13
set write

resume for database 5
suspend for database 5, 36

snap create dbdata dbdata_cl_snp01 28
SnapMirror

configuring and initializing 43, 56, 80
initialize command 47
updating destination 57
updating destination volumes 81, 90

Snapshot copies
creating 89
database FlexVol volumes

creating 36
FlexVol volumes

creating 57, 81
Snapshot copy 30
source database

cataloging 35, 55
starting 29

SourceStorageSystem 46
standby database 9
StorageSystemName 31

U
unix 13
UNIX host to access both the clone and the source
databases in a NAS environment

configuring 99
UNIX host to access both the clone and the source
databases in a SAN environment

configuring 105

V
vol clone create dbdata_cl -s volume -b dbdata
dbdata_cl_snp.01 29
vol status dbdata_cl 29
VolumeName 46

W
Writable Disaster Recovery Destination 8
 Index 117

118 Using IBM DB2 UDB with IBM System Storage N series

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Using IBM
 DB2 UDB w

ith IBM
 System

 Storage N series

®

SG24-7323-00 ISBN 0738496820

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Using IBM DB2 UDB
with IBM System
Storage N series
Exploiting FlexClone
technology to build
and use database
clones

Creating a database
on IBM N series
systems

Using Snapshot and
SnapMirror

Database cloning is the process by which you create an
exact copy of a DB2 database, either by physically copying
the data or by performing what is known as a redirected
restore.

Database cloning is performed frequently by database
administrators to provide near-production data for various
business needs such as application development, QA testing,
and report generation. Traditional methods of cloning a
database pose various challenges, including system
downtime and degraded system performance during the
cloning process. Additionally, a large amount of storage
space is required to store each clone. Furthermore, the
maintenance overhead can be enormous if each cloned
database requires a frequent data refresh.

This IBM Redbook describes the process used to create a
clone of an IBM DB2 UDB database using FlexClone
technology. This book also covers creating a database clone
on a disaster recovery site that has replicated data using
Data ONTAP SnapMirror technology.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction to FlexClone
	1.1 Purpose and Scope
	1.2 Overview of FlexClone technology
	1.3 Overview of the SnapMirror technology
	1.4 Ensuring consistency for DB2 UDB database (suspended I/O)
	1.5 The db2inidb command
	1.6 The db2relocatedb command
	1.7 Advantages of cloning a database using N series FlexClone technology
	1.8 Configuration used for this publication

	Chapter 2. Preparation
	2.1 General assumptions
	2.2 Environment assumptions
	2.3 Security and access issues
	2.4 Network and storage infrastructure

	Chapter 3. Creating a DB2 UDB Database on an IBM N series
	3.1 Create containers
	3.2 Create an instance
	3.3 Create the database
	3.4 Change location of transaction logs
	3.5 Switch from circular logging to archive logging
	3.6 Create offline copy

	Chapter 4. Cloning a DB2 UDB database in the N series environment
	4.1 Select a database server to access the cloned database
	4.1.1 Select the production database server and database
	4.1.2 Select a database server that has a different DB2 UDB version
	4.1.3 Select a non-production server without DB2 UDB installed

	4.2 Clone an offline database on the same storage system
	4.2.1 Bring the source database offline
	4.2.2 Create Snapshot copies of the database FlexVol volumes
	4.2.3 Start the source database
	4.2.4 Clone the FlexVol volumes
	4.2.5 Create an export entry for the clone volume
	4.2.6 Mount the clone volumes
	4.2.7 Configuring the cloned database
	4.2.8 Catalog the source database if necessary
	4.2.9 Verify the database

	4.3 Clone an online database on the same storage system
	4.3.1 Bring the database into a consistent state (suspend writes)
	4.3.2 Create Snapshot copies of the database FlexVol volumes
	4.3.3 Resume normal database operations (resume writes)
	4.3.4 Clone the FlexVol volumes.
	4.3.5 Create NFS export entries for the cloned volumes
	4.3.6 Mount the cloned volumes
	4.3.7 Configuring the cloned database
	4.3.8 Verify the database

