

ibm.com/redbooks

DB2 for z/OS:
Data Sharing
in a Nutshell

Paolo Bruni
Mark Anders

KyengDong Park
Mark Rader

Judy Ruby-Brown

Get a quick start with your DB2 for z/OS
data sharing installation

Understand alternatives and
priorities

Find support and
references

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 for z/OS:
Data Sharing in a Nutshell

International Technical Support Organization

SG24-7322-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2006)

This edition applies to IBM DB2 Version 9.1 for z/OS (program number 5635-DB2) and earlier
currently supported releases.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Our assumptions . ix

The team that wrote this redbook. x
Become a published author . xii
Comments welcome. xiii

Chapter 1. Introduction . 1
1.1 Why should you implement DB2 data sharing? . 2
1.2 Overview of Parallel Sysplex and DB2 data sharing 2
1.3 Business value of data sharing . 5

1.3.1 Improved data availability . 6
1.3.2 Extended processing capacity . 7
1.3.3 Configuration flexibility . 9
1.3.4 Higher transaction rates . 10
1.3.5 Application interface unchanged . 11

1.4 Roadmap to implementing data sharing . 11

Chapter 2. Data sharing architecture. 15
2.1 Parallel database architecture alternatives . 16
2.2 Data sharing design for scalability. 18

2.2.1 Global locking and the lock structure . 19
2.2.2 Managing changed data and group buffer pools. 21

2.3 Data sharing design for continuous availability . 25
2.4 Configuration flexibility and systems management 31
2.5 Application considerations in data sharing . 35

2.5.1 Portability . 36
2.5.2 Commit and lock avoidance . 36
2.5.3 Concurrency . 37

Chapter 3. The coupling facility . 39
3.1 Structure sizing . 40

3.1.1 Group buffer pools . 40
3.1.2 Sizing the lock structure . 46
3.1.3 Sizing the SCA structure . 47

3.2 Auto Alter. 47
3.2.1 Implementing Auto Alter . 50
© Copyright IBM Corp. 2006. All rights reserved. iii

3.3 Duplexing . 53
3.3.1 Group buffer pools (GBP) or user-managed pools 54
3.3.2 System-managed duplexing . 55

3.4 CF configuration alternatives. 56
3.4.1 ICF-only: Double failure for the lock and SCA structures 57
3.4.2 System-managed duplexing for DB2 lock and other structures 59
3.4.3 External CF, such as z890 or z9 BC . 59

3.5 CFRM policy . 60
3.6 Best practices for the coupling facility . 63

Chapter 4. Implementing data sharing . 65
4.1 Naming conventions . 66

4.1.1 Group name . 66
4.1.2 Group attachment name . 67
4.1.3 Subsystem identifier (SSID) . 68
4.1.4 Log data set names. 68
4.1.5 Bootstrap data set (BSDS) . 68
4.1.6 Distributed Data Facility (DDF) related parameters 69
4.1.7 Catalog alias . 71
4.1.8 Temporary work file database. 71
4.1.9 Some more naming recommendations . 71
4.1.10 Examples of naming conventions . 72
4.1.11 Best practices for naming conventions . 73

4.2 Logging . 73
4.2.1 Active log data sets . 73
4.2.2 Archive log . 74
4.2.3 Best practices for DB2 logging . 74

4.3 DSNZPARMs . 74
4.3.1 Data sharing system parameters . 74
4.3.2 Some other important DSNZPARMs. 75
4.3.3 IRLM parameters . 76
4.3.4 Information stored in the BSDS. 77

4.4 Renaming an existing non-data sharing member 78
4.4.1 IPL required for these tasks . 79
4.4.2 Enable data sharing tasks. 79

4.5 Enabling the data sharing group . 85
4.5.1 Additional tasks . 87

4.6 Adding the second member . 87
4.7 Removing a member . 88

Chapter 5. Dynamic workload balancing . 89
5.1 Objectives of workload balancing . 90
5.2 Workload Manager . 92
iv Data Sharing in a Nutshell

5.3 Dynamic virtual IP addressing (DVIPA). 94
5.4 Sysplex Distributor . 95
5.5 Distributed data facility (DDF) . 95
5.6 Stored procedures. 97
5.7 Batch work. 98
5.8 WebSphere . 99
5.9 CICSPlex Systems Manager (CP/SM) . 100
5.10 IMS Transaction Manager (IMS TM) . 101
5.11 Dynamic workload balancing best practices . 103

Chapter 6. Operations . 105
6.1 Recovery of DB2 objects. 106

6.1.1 Log record sequence number (LSRN) . 106
6.1.2 Group buffer pool recovery pending (GRECP) 106
6.1.3 Logical page list (LPL). 107
6.1.4 Recommendations for GRECP/LPL recovery 107
6.1.5 Best practices for GRECP/LPL recovery . 109

6.2 Component failure . 109
6.2.1 DB2 subsystem failure . 110
6.2.2 z/OS system failure . 111
6.2.3 CF failure. 111

6.3 Sysplex failure management (SFM) policy . 112
6.4 Automatic restart manager (ARM). 112
6.5 Restart Light . 112

6.5.1 Best practices for failures . 113
6.6 Commands . 114

6.6.1 Basics . 114
6.6.2 CF and structure related commands. 115
6.6.3 IRLM commands . 117
6.6.4 DB2 commands. 117

6.7 Multi-system DB2 diagnostic dumps . 118
6.8 Disaster recovery . 119
6.9 Rolling maintenance . 119

6.9.1 Service recommendations. 120
6.9.2 Best practices for maintenance. 120

Chapter 7. Advanced topics . 121
7.1 CLOSE YES and CLOSE NO table spaces . 122

7.1.1 Best practice . 123
7.2 Performance . 123
7.3 Eliminating false contention. 124
7.4 How many CF engines are necessary? . 126
7.5 Lock avoidance: CLSN versus GCLSN. 128
 Contents v

7.6 The problem of runaway threads. 128
7.7 Usermod for routing to multiple DB2s on a z/OS image 130

7.7.1 Multiple DB2 members in one z/OS image 130
7.8 Determining the number of threads. 131

7.8.1 REXX tools package . 132
7.8.2 Statistics Spreadsheet support . 133

Chapter 8. Best practices . 135
8.1 Table of best practice recommendations . 136

Related publications . 139
IBM Redbooks . 139
Other publications . 139
Online resources . 140
How to get IBM Redbooks . 142
Help from IBM . 142

Index . 143
vi Data Sharing in a Nutshell

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
CICSPlex®
DB2®
DB2 Connect™
DFSMSdfp™
DRDA®
eServer™
ESCON®
FICON®
IBM®

ibm.com®
IMS™
MQSeries®
MVS™
OMEGAMON®
OS/390®
Parallel Sysplex®
RACF®
Redbooks™
Redbooks (logo) ™

RMF™
Sysplex Timer®
System z™
System z9™
Tivoli®
VTAM®
WebSphere®
z/OS®
zSeries®
z9™

System z is the brand name to indicate both the zSeries and System z9 families of products.

The following terms are trademarks of other companies:

Java, JDBC, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii DB2 for z/OS: Data Sharing in a Nutshell

Preface

DB2® for z/OS® takes advantage of data sharing technology in a z Parallel
Sysplex® to provide applications with full concurrent read and write access to
shared DB2 data. Data sharing allows users on multiple DB2 subsystems,
members of a data sharing group, to share a single copy of the DB2 catalog,
directory, and user data sets.

Data sharing provides improvements to availability and capacity without
impacting existing applications.

The road to data sharing might seem arduous to a novice user, but once you
have started to learn terminology and gain basic understanding, things will
become much easier.

This IBM® Redbook is meant to facilitate your journey towards data sharing by
providing a cookbook approach to the main tasks in enabling data sharing and
workload balancing. It does not have all the answers, because it is a brief
summary of a large field of knowledge, but it contains the key elements and it
points you in the right direction to get more details. Throughout this document we
assume that your sysplex environment is set up and a DB2 subsystem exists at a
currently supported level.

Our assumptions
We made the following assumptions in writing this book:

� You already have a production Parallel Sysplex installed, with sysplex timers,
coupling facilities (CFs), CF links, and CF structures. All disks are shared in
your Parallel Sysplex.

� You already have experience with DB2 in a non-data sharing environment.

� You are running DB2 for z/OS Version 8 (DB2 V8) in New Function Mode

� You are at the very early stages of planning on implementing 2-way data
sharing.

� The primary reference for data sharing topics is the DB2 for z/OS Version 8
Data Sharing: Planning and Administration, SC18-7417.

� For the details and differences in data sharing functions between DB2 V7 and
V8, refer to DB2 UDB for z/OS Version 8: Everything You ever Wanted to
Know,... and More, SG24-6079. For DB2 V8 performance, see DB2 for z/OS
Version 8 Performance Topics, SG24-6465.
© Copyright IBM Corp. 2006. All rights reserved. ix

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Paolo Bruni is an Information Management software Project Leader at the
International Technical Support Organization, San Jose Center. He has authored
several IBM® Redbooks™ about DB2 for z/OS and related tools, and has
conducted workshops and seminars worldwide. During Paolo's many years with
IBM, both in development and in the field, his work has been mostly related to
database systems.