	4.4 Clone an offline database to a remote storage system
	4.4.1 Configure SnapMirror
	4.4.2 Initialize SnapMirror
	4.4.3 Create clones of the FlexVol volumes
	4.4.4 Create NFS export entries for the cloned volumes
	4.4.5 Mount the clone volumes
	4.4.6 Configure the cloned database
	4.4.7 Catalog the source database
	4.4.8 Verify the cloned database

	4.5 Clone an online database to a remote storage system
	4.5.1 Configure and initialize SnapMirror
	4.5.2 Bring the source database into a consistent state (suspend writes)
	4.5.3 Create Snapshot copies of the FlexVol volumes
	4.5.4 Resume normal database operations (resume writes)
	4.5.5 Update the SnapMirror destination
	4.5.6 Create clone volumes using Snapshot copies
	4.5.7 Create NFS export entries for the cloned volumes
	4.5.8 Mount the cloned volumes
	4.5.9 Configure the cloned database
	4.5.10 Verify the cloned database

	Chapter 5. Cloning a DB2 UDB database in the SAN environment
	5.1 Clone an offline database on the same storage system
	5.1.1 Bring the source database offline
	5.1.2 Create Snapshot copies of the FlexVol volumes
	5.1.3 Start the source database
	5.1.4 Create clone volumes using Snapshot copies
	5.1.5 Create new mapping for the LUNs.
	5.1.6 Mount the FlexClone volume LUNs
	5.1.7 Configure the cloned database

	5.2 Clone an online database on the same storage system
	5.2.1 Bring the source database into a consistent state (suspend writes)
	5.2.2 Create Snapshot copies of the FlexVol volumes
	5.2.3 Resume normal database operation (resume writes)
	5.2.4 Clone the FlexVol volumes using Snapshot copies
	5.2.5 Create new mapping for the LUNs
	5.2.6 Mount the LUNs that reside on the FlexClone volumes
	5.2.7 Configure the cloned database

	5.3 Clone an offline database to a remote storage system
	5.3.1 Configure and initialize SnapMirror
	5.3.2 Bring the database offline
	5.3.3 Create Snapshot copies of the FlexVol volumes
	5.3.4 Update the SnapMirror destination volumes
	5.3.5 Create FlexClone volumes using Snapshot copies
	5.3.6 Create new mapping for LUNs that reside on the clone volumes
	5.3.7 Mount the FlexClone volume LUNs
	5.3.8 Renaming the cloned database

	5.4 Clone an online database to a remote storage system
	5.4.1 Set up and initialize SnapMirror
	5.4.2 Bring the database into a consistent state (suspend writes)
	5.4.3 Create Snapshot copies
	5.4.4 Resume normal operations for the database (resume writes)
	5.4.5 Update the SnapMirror destination volumes
	5.4.6 Create clone volumes using Snapshot copies
	5.4.7 Create new mapping for LUNs that reside on the clone volumes
	5.4.8 Mount the LUN devices
	5.4.9 Configure the cloned database

	5.5 Conclusions

	Appendix A. Configuring UNIX to access cloned and source databases in an NAS environment
	A.1 Create a mount point for each clone volume
	A.2 Define mount options
	A.3 Change ownership
	A.4 Rename the clone database
	A.5 Check whether the database is cataloged
	A.6 The db2relocatedb command

	Appendix B. Configuring UNIX to access cloned and source databases in an SAN environment
	B.1 List the LUN mappings
	B.2 Remove the old mappings
	B.3 Create new mappings
	B.4 Bring the clone online
	B.5 Create Mount point
	B.6 Refresh the driver
	B.7 Obtain LUN device names
	B.8 Mount the LUN devices
	B.9 Change ownership
	B.10 Rename a cloned database
	B.11 Checking whether database is cataloged
	B.12 Recatalog the database

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