Mark Anders is a Consulting IT Specialist with IBM Advanced Technical
Support, Americas, located in the Dallas Systems Center. He has more than 30
years of IBM experience supporting DB2 and IMS™ as a Systems Engineer,
Database Administrator, and IT Specialist. For the past 11 years, he has
provided DB2 for OS/390® and z/OS technical support and consulting services
with the Dallas Systems Center (now ATS). His areas of expertise include DB2
data sharing, performance, and availability.

Important: If you are on DB2 Version 7, you also can use this redbook. The
V7 differences are as follows:

� Lock protocol 1 is V7, while lock protocol 2 is V8 NFM and above.

� GRECP/LPL recovery is not auto started by DB2 in V7.

� Restart Light does not remove as many retained locks in V7, nor does it
wait for commit coordinators to be started.

� GBP default thresholds are higher in V7 than in V8. Use those in V8.

� The need for the BIND option RELEASE DEALLOCATE is less in V8
versus V7 due to lock protocol 2.

� All V7 write and register page and read for castout CF requests are on a
single page basis versus CF batching in V8.

� Location aliases for distributed access to a subset of the data sharing
group are not available in V7.

The most important data sharing functions introduced by DB2 Version 9.1 for
z/OS are also explicitly mentioned in this redbook.
x Data Sharing in a Nutshell

KyengDong Park is a Certified IT Specialist with Global Technology Services in
IBM Korea. He has almost 13 years of experience in DB2 field as a System
Engineer, DBA, and IT Specialist. He has been with IBM for more than seven
years, and for the past five years he worked for one of the largest customers in
Korea. His areas of expertise include DB2 installation and migration, data
sharing service, system performance tuning, and problem determination.

Mark Rader is a Consulting IT Specialist at ATS, Dallas. He has 22 years of
technical experience with IBM, including large systems, communications, and
databases. He has worked primarily with DB2 for MVS™, OS/390, and z/OS for
more than 17 years, and has specialized in data sharing, performance, and
related topics for the past nine years. He has been in the Dallas Systems Center
(now ATS) for the last five years.

Judy Ruby-Brown is a Senior Consulting IT DB2 Specialist in the US with the
Advanced Technical Support (ATS) organization. She is also an IBM Senior
Certified IT Specialist. She has supported DB2 for OS/390 and z/OS for 16 years
in the IBM Dallas Systems Center (now ATS). Her areas of expertise include
disaster recovery, Parallel Sysplex and DB2 data sharing, high availability, and
JDBC/SQLJ capabilities. She has presented on these topics at IDUG in the US,
Europe, and Asia Pacific, as well as at the DB2 Technical Conferences and
SHARE. She published the first successful DB2 offsite disaster recovery
scenario in 1989. That scenario has been incorporated into each DB2
Administration Guide since DB2 V2R3. She holds a degree in Mathematics from
the University of Oklahoma. Judy has co-authored the Redbooks SAP R/3 and
DB2 for OS/390 Disaster Recovery, SG24-5343, DB2 for z/OS and OS/390:
Ready for Java™, SG24-6435, and Disaster Recovery with DB2 UDB for z/OS,
SG24-6370.

Thanks to the following people for their contributions to this project:

Frank Kyne
Bob Haimowitz
Rich Conway
IBM ITSO, Poughkeepsie Center

Angelo Corridori
Andrea Harris
David Raften
IBM Systems & Technology Group, Poughkeepsie

Michael B. Fast
IBM Washington Systems Center, ATS

John Campbelll
Jeff Josten
 Preface xi

Gopal Krishnan
Roger Miller
Chris Munson
Mary Petras
Akira Shibamiya
Nigel Slinger
John Tobler
Chung Wu
IBM DB2 Development, Silicon Valley Lab

Willie Favero
Glenn McGeoch
IBM USA

Steve Zemblowski
Guy Shevik
IBM USA, ATS Americas

Bryce Krohn
Krohn Enterprises Inc.

Franco Meroni
IBM Italy

Pierre Cassier
IBM France, Montpellier

Carsten Rasmussen
IBM Denmark

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xii Data Sharing in a Nutshell

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv Data Sharing in a Nutshell

Chapter 1. Introduction

In this chapter we provide introductory information to data sharing. We briefly
describe Parallel Sysplex, the characteristics of DB2 data sharing, and its
business value. We then list the main tasks to be completed to implement data
sharing.

We discuss the following topics:

� Why should you implement DB2 data sharing?
� Overview of Parallel Sysplex and DB2 data sharing
� Business value of data sharing
� Roadmap to implementing data sharing

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 Why should you implement DB2 data sharing?

Many customers from many industries have incorporated DB2 data sharing into
their information technology infrastructure to address challenges that arose in
supporting their business requirements.

Availability Increased business access to data any time of any day
demands protection from planned and unplanned
outages.

Capacity A single system may be a constraint to rapid business
growth, but splitting the database would introduce
additional problems.

Growth Easily accommodating business targets means
providing scalable, non-disruptive growth options.

Workload balancing Efficiency requires the effective utilization of available
processor capacity for mixed workloads and the ability
to handle unpredictable workload spikes.

Systems management Consolidation of multiple systems allows easier
systems management.

If you face one or more of these challenges, DB2 data sharing can provide the
foundation you need to address them.

1.2 Overview of Parallel Sysplex and DB2 data sharing

The data sharing function of the licensed program DB2 for z/OS enables multiple
applications to read from, and write to, the same DB2 data concurrently. The
applications can run on different DB2 subsystems residing on multiple central
processor complexes (CPCs) in a Parallel Sysplex.

A Sysplex is a group of z/OS systems that communicate and cooperate with one
another using specialized hardware and software. They are connected and
synchronized through a Sysplex Timer® or System z™ Server Time Protocol
(STP), and enterprise systems connection (ESCON®) or fiber connection
(FICON®) channels. A Parallel Sysplex is a Sysplex that uses one or more
coupling facilities (CFs), which provide high-speed caching, list processing, and
lock processing for any applications on the Sysplex. For information on Parallel
Sysplex technology and benefits, go to:

http://www.ibm.com/systems/z/resiliency/parsys.html
2 Data Sharing in a Nutshell

http://www.ibm.com/systems/z/resiliency/parsys.html

Figure 1-1 illustrates a Parallel Sysplex. A Parallel Sysplex can include CPCs of
different generations (for example, an IBM zSeries® System z890 or z990 and
an IBM System z9™ BC or z9 EC).

Figure 1-1 Parallel Sysplex with multiple IBM z9 processor complexes, Sysplex Timers,
coupling facilities and shared disk.

A collection of one or more DB2 subsystems that share DB2 data is called a data
sharing group. DB2 subsystems that access shared DB2 data must belong to a
data sharing group. A DB2 subsystem that belongs to a data sharing group is a
member of that group.

Each member can belong to one, and only one, data sharing group. All members
of a data sharing group share the same DB2 catalog and directory, and all
members must reside in the same Parallel Sysplex. Currently, the maximum
number of members in a data sharing group is 32.

FICON
switch

1
12

2

3

4
5

67
8

9

10

11

Sysplex Timers

Coupling
Facilities

Coupling
Facilities
 Chapter 1. Introduction 3

Figure 1-2 shows members of a DB2 data sharing group. Access to any of the
members allows access to any of the data in the group.

Figure 1-2 DB2 members in a data sharing group

All members of a data sharing group can read and update the same DB2 data
simultaneously. Therefore, all data that different members of the group can
access must reside on shared disks.

Some capabilities described in this redbook can be used in both data sharing
and non-data sharing environments. In this book we use the term data sharing
environment to describe a situation in which a data sharing group has been
defined with at least one member. In a non-data sharing environment, no group
is defined. Figure 1-3 shows three DB2 subsystems that are not using data
sharing. Resources of each DB2 are available only to the set of data and set of
applications that are defined to it.

DBP1 DBP2 DBPn. . . .
4 Data Sharing in a Nutshell

Figure 1-3 Separate DB2 subsystems in a non-data sharing environment.

If you are accessing DB2P, you are limited to the data in DB2P. If DB2P is not
available, you have no access to data. To access data in DB2P and DB2D at the
same time, here is what you must do. Either set up separate connectivity to
DB2P, and have the application combine the data (or combine the data yourself),
or else ensure that there is a distributed connection between DB2P and DB2D.

1.3 Business value of data sharing

DB2 data sharing allows customers to provide the highest level of scalability,
performance, and continuous availability to enterprise applications that use DB2
data. Using DB2 data sharing, you can:

� Improve the availability of DB2 data.
� Extend the processing capacity of your system.
� Configure your environment more flexibly.
� Increase your transaction rates.

Your investment in your current application environment is protected, because
most applications do not require SQL changes to use data sharing. Future
development is simpler because all data is local to all applications. In the
following sections we discuss these potential benefits of data sharing.

DB2P DB2D DB2T
 Chapter 1. Introduction 5

1.3.1 Improved data availability

Demand is increasing for access to DB2 data — all day, every day. Data sharing
helps you meet your service objectives by improving data availability during both
planned and unplanned outages.

Data sharing provides multiple paths to data. This means that a member can be
down, and applications can still access the data through other members of the
data sharing group. As Figure 1-4 illustrates, when an outage occurs and one
member is down, transaction managers can dynamically direct new application
requests to another member of the group for both SNA and TCP/IP transactions.

Figure 1-4 Handling outages

Each of the applications maintains availability to the data even if one DB2
member is down for maintenance or due to a failure.

While increasing data availability has some performance cost, the overhead is
minimal. DB2 provides efficient locking and caching mechanisms by using
coupling facility capabilities and taking advantage of the high availability features
of coupling facilities and the Parallel Sysplex.

DBP1 DBP2 DBPn. . . .X
6 Data Sharing in a Nutshell

1.3.2 Extended processing capacity

As you move more data processing onto DB2, your processing needs can
exceed the capacity of a single LPAR or a single DB2 subsystem. This section
describes how data sharing meets your ever-increasing capacity needs.

Without DB2 data sharing
Without DB2 data sharing, you have the following options for addressing
increased capacity needs:

� Copy the data, or split the data between separate DB2 subsystems.

This approach requires that you maintain separate copies of the data. There
is no communication between or among DB2 subsystems, and no shared
DB2 catalog or directory.

� Install another DB2 subsystem and rewrite applications to access the data as
distributed data.

This approach might relieve the workload on the original DB2 subsystem, but
it requires changes to your applications and has performance overhead of its
own. Nevertheless, if DB2 subsystems are separated by great distance or
DB2 needs to share data with another system, the distributed data facility is
still your only option.

� Install a larger processor and move the data and applications to that machine
if hardware capacity is the limiting factor.

This approach demands servers large enough for the expected workload and
that your system come down while you move to the new machine.

With DB2 data sharing
With DB2 data sharing, you get the following benefits:

� Support for incremental growth:

A Parallel Sysplex can grow incrementally, allowing you to add processing
power in granular units and in a non-disruptive manner. The coupling
technology of Parallel Sysplex along with the additional CPU power results in
more throughput for users’ applications. You no longer need to manage
multiple copies of data, and all members of the data sharing group share a
single DB2 catalog and directory.

� Workload balancing:

DB2 data sharing provides workload balancing so that when the workload
increases or you add a new member to the group, you do not need to
distribute your data or rewrite your applications. Applications can access the
same data through the new member just as easily as through any of the
existing members.
 Chapter 1. Introduction 7

Figure 1-5 shows how the members of a data sharing group are independent
of the applications, allowing non-disruptive growth to the environment.

Figure 1-5 Members of a data sharing group are independent of the applications,
supporting non-disruptive, scalable growth and workload balancing.

Transaction managers, including DDF, work closely with the Workload
Manager (WLM) component of z/OS to ensure that incoming requests are
optimally balanced across the members of a Parallel Sysplex. This is possible
because all DB2 members of the data sharing group have the same
concurrent and direct read-write access to the data.

� Capacity when you need it:

A data sharing configuration can easily handle workload growth. Peaks within
capacity can be handled by workload distribution. In case of sustained
growth, you can add a new data sharing member to meet planned growth
requirements without disruption.

Appl

Transaction Managers

CICS IMS TM

DB2 data sharing group

z/OS Parallel Sysplex

Network

DDFWAS

ApplAppl Appl

DBP1 DBP2

SYSA SYSB
8 Data Sharing in a Nutshell

Figure 1-6 shows a third member added for growth.

Figure 1-6 Capacity flexibility

1.3.3 Configuration flexibility

Data sharing lets you configure your system environment much more flexibly,
making it easier to support the changing requirements for access to DB2 data.
For example:

� You can have more than one data sharing group on the same Parallel
Sysplex. You might, for example, want one group for testing and another
group for production data.

� You can have more than one data sharing group in the same server, and even
within the same LPAR.

� You can manage operational and decision support requirements separately
even while maintaining all the data in a single data sharing group.

� You can optimize resources on one DB2 subsystem for one set of applications
and favor a different set of applications on another DB2 subsystem. During
your regular business day, you can favor query access on one DB2

SYSC

DBP3

Appl

Transaction Managers

CICS IMS TM

DB2 data sharing group

z/OS Parallel Sysplex

Network

DDFWAS

ApplAppl Appl

DBP1 DBP2

SYSA SYSB
 Chapter 1. Introduction 9

subsystem, on-line transactions on a second subsystem, and batch
processing on a third subsystem. Then, during the hours when query and
on-line usage drop, you change buffer pool settings to favor batch on all three
DB2 subsystems. You can do the same at z/OS image level.

� You can combine separate DB2 subsystems into a data sharing group to
allow application access to both sets of data, thereby reducing the costs of
managing the data and providing access to the data separately. One example
where this could be helpful might be in the case of an acquisition. Another
example might be where constraints in the past forced you to implement two
production DB2 subsystems.

1.3.4 Higher transaction rates

Data sharing gives you opportunities to put more work through the system. As
Figure 1-7 illustrates, you can run the same application on more than one
member to achieve transaction rates that are higher than possible on a single
DB2 subsystem. You can also run more than one application on the same
member.

Figure 1-7 Increased transaction capacity

Appl

Transaction Managers

CICS IMS TM

DB2 data sharing group

z/OS Parallel Sysplex

Network

DDFWAS

ApplAppl Appl

DBP1 DBP2

SYSA SYSB
10 Data Sharing in a Nutshell

1.3.5 Application interface unchanged

Another benefit of data sharing is that the application interface is left unchanged.
Your investment in people and skills is protected because existing SQL interfaces
and attachments remain intact when sharing data. You can bind a package or
plan on one member of a data sharing group and run that package or plan on any
other member of the group.

1.4 Roadmap to implementing data sharing

You must complete a number of tasks to implement DB2 data sharing. Some
tasks are done by your DB2 staff; other tasks are done by the z/OS, operations,
or automations staff. In Table 1-1 we list these tasks, refer you to the sections of
this redbook that discuss the tasks, and suggest which staff members might be
participants in performing the tasks. We have placed these tasks in a logical
order, but not all tasks must follow this order strictly. The interested parties will
vary; your organization might have different interested parties for some or all of
these tasks. Some of the tasks are beyond the scope of this book and in that
case, the column titled “See section in this book” has been left blank.

These tasks apply to your production environment. You should adapt this list to
suit your requirements for non-production environments such as system test or
quality assurance. For example, one set of tasks in establishing your test or
quality assurance data sharing group is identifying and creating test data,
defining test cases, and determining success criteria for the tests.

Table 1-1 Tasks to implement DB2 data sharing in your production environment

No. Task name See section in this
book

Interested
parties

A. Planning tasks

1. Establish naming conventions. 4.1, “Naming
conventions” on page 66

DB2

2. Determine DB2 configuration in the Parallel Sysplex. 3.4, “CF configuration
alternatives” on page 56

DB2, z/OS

2.1 Ensure shared disk for DB2 system and user
data sets.

DB2, disk

2.2 Review active and archive log considerations. 4.2, “Logging” on
page 73

DB2

3. Determine sizes of DB2 structures in the coupling
facility (CF).

3.1, “Structure sizing” on
page 40

DB2, z/OS
 Chapter 1. Introduction 11

4. Plan for workload balancing. 5.1, “Objectives of
workload balancing” on
page 90

DB2, z/OS
(WLM),
automation,
network,
operations,
scheduling

4.1 Identify connectors (DDF, CICS®, IMS,
WebSphere®, and so on. Make sure each
connector can take advantage of data sharing
benefits.

Chapter 5, “Dynamic
workload balancing” on
page 89

DB2

4.2 Explore opportunities to make workloads
portable.

2.5.1, “Portability” on
page 36

DB2

4.3 Modify scheduling processes to reflect
processing on more than one z/OS image.

Scheduling,
operations

5. Review application considerations. 2.5, “Application
considerations in data
sharing” on page 35

DB2, DBA,
applications

6. Plan for maintenance. 6.9, “Rolling
maintenance” on
page 119

DB2, z/OS,
operations

7. Modify automation tools to incorporate new DB2
members, new names and new processes.

DB2,
automation

7.5 Update recovery procedures, and train operators in
new procedures.

DB2/z/OS

8. Determine TCP/IP port and resync ports. 4.1.6, “Distributed Data
Facility (DDF) related
parameters” on page 69

DB2,
network

9. Change specific DSNZPARMs. 4.3, “DSNZPARMs” on
page 74 and 4.4,
“Renaming an existing
non-data sharing
member” on page 78

DB2

10. Plan for continuous availability. In addition to those items
listed below, see 2.5.1,
“Portability” on page 36

DB2, DBA,
z/OS,
automation,
network,
operations,
scheduling

No. Task name See section in this
book

Interested
parties
12 Data Sharing in a Nutshell

10.1 Restart-in-place procedures. 6.4, “Automatic restart
manager (ARM)” on
page 112

DB2,
automation

10.2 Cross-system restart procedures. 6.4, “Automatic restart
manager (ARM)” on
page 112

DB2, z/OS,
automation

10.3 Diagnostic procedures. 6.7, “Multi-system DB2
diagnostic dumps” on
page 118

DB2, z/OS,
operations

11. Plan for monitoring the data sharing environment
using current or new tools.

DB2, z/OS

B. Implementation tasks

1. Change WLM policy definitions; include new DB2
member address spaces.

5.2, “Workload Manager”
on page 92

z/OS (WLM)

2. Define DB2 structures in the Coupling Facility
Resource Management (CFRM) policy and start a
new CFRM policy.

3.1, “Structure sizing” on
page 40 and 3.5, “CFRM
policy” on page 60

z/OS (DB2
input)

3. Rename a DB2 subsystem. 4.4, “Renaming an
existing non-data sharing
member” on page 78

DB2

4. Enable data sharing for the first DB2 member. 4.5, “Enabling the data
sharing group” on
page 85

DB2

5. Add an additional data sharing member. 4.6, “Adding the second
member” on page 87

DB2, z/OS,
automations,
network,
operations,
scheduling

No. Task name See section in this
book

Interested
parties
 Chapter 1. Introduction 13

C. Post-implementation tasks

1. Test data sharing function. DB2, DBA

2. Monitor behavior of a data sharing group. DB2, z/OS

3. Merge other DB2 subsystem into a data sharing
group (optional).

DB2, DBA

4. Run two DB2 members from the same data sharing
group on the same z/OS image (optional).

7.7.1, “Multiple DB2
members in one z/OS
image” on page 130

DB2, z/OS

No. Task name See section in this
book

Interested
parties
14 Data Sharing in a Nutshell

Chapter 2. Data sharing architecture

DB2 data sharing is based on the Shared Data architecture, which differs
significantly from other approaches that attempt to address capacity and
availability challenges. The Shared Data architecture is fundamental to DB2’s
ability to meet those challenges and, at the same time, to provide unequaled
scalability. The other benefits of DB2 data sharing — workload balancing, flexible
configurations and systems management — are built upon the ability of the
Shared Data architecture to meet the capacity, availability and scalability goals.

We discuss the following topics:

� Parallel database architecture alternatives
� Data sharing design for scalability
� Data sharing design for continuous availability
� Configuration flexibility and systems management
� Application considerations in data sharing

2

© Copyright IBM Corp. 2006. All rights reserved. 15

2.1 Parallel database architecture alternatives
Three general alternatives can be described as parallel database architectures.
We call these alternatives Shared Nothing (SN), Shared Disks (SDi), and Shared
Data (SDa). They are considered parallel because processes that access the
data may execute in parallel. Figure 2-1 illustrates each of these alternatives.

Figure 2-1 Parallel database architectures

Shared Nothing (SN)
These are some characteristics of the Shared Nothing alternative:

� The database is partitioned.
� No disks are shared among the nodes.
� Distributed commit is necessary.
� Data re-partitioning is necessary as nodes are added.
� The partitioning scheme is susceptible to skewed access patterns.

The SN alternative allows accesses to be spread across nodes, which can
provide a performance benefit for query workloads. To achieve this performance
benefit, an application process has to be aware of the partitioning scheme and
the location of the target data.

Shared Disks (SDi)

Node 1 Node 2 Node n. . .

Coupling Technology

Shared Data (SDa)

Shared Nothing (SN)

Node 1 Node 2 Node n. . .

Node 1 Node 2 Node n. . .
16 Data Sharing in a Nutshell

Availability is on a node basis; the loss of a node means loss of access to the
data controlled by that node. Update processing that affects data in more than
one partition requires a distributed commit. One node should take the role of
coordinator, be informed when all the other nodes have committed, and report
the result to the transaction manager. If nodes must be added to increase
capacity, or if the changes to the amount of data are not uniform across nodes,
then the data must be re-partitioned. Re-partitioning implies no application
access to data, hence an interruption to application availability. The partitioning
scheme cannot take into account multiple variations in access patterns, so
performance can be skewed.

Shared Disks (SDi)
These are some characteristics of the SDi alternative:

� Database partitioning is not necessary, but partitioning can give better
performance.

� Fail-over characteristics of an SDi implementation are strong.

� Dynamic load balancing is achievable.

� Inter-node concurrency and coherency control mechanisms are needed; the
messaging overhead limits scalability.

Each node can access all the disks, so the database does not need to be
partitioned. In case of a node failure, application processes can access data from
another node. The SDi alternative allows for dynamic load balancing if
application processes can be shifted across nodes. Inter-node concurrency
(locking) and coherency (buffering) controls are required to maintain data
integrity. In the SDi alternative, these controls are based on messaging between
the nodes. As nodes are added, this messaging can increase geometrically,
which effectively limits the scalability of an SDi alternative.

Shared Data (SDa)
These are some characteristics of the Shared Data architecture:

� SDa is an adaptation of SDi.

� Coupling facilities are used as hardware assist for efficient concurrency and
coherency control.

� Continuous availability and load balancing capabilities are a design point of
this configuration.

� Flexible growth is possible because additional nodes can be added without
disruption to the applications.

� Messaging overhead is minimized, which yields excellent scalability.
 Chapter 2. Data sharing architecture 17

The SDa architecture supported by the Parallel Sysplex is an adaptation of SDi,
which uses coupling facilities (CFs) to solve the problem posed by messaging for
concurrency and coherency control. High speed access to the CFs provides the
necessary controls while minimizing messaging traffic. SDa is at least as robust
as the SDi alternative for continuous availability and load balancing. Because of
the coupling efficiencies and the ability to add capacity with low granularity, SDa
offers greater flexibility for growth with excellent scalability.

DB2 data sharing exploits the SDa architecture to provide the database
infrastructure for scalable growth, continuous availability, and flexible
configuration.

2.2 Data sharing design for scalability

The two factors critical to preserving data integrity in a data sharing environment
are inter-system concurrency control, or global locking, and inter-system buffer
coherency control, or managing changed data.

Concurrency control is implemented in DB2 through global locking. Global
locking is the process of allowing, within the data sharing group, multiple read
operations or a single write operation to access a row or page of data.

Buffer coherency control, or managing changed data, addresses the situation in
which one DB2 member changes data rows that already reside in the buffers of
other members.

The cost of data sharing is attributable to the extra CPU cost needed to manage
these two factors. Scalability and performance in data sharing depend on
minimizing this cost.

The data sharing design points for scalability and performance include:

� Little or no performance impact if data are not actually shared, that is, if there
is no inter-DB2 read/write interest.

Inter-DB2 read/write interest describes the situation where at least one
member of a data sharing group is reading a table space or index and another
member is writing to the table space or index.

If multiple members are only reading a table space or index, there is no need
for concurrency and coherency controls. It is when at least one member
writes to the table space or index that the controls are required.

� Dynamic recognition of sharing:

DB2, not an application, identifies when inter-DB2 read/write interest exists
and when concurrency or buffer coherency controls are required. Once DB2
18 Data Sharing in a Nutshell

recognizes that inter-DB2 read/write interest exists, it initiates the necessary
locking and buffer management processes. Applications do not have to be
aware that inter-DB2 read/write interest exists.

� Minimal and acceptable CPU overhead if inter-DB2 R/W interest exists:

Establishing a data sharing group requires some overhead to establish global
locking and buffer coherency controls. This overhead is minimized by using
high speed access to structures in the CFs and by communicating primarily
with the CF structures. Message traffic between DB2 members is used only to
resolve contention situations.

� Near-linear scalability when adding the third through n-th nodes:

The primary overhead for managing global locking and changed data occurs
when the second member is added to the data sharing group. There is very
little additional overhead as additional members are added, generally less
than one percent.

DB2 data sharing achieves this outstanding level of scalability based on its use of
the lock structure and group buffer pools as described below.

2.2.1 Global locking and the lock structure

The internal resource lock manager (IRLM) is DB2’s lock manager and assumes
responsibility for global locking in a data sharing environment. Each IRLM in a
data sharing group continues to manage local locks within the DB2 member. In
addition, the IRLMs use the cross-system extended services (XES) component
of z/OS to communicate with the CF and manage lock structure and global
locking.

When IRLM needs to acquire a global lock on a resource, such as a table space
partition or a page of a table, it uses the CF lock structure to acquire the lock.
IRLM applies a hashing algorithm to the resource that needs to be locked. The
result is the hash class for the resource. IRLM then issues a lock request to
acquire the lock for that hash class. The lock structure in the CF determines if
that hash class is available. If so, the lock request can be granted, and only this
interaction takes place. With current technology, this interaction between IRLM
and the CF using XES to communicate is a matter of microseconds (µsec).

When another DB2 member needs a lock on a resource, its IRLM issues a lock
request for the corresponding hash class to the lock structure. As long as the lock
requests can be granted, no messaging between IRLMs is required. Most lock
requests can be granted without contention. Figure 2-2 shows lock requests from
two nodes.
 Chapter 2. Data sharing architecture 19

Figure 2-2 Locking in a data sharing environment

Only if there is a conflict, or lock contention, will one IRLM have to communicate
with other IRLMs to resolve the conflict. In that case, the CF reports the
contention to IRLM. IRLM will then exchange messages with at most one other
IRLM to either resolve the contention or wait for the lock.

L-locks and P-locks
DB2 and IRLM use two kinds of locks in a data sharing environment, logical locks
and physical locks.:

� Logical locks, or L-locks, are locks held by transactions. These are the
traditional locks DB2 has always used. In a data sharing environment, the
IRLMs use L-locks to manage concurrency across the members of the data
sharing group.

� Physical locks, or P-locks, apply only to data sharing. P-locks are part of the
process to manage buffer coherency. For example, P-locks on data sets, such
as table space partitions or index spaces, are used to determine when there
is inter-DB2 read/write interest in the data set. Once there is inter-DB2
read/write interest in a data set, DB2 uses group buffer pools for the data set.

See 2.2.2, “Managing changed data and group buffer pools” on page 21 for
further information.

Locking optimizations
DB2 has the following optimizations, which reduce the necessity of processing
locks beyond the local IRLM whenever possible:

� Explicit hierarchical locking avoids processing certain locks beyond the local
IRLM when no inter-DB2 read/write interest exists in an object.

µsecLock page A
Tx1:

DBP1

Lock page B

(no wait)

Tx2:

DBP2

(no wait)

Coupling Facility (CF)

Lock
Structure
20 Data Sharing in a Nutshell

� If a single member with update interest and multiple members with read-only
interest exist, IRLM propagates fewer locks than when all members have
update interest in the same page set.

� All P-locks that are held beyond the local IRLM are owned by a member, not
by an individual work unit. This reduces lock propagation by requiring that
only the most restrictive lock mode for an object on a given member be
propagated to the coupling facility. A new lock that is equal to, or less
restrictive than, the lock currently being held is not propagated.

� IRLM can release many locks with just one request to the CF. This can occur,
for example, after a transaction commits and has two or more locks that need
to be unlocked. It also can occur at DB2 shutdown or abnormal termination
when the member has two or more locks that need to be unlocked.

These optimizations reduce lock propagation and accesses to the CF, thus
reducing overhead and enhancing the scalability of data sharing. For further
discussion of how IRLM and CF manage global locking, refer to Chapter 6 of the
DB2 for z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417.

2.2.2 Managing changed data and group buffer pools

The challenge of buffer coherency, or managing changed data, lies in the fact
that DB2 buffers data. DB2 attempts to keep data or index pages in the buffers
for potential reuse, reducing I/O and CPU costs. In a data sharing environment it
is likely that two members of a data sharing group have many pages in common
in their local buffer pools. If one member changes one of these pages, the other
member has a back-level page. Buffer coherency consists of ensuring that the
back-level page is brought current, to reflect the change, before the second
member allows applications to access the page.

DB2 allocates cache structures in the CFs to manage buffer coherency. These
structures are called group buffer pools (GBPs). When multiple members of a
data sharing group open the same table space, index space, or partition, and at
least one of them opens it for writing, the data is said to be of inter-DB2
read/write interest to the members. When there is inter-DB2 read/write interest in
a particular table space, index, or partition, it is dependent on the group buffer
pool, or GBP-dependent.

When a transaction changes a page of data, DB2 caches that page in the group
buffer pool. The coupling facility invalidates any images of that page in the buffer
pools associated with the other members. Then, if a request for that same page
is subsequently made by another member, that member looks for the page in the
group buffer pool.
 Chapter 2. Data sharing architecture 21

Group buffer pools consist of directory entries, to track interest in a page, and
data elements, to cache the changed page for high-speed access.

Directory entries
Directory entries track pages of table spaces or index spaces that are
GBP-dependent. When a member reads a page of a GBP-dependent data set
into its local buffer pools, it registers that fact in the GBP by creating or updating
a directory entry. One directory entry can track the registered interest in a page
by all the members in the group. In addition, the directory entry tracks the specific
location of the page in the members’ local buffers and, if the page is written there,
also in the GBP. This location information is used when a page is changed and
the image of that page in the other members’ buffers is invalidated.
See“Cross-invalidation” on page 23 for a description of this process.

Data elements
Data elements cache the changed pages of GBP-dependent data sets. This
makes the pages available for high speed access from a member whose local
image of the page is no longer valid.

DB2 ensures changed pages of a GBP-dependent data set are externalized to
the GBP at commit. (It is also possible the page will be externalized before
commit if local buffer thresholds are hit.) DB2 data sharing uses store-in caching
to the CF, which means that DB2 assumes that a page written to the GBP is
recoverable and the local buffer containing the changed page is stealable. One
implication of store-in caching is that the changed pages occupying the data
elements must eventually be written to disk. This process is called castout and is
described below.

Castout
Periodically, DB2 must write changed pages from the primary group buffer pool
to disk. This process is called castout. Typically the responsibility of castout gets
assigned in turn to every member of the group, with the castout work getting
eventually spread evenly across all members. Each time, the member (called a
castout owner) that is responsible for casting out the changed data uses its own
address space because no direct connection exists from a coupling facility to
disk. The data passes through a private buffer, not through the DB2 buffer pools.

See Figure 2-3 for an example with two members in the data sharing group.
DBP1 and DBP2 will take turns in being assigned castout work.
22 Data Sharing in a Nutshell

Figure 2-3 Castout process

Until castout has written a page to disk, it must continue to occupy its data
element. Once a page has been castout, the data element in which it resides is a
candidate for reuse.

Cross-invalidation
When a changed page is externalized to the GBP, the directory entry indicates
which other members have an image of that page and in what buffer locations
those images are. The coupling facility control code (CFCC) sends a signal to
those members that have an image of the changed page to invalidate that page
in those members’ buffers. This message is processed on the receiving systems
without an interrupt.

When one of those members attempts to access the page, it detects that the
image of the page in its buffer pool is invalid. The member then accesses the
GBP to see if the page is still there. If it is, the page is read from the GBP to the
member’s local buffer pool. If the page is no longer in the GBP, the member reads
it from disk.

DBP1

Local
Buffer
Pool

Castout
Buffer

DBP2

Castout

Shared
Data

Local
Buffer
Pool

Group
Buffer
Pool
 Chapter 2. Data sharing architecture 23

Managing changed data in a GBP: An example
Figure 2-4 illustrates the use of a group buffer pool for managing changed data.
The numbers for each step below correspond to the numbers that appear in the
diagram.

The scenario assumes that transaction Txn1 in DBP1 is already executing and
has read page P1 into the local buffer pool in DBP1. Here is what transpires:

1. Transaction Txn2 begins executing and reads page P1 into the local buffer
pool in DBP2. DBP2 registers P1 in a directory entry in the group buffer pool.
This access occurs in a few µsec. We have lock avoidance.

2. Txn1 on DBP1 updates P1, completes the unit of recovery, and commits.
During commit processing P1 is written to a data element in the GBP and the
CF detects DBP2’s interest in P1 and sends a cross-invalidate message.
DBP2’s buffer containing P1 is now invalid. DBP1 does not have to wait for a
response from the cross-invalidate message.

3. Txn2 attempts to access P1. Because the buffer was marked invalid in step 2,
DBP2 checks to see if P1 is still in the group buffer pool. If it is, DBP2 reads
P1 from the GBP into its local buffer pool. If P1 is no longer in the GBP, DBP2
must read it from disk.

4. Asynchronously to Txn1 and Txn2, P1 is castout to disk through the current
castout owner.

Figure 2-4 Store-in caching in the DB2 group buffer pools

Coupling
Facility

µsec

DBP1 DBP2

Txn1:

Update page P1
Commit

Write P1 and
send XI (2) *
(no wait)

(2)

(1) Txn2:

Refresh P1 on
access(3)

(3)

µsec

BP BP

Store-in caching

µsec
Register P1 (1)

Coupling Facility

Group
Buffer
Pool

(4)
24 Data Sharing in a Nutshell

GBP optimizations
DB2 optimizes GBP access in several ways:

� Dynamic recognition of GBP-dependency means that page registration
occurs only when there is inter-DB2 read/write interest. A data set is
dynamically recognized as being GBP-dependent when the P-locks that IRLM
manages indicate that at least one member is reading and at least one
member is writing to the data set.

� If DBP1 has opened table space ABC for write (insert, update, or delete) and
DBP2 has opened ABC for read, only DBP2 must register the pages of ABC
that it reads into its local buffer pool. If DBP2 later opens ABC for write, then
both DBP1 and DBP2 must register all pages of ABC that they read into their
local buffers.

� If only one member has write interest, it is the only member to externalize
pages to the GBP. In the scenario described in #2, above, only DBP1 writes
changed pages to the GBP until DBP2 also opens ABC for write. Then both
members will write changed pages to the GBP.

� Only those members that have an image of the changed page have pages
marked invalid, and only those members that subsequently attempt to access
an invalidated page need to refresh it.

� Castout occurs asynchronously to other GBP accesses. One benefit is that
GBP accesses are not dependent on the speed of the disk devices.

These optimizations minimize GBP-related overhead and contribute significantly
to the scalability of the data sharing architecture.

DB2 has additional performance options to fit your application requirements. By
default, DB2 caches changed data, but you also have the options of caching all
or none of your data.

You define group buffer pools by using coupling facility resource management
(CFRM) policies. For more information about these policies, see 3.5, “CFRM
policy” on page 60.

2.3 Data sharing design for continuous availability

The design goal for the data sharing architecture is to provide continuous
availability across the planned or unplanned outage of any single hardware or
software element.
 Chapter 2. Data sharing architecture 25

The strategy to achieve this goal includes the capability to:

� Remove causes of planned outages.

� Build on the availability strengths of robust, fault tolerant System z™ and
z/OS components.

� In a failure situation:

– Isolate the failure to the lowest granularity possible.
– Automate recovery.
– Recover fast.

In the data sharing architecture, most single points of failure have been
eliminated: DB2 subsystem or z/OS image, central processing complex (CPC),
I/O path. In a Parallel Sysplex it is also important to eliminate single points of
failure by having two Sysplex Timers (or a Backup Time Server with STP), two
CF LPARs, and at least two CF links between each CF LPAR and each system in
the Parallel Sysplex. The data sharing architecture provides for each of these
resources to support failover to another corresponding resource. See 3.4, “CF
configuration alternatives” on page 56.

Continuous availability for the components of the Parallel Sysplex, including
hardware, software, and CF resources, provides the infrastructure for
continuously available application access to data. The application software also
has a role in achieving continuous availability. Refer to 2.5, “Application
considerations in data sharing” on page 35 for further discussion of that topic.

Planned outages
The data sharing architecture reduces an application’s planned outages by
allowing access to data during planned change activity. Individual components
may have a planned outage and still not require an outage by the application.
That is the availability goal of the architecture.

The process of handling a planned outage is similar for a DB2 member, a z/OS
image, or hardware. Changes to CF resources are slightly different. In these
cases, we recommend that changes be scheduled for periods of low activity.

Figure 2-5 shows how an application can maintain access to data during a
planned change for a DB2 member or a z/OS image. The first step is to direct
any workload away from DBP1 or its z/OS image. Once all the work is running on
other members of the data sharing group, DBP1 is ready for the change activity.
When the change is complete, work is routed back to DBP1. The process is then
repeated for DBP2 and any other members. This process is called rolling
maintenance or rolling IPLs. This means the change affects one member at a
time, the change is rolled through the data sharing group, while applications
continue to execute.
26 Data Sharing in a Nutshell

Rolling maintenance can be applied to software maintenance or to release
upgrades. The same approach can be used for changes in the hardware system
environment.

Figure 2-5 Planned DB2 or z/OS image outage

Planned changes to CF resources can include changes to the hardware system
on which the CF runs, changes to the coupling facility control code (CFCC),
changes to the amount of storage available to the CF, and changes to the CF
links. Some of these changes can be made while the CF executes. Others
require that the CF LPAR be deactivated. Many LIC patches can be made
concurrently. The CF LPAR needs to be recycled for any changes to the CF
driver level and to the total storage allocated to the LPAR.

Where the CF LPAR must be deactivated for the planned change, the structures
on the CF can be “moved” to another CF LPAR. When a Parallel Sysplex is
implemented, part of the capacity plan includes ensuring that there is sufficient
space among the CFs for all the structures in any CF LPAR to be rebuilt to
another CF LPAR. Rebuild is the term used to describe the process of moving a
structure from one CF LPAR to another, and this can be done through a simple
operator command, REALLOCATE.

DBP1 DBP2 DBPn. . . .X
 Chapter 2. Data sharing architecture 27

Prior to deactivating the CF LPAR, the structures on the CF should be rebuilt to
another CF LPAR. In DB2’s case, this may include the lock structure, the shared
communications area (SCA), and one or more group buffer pools. The SCA in the
coupling facility contains information about all members' BSDSs and log data
sets. Each of the DB2 structures should be rebuilt while the DB2 members and
the applications continue to execute. Again, we recommend that these changes
be scheduled for periods of low activity.

When the change is complete for the first CF and it is reactivated, all the
structures can be rebuilt to the first CF, and the second CF can undergo the
change. Finally, after activating the second CF, the structures can be rebuilt onto
the second CF to restore the initial configuration using the POPULATECF
command.

Figure 2-6 illustrates the situation where all the CF structures are allocated in
one CF while the CF undergoes a planned change. Each of the DB2 members
stays active and the applications have access to all the data.

Figure 2-6 Planned CF outage

DBP1 DBP2 DBPn. . . .

Coupling Facilities
X

28 Data Sharing in a Nutshell

Another set of changes to CF resources includes changes to the structures
within the CF. To accommodate growth or enhance performance, it may become
necessary to change the size of a structure or change the CF on which the
structure is allocated. In either of these cases, the DB2 structure can be rebuilt
with the appropriate storage or in the appropriate CF LPAR while DB2 and the
applications continue to execute.

See also 6.9, “Rolling maintenance” on page 119.

Unplanned outages
Unplanned outages have the disadvantage of occurring unexpectedly. But that
does not mean you cannot be prepared for them and avoid an application
outage. The data sharing architecture is designed to allow new work to continue
to be processed and for existing work to be recovered, and any lost resources to
be restored, with minimal human interaction.

Figure 2-7 illustrates an unplanned outage to a DB2 member DBP1 or to the
z/OS image where it executes. Whether DBP1 or z/OS experiences the outage
dictates the recovery options, but each situation has similar impact to
applications.

Figure 2-7 Unplanned outage to DB2 or z/OS image

DBP1 DBP2 DBPn. . . .
 Chapter 2. Data sharing architecture 29

As Figure 2-7 shows, application users continue to have access to data. New
work entering the system will be routed to DBP2 or other members of the data
sharing group. Transactions, tasks, or queries that were executing on DBP1 at
the time of the failure are candidates for recovery.

DBP1 may hold locks on behalf of transactions that were executing at the time of
the failure. If those locks were global locks, that is, if they were on resources that
are actively shared, then the update type locks in the lock structure are changed
to retained locks. This means that no other access is allowed to the resources
protected by those locks until the underlying changes are either committed or
backed out. The key to restoring application access to all resources protected by
retained locks is to restart DBP1.

There are two basic scenarios: one that only affects DB2, the other that affects
the entire LPAR or z/OS image.

� If only DBP1 or its IRLM failed, then restarting DBP1 on the same z/OS image
will release the retained locks. The automatic restart manager (ARM)
component of z/OS can initiate the restart quickest, but other automation
options are available. During restart, DB2 will release retained locks. When
restart is complete, work can be routed to DBP1, and your environment is
returned to normal operation.

� If the z/OS image or the central processing complex (CPC) fails, DBP1 cannot
restart in place. Because it is important to release retained locks quickly,
waiting for an IPL of the z/OS image is not appropriate. Instead, DBP1 should
be restarted on another LPAR that has connectivity to the coupling facilities.
This is called a cross-system restart. ARM restarting DB2 with the DB2
restart light option is the fastest method, but other options are available.
Restart light allows DB2 to release locks while taking minimal resources on
the LPAR where it is started. When restart light completes, DB2 will shut
down automatically. We discuss this further in 6.4, “Automatic restart
manager (ARM)” on page 112, and 6.5, “Restart Light” on page 112.
30 Data Sharing in a Nutshell

Figure 2-8 illustrates an unplanned outage to a coupling facility LPAR. In a high
availability configuration, the loss of a CF LPAR will not cause a DB2 or
application outage. There may be brief spikes in response time or elapsed time
during the CF recovery process, but the DB2 members, and the applications
accessing DB2 data, will continue to execute.

Figure 2-8 Unplanned CF outage

The DB2 and IRLM members cooperate to rebuild the structures to the other CF.
See 6.2, “Component failure” on page 109 for more information on DB2
operations in failure situations

2.4 Configuration flexibility and systems management

Building on the scalability and availability features discussed above, the data
sharing architecture provides significant configuration and systems management
benefits. You can add members to your data sharing group, and systems to your
Parallel Sysplex, in a wide variety of configurations. If you expect gradual
business growth, you can add small increments of capacity and be confident in
the ability of the new configuration to scale. Or you can add larger increments, for
example, after a merger or acquisition.

DBP1 DBP2 DBPn. . . .

Coupling Facilities
 Chapter 2. Data sharing architecture 31

You can move DB2 members and transaction managers around within the
images in your Parallel Sysplex as long as your z/OS parameter libraries are
shared. Figure 2-9 illustrates that the resources of the Parallel Sysplex can be
modified without affecting the data sharing, application, transaction manager, or
network layers.

Figure 2-9 Flexible configurations for growth

Similarly, there is flexibility in the DB2 data sharing group layer, as illustrated in
Figure 2-10. DB2 members can be started on any z/OS image that has access to
the coupling facility and can be moved to take advantage of changes in the
Parallel Sysplex infrastructure. Changes in the data sharing group layer do not
necessitate changes in the application, transaction manager or network layers.
Of course, if the DB2 changes offer performance or throughput advantages, it will
be beneficial to make adjustments in the application, transaction manager, and
network layers to exploit these advantages.

Appl

DB2 data sharing group

z/OS Parallel Sysplex

Network

ApplAppl Appl

Transaction Managers

CICS IMS TM DDFWAS

SYSA SYSB
32 Data Sharing in a Nutshell

Workload balancing techniques allow incremental changes in the Parallel
Sysplex or data sharing layers to be exploited by the other layers to optimize the
resources in your environment (Figure 2-10).

Figure 2-10 DB2 flexibility

Among the systems management advantages of data sharing is the ability to
support operational and informational — or decision support — data and
applications within the same data sharing group.

Often operational and decision support systems evolved separately, either due to
capacity constraints or to concerns with managing the data to different service
levels and with different access and security characteristics.

Appl

DB2 data sharing group

z/OS Parallel Sysplex

Network

ApplAppl Appl

Transaction Managers

CICS IMS TM DDFWAS

DBP1 DBP2
 Chapter 2. Data sharing architecture 33

See Figure 2-11 for a diagram of data sharing implemented in this environment.

Figure 2-11 Separate operational and decision support groups

Data sharing allows you the option to bring the decision support data and
applications back into the operational sphere. This allows greater flexibility for
managing capacity within your environment, and enables the occasional
requirements to join operational and decision support rows to be supported
within a single production environment. You no longer have to maintain separate
systems and rely on distributed database access when combining operational
and decision support data. See Figure 2-12.

Figure 2-12 Combined operational and decision support data in one group

Transform

Decision Support
Data Sharing Group

Operational
Data Sharing Group

Templates

User Data User Data

DB2 Catalog
& DirectoryDB2 Catalog

& Directory

Decision Support
System

Operational
System

Transform

Operational Data

Templates

Heavy
Access

Light
Access Heavy

Access

Light
Access

Decision Support Data

User Data

User Data
34 Data Sharing in a Nutshell

For further discussion of configuration flexibility and systems management, see
Chapter 1 of the DB2 for z/OS Version 8 Data Sharing: Planning and
Administration, SC18-7417.

2.5 Application considerations in data sharing

One of the advantages of data sharing is that applications do not have to be
aware that the DB2 environment has become a data sharing environment. In
general, applications do not need to know upon which member they are
executing, nor how many members are in the group, nor which other applications
are currently executing. In addition, the SQL interface does not change, so most
applications will execute in a data sharing environment without change.

Figure 2-13 illustrates that the application layer does not have to change to
reflect changes in the data sharing group layer.

Figure 2-13 Applications run unchanged in data sharing

Appl

DB2 data sharing group

z/OS Parallel Sysplex

Network

ApplAppl Appl

Transaction Managers

CICS IMS TM DDFWAS
 Chapter 2. Data sharing architecture 35

However, there are some facets of an application's behavior that may be
candidates for change to take the greater advantage of data sharing's
capabilities. These facets include portability, commit frequency and concurrency.
Refer to Parallel Sysplex Application Considerations, SG24-6523, for a more
complete discussion of these topics.

2.5.1 Portability

The continuous availability and dynamic workload balancing capabilities of data
sharing will not provide much business benefit if application processes are not
portable across members of a data sharing group.

Application portability in the context of data sharing means the ability of an
application process (transaction, task, or query) to execute on more than one
member of a data sharing group. If an application process is restricted to
executing on a specific DB2 member, then that process is limited by the
availability of that member and constrained by the capacity of that member.

To take advantage of the availability and workload balancing benefits that data
sharing provides, an application should be able to execute on at least two
members of a data sharing group. Thus, if one member is being migrated to a
new release, the application process should be capable of running on the
member of the group that is still active. If one member should suffer an
unplanned outage, new occurrences of that application could be routed to the
active member.

For optimal workload balancing, applications should be able to run on multiple
data sharing members concurrently. This cloning of applications provides the
greatest flexibility to handle workload spikes or changes in workload
characteristics.

2.5.2 Commit and lock avoidance

Applications in a data sharing environment that meet best practices standards:

� Commit frequently
� Adjust their commit frequency based on external controls
� Include checkpoint/restart or retry logic
� Capture error messages
� Access common resources in a consistent pattern so as to avoid deadlocks
36 Data Sharing in a Nutshell

Most of these standards apply equally to non-data sharing environments.
Commit frequency has additional implications in a data sharing environment.
Long running update, insert, and delete processes lock resources that other
processes may need to access. Also, inadequate commit frequency for long
duration application processes — for example, batch jobs — may have the
greatest impact on data sharing performance by reducing lock avoidance. Refer
to 7.6, “The problem of runaway threads” on page 128.

Lock avoidance is the ability of DB2 to return rows to the application without
holding a lock on the data row or page. Avoiding locks locally is good for
performance; avoiding global locks can have a significant performance benefit.
Refer to 7.5, “Lock avoidance: CLSN versus GCLSN” on page 128.

2.5.3 Concurrency

Concurrency of application processes means being able to execute more than
one instance of the application at the same time. This is important in a data
sharing environment because one process instance can execute on member
DBP1, and another instance of the same process can execute on DBP2.
Distributing these processes takes advantage of the scalability and workload
balancing benefits of data sharing to increase the throughput of the entire
Parallel Sysplex.

Applications ideally would include the possibility of cross-system execution in the
design phase. For transaction or query workloads, cross-system concurrency is
not very different from same-system concurrency: issuing frequent commits and
accessing common resources in a consistent order. For batch type workloads,
there are additional options and benefits, such as these:

� Reducing the overall batch window or the critical path of the batch job stream:

If your batch process runs in a single DB2 environment today, you may be
able to dispatch some batch jobs to execute against the second member of
your data sharing group. This will take advantage of the processor capacity of
the second member. Jobs that execute in parallel in a single DB2 environment
are natural candidates to dispatch on another DB2.

� Reducing the elapsed time of a specific batch process:

Some monolithic batch processes can be split into multiple jobs and executed
against two or more DB2 members. For example, a batch job that updates a
partitioned table can be split into multiple jobs, each job updating several
partitions. These jobs could then execute on different DB2 members to
reduce the overall elapsed time of the process. In this example, one
consideration is that the input file may have to be sorted and split into multiple
input files. Another consideration is that non-partitioned indexes on the table
may experience global locking or buffer contention.
 Chapter 2. Data sharing architecture 37

38 Data Sharing in a Nutshell

Chapter 3. The coupling facility

In this chapter we describe the basic data sharing implementation issues that
concern the coupling facility. While the z/OS systems teams usually control most
aspects of the CF, you (the DB2 team) must provide them with sizing information
for the structures that DB2 uses.

All the information required by the z/OS or Parallel Sysplex team is given in this
chapter.

We discuss the following topics:

� Structure sizing
� Auto Alter
� Duplexing
� CF configuration alternatives
� CFRM policy
� Best practices for the coupling facility

3

© Copyright IBM Corp. 2006. All rights reserved. 39

3.1 Structure sizing

DB2 structures are allocated to the data sharing group through definitions in the
Coupling Facility Resource Management (CFRM) policy. Each parallel sysplex
has one active CFRM policy. As we go through this exercise, we examine some
examples of the STRUCTURE statement that your z/OS systems team will use in
the definition.

The sizing strategy we employ is: “avoid shooting ourselves in the foot.” All joking
aside, this phrase means that we would rather overcommit CF storage than to
undercommit it when going into data sharing. After you have implemented data
sharing, you can then monitor and tune based on your actual experience. We do
not size for the minimum possible (even if we knew what this was). Rather, our
structure sizes give you room to grow without a resizing effort as you gain
experience and as your data sharing workload increases,

You can arrive at the sizes of the three DB2 structure types using the DB2 for
z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417 and
other IBM z/OS manuals. The easiest way is through the use of a tool called
CFSIZER. You can use it at this Web site:

http://www.ibm.com/servers/eserver/zseries/cfsizer/

Click DB2 in the left hand column to get to the sizing information for data sharing.

First we will size the group buffer pools (GPBs) to illustrate the use of CFSizer.

3.1.1 Group buffer pools

We are assuming that you are sizing each GBP for a 2-way data sharing group.
We also assume that you want both members to have the same local buffer pool
(BP) sizes. From the buffer pool perspective, you can then shift workload from
one member to another for planned or unplanned outages.
40 Data Sharing in a Nutshell

http://www.ibm.com/servers/eserver/zseries/cfsizer/

We are sizing the GBPs for production, assuming the use of the buffer pool
configuration shown in Table 3-1 (test configurations do not have to be so exact).

Table 3-1 DB2 local buffer pools for group buffer pool sizing example

When you click the following URL for CFSizer, you see the window in Figure 3-1:

http://www.ibm.com/servers/eserver/zseries/cfsizer/

Figure 3-1 Partial CFSizer initial page

Buffer Pool No. of Pages Page Size Notes

BP0 5,000 4 KB DB2 Catalog and
Directory

BP1 50,000 4 KB Work data base

BP2 100,000 4 KB

BP3 200,000 4 KB

BP32K 10,000 32 KB Required

BP16K0 5,000 16 KB Required

BP8K0 5,000 8 KB Required

And so on...
 Chapter 3. The coupling facility 41

http://www.ibm.com/servers/eserver/zseries/cfsizer/

Click DB2 on the left hand panel and you see the window shown in Figure 3-2.

Figure 3-2 Partial CFSizer screen for DB2

You can size three GBPs at a time. We shall now size GBP0, GBP2, GBP3.
Remember that BP1, our work file data base buffer pool, is not shared, so it
should not have a group buffer pool. Because we are sizing for a 2-way data
sharing group, we multiply by 2 the buffer pool sizes shown in Table 3-1 on
page 41.

Here is the procedure to follow:

1. Enter the following values in the Number of Buffers box:

– 10000 under Group buffer pool 1 (check its box)
– 200000 under Group buffer pool 2 (check its box)
– 400000 under Group buffer pool 3 (check its box)

2. Leave the U in each GBP cache all/changed box alone.

Refer to the panel shown in Figure 3-3.
42 Data Sharing in a Nutshell

Figure 3-3 GBP information entered in CFSizer

3. Click submit (on the bottom of the screen) on Figure 3-3.

The results are shown in Figure 3-4.

Figure 3-4 CFSizer GBP allocations for three GPBs

These results are shown in K bytes. Notice that CFSizer does not show even
numbers for INITSIZE, nor does it attempt to guess at SIZE. We come in at this
point and do two things:

1. We first round each number up to an even number (easier for us humans to
remember)
– GBP0 INITSIZE is 16,000
– GBP2 INITSIZE is 300,000
– GBP3 INITSIZE is 600,000
 Chapter 3. The coupling facility 43

2. We then double that value for SIZE, to give us room for growth. The reason for
that is explained in 3.2, “Auto Alter” on page 47.
– GBP0 SIZE is 32,000
– GBP2 SIZE is 600,000
– GBP3 SIZE is 1,200,000

At the top of the Figure 3-4 are the words: CFSizer structure size results
(CF Level 14). The results shown were obtained by having CFSizer connect
to an actual coupling facility to arrive at the structure size (not an estimate).
The CF level referenced is the current level of the Coupling Facility Control
Code (CFCC), which is microcode that allows a System z9 engine to be a
coupling facility. Do not worry if your z/OS team tells you that the CF is not at
that level. It will be eventually, and you want to be prepared for it.

You can ignore the rest of the CFSizer window, which shows sample JCL that
can be used by z/OS staff to implement the structures you have just sized.

3. Repeat the process using the remainder of the buffer pools in Table 3-1 on
page 41. The input is shown in Figure 3-5.

Figure 3-5 CFSizer input for the buffer pools that are not 4K page size

4. Click submit and you see the window shown in Figure 3-6.

Important: If there is not enough storage in the coupling facility to support
these allocations, you can reduce the SIZE somewhat. Enough storage in
the CF means that there is at least 10% free storage remaining if the SIZE
values for all structures were reached. Your z/OS systems team can tell
you if that is the case.
44 Data Sharing in a Nutshell

Figure 3-6 CFSizer results for buffer pools that are not 4 KB page size

Observe that the INITSIZE developed appears to be much larger for 10,000
pages for the 8 KB and 16 KB page GBPs that for the 4 KB page GBP of
Figure 3-4 on page 43. The larger page size means that more space is
allocated for the structure.

5. As we did with the previous GBPs, we round to even numbers for INITSIZE
and double them for SIZE:

– GBP32K is INITSIZE of 235000 and SIZE of 470000
– GBP16K0 is INITSIZE of 60000 and SIZE of 120000
– GBP8K0 is INITSIZE of 35000 and SIZE of 70000

While we have followed the rule of thumb of doubling INITSIZE for the SIZE
values, you can use less for SIZE if these GBPs, which are required by DB2,
are not used significantly by your DB2 subsystem.

6. We have accomplished the task of sizing the GBPs and you can now turn
over the numbers you have developed to the z/OS Parallel Sysplex team for
inclusion in the Coupling Facility Resource Management (CFRM) Policy. This
team will actually allocate the structures. We show you an example of the
statements they use in 3.5, “CFRM policy” on page 60. So far our
STRUCTURE statements look like this:

STRUCTURE NAME=groupname_GBP0,INITSIZE=16000,SIZE=32000
STRUCTURE NAME=groupname_GBP2,INITSIZE=300000,SIZE=600000
STRUCTURE NAME=groupname_GBP3,INITSIZE=600000,SIZE=12000000
STRUCTURE NAME=groupname_GBP32K,INITSIZE=235000,SIZE=470000
STRUCTURE NAME=groupname_GBP16K0,INITSIZE=60000,SIZE=120000
STRUCTURE NAME=groupname_GBP8K0,INITSIZE=35000,SIZE=70000
 Chapter 3. The coupling facility 45

Note that the size in a CFRM policy is in 1 KB blocks, whereas the size for BPs is
in page size blocks.

3.1.2 Sizing the lock structure

The DB2 lock structure (defined as group name_LOCK1) consists of two parts:

� The lock table, which is composed of lock table entries (LTEs), where global
locks reside after going through an internal hashing algorithm

� The modify lock list, also known as record list entries (RLEs), where update
type locks are kept

The size of the lock table is always an even power of two bytes wide.

The sizing of the lock structure could be accomplished with CFSizer, but there is
an easier way, based on our experience with many DB2 users over the years.
The size of the lock structure is small relative to the size of the other structures.

For 2-way data sharing, a safe value for INITSIZE is 64000. An exception to that
recommendation exists for SAP and other ERP users. A common characteristic
of these applications is heavy use of row level locking and very long commit
scopes. You should follow the recommendations of the vendor for sizing in data
sharing.

Our lock table is 32000K (half of 64000), and because it is divided by the 2-byte
width, we have 16 million lock table entries (LTE).

If we specify a SIZE for growth, as we did for the GBPs, it only affects the half of
the structure used for RLEs. The lock table can never be changed without
rebuilding the structure. The RLEs can be increased through operator
commands, up to the value of SIZE. This can come in handy for the rare instance
that runaway jobs hold many locks and do not commit. Therefore you might want
to increase the SIZE beyond 64000.

We show our lock structure statement information after adding a little extra for the
RLE part of the table.

STRUCTURE NAME=groupname_LOCK1,INITSIZE=64000,SIZE=76000

When the first IRLM starts in data sharing, it divides the INITSIZE by 2 to arrive
at the lock table size. It then rounds either down or up to the nearest power of 2,
depending on which is closer. It requests the structure size from XES. The
remainder of INITSIZE becomes the RLE or modify lock list part of the structure.
46 Data Sharing in a Nutshell

There is another way to tell IRLM exactly how many LTEs you want, and that is
through the LTE keyword on the IRLM startup procedure. In addition to the
STRUCTURE statement, on each of your two IRLM startup procedures, you can
specify LTE=16 (million lock table entries). That specification tells IRLM to
allocate that number of LTEs, rather than relying on the division process. Refer to
the DB2 for z/OS Version 8 Data Sharing: Planning and Administration,
SC18-7417, “Lock Structure Sizing” or DB2 UDB for z/OS Version 8 Installation
Guide, GC18-7418 for more information.

Specification of LTE= gives you more control. It is particularly beneficial if, over
time, your lock structure grows, but your RLEs do not. Continually doubling the
lock structure size only for the purposes of increasing the LTEs wastes CF
storage. (You normally would take this action if the false contention observed by
the RMF™ coupling facility activity report shows a value greater than 1% of the
total locks). Specification of LTE= allows a smaller lock structure size in this case.

The LTE specification takes precedence over STRUCTURE unless there is
insufficient INITSIZE that it cannot be allocated and then should fall back to a
50:50 split.

3.1.3 Sizing the SCA structure

We prefer to size the SCA structure at 32 000K or 64 000K, to be generous. It
contains exception status information, such as read only (RO) or LPL status for
an object. Compared to the other DB2 structures, the SCA is infrequently
accessed. It takes little storage in the CF. Here is our STRUCTURE statement:

STRUCTURE NAME=groupname_SCA,INITSIZE=64000,SIZE=64000

3.2 Auto Alter

The purpose of the GBP sizing we accomplished was to avoid two problems:

1. Cross Invalidation (XI) due to directory reclaim
2. Writes failed due to lack of storage

A third objective is to determine how many directory entries are needed for a
given GBP. When DB2 is started for the first time, its defaulted ratio is 5:1, that is,
five directory entries to every one data page. This value can be changed on a
GBP basis by the user, but it is virtually impossible to “guess” at the ratio.

Figure 3-7 depicts two DB2s with BP1 and its corresponding GBP1. On the left is
DB2A with local buffer pool BP1. It holds pages 1 and 2 from some table. On the
right is DB2B with local BP1. It holds pages 3 and 4 of the same table. The
GBP1, in the center of the figure, contains page 5 for the same table.
 Chapter 3. The coupling facility 47

Figure 3-7 also has five very small blocks, named p1-p5. These represent
directory entries for GBP1. There is an entry for every page. Observe that every
page is different and that page 5 does not reside in either member’s BP1. This is
possible because when a DB2 member writes its page to the corresponding
GBP, from the view of that DB2, the page is as good as on disk, and DB2 can use
its local buffer to store any other page. Naturally, the page must be externalized
to disk at some time through the castout process.

Figure 3-7 BP and GBP illustration

This represents the worst case situation, where there are no pages in the entire
data sharing group that are the same. It is a conservative objective that we try to
achieve.

The key to avoiding GBP directory entry reclaims is to have a directory entry for
every different page that could be cached in a local buffer pool or in the
associated group buffer pool. Generally speaking, this means having a directory
entry for every “slot” (local buffer pool buffer or GBP data entry) into which a page
can be read.

Cross invalidations due to directory reclaims
Suppose that you have issued the command:

-DB2A DISPLAY GROUPBUFFERPOOL(GBP0) GDETAIL(*)

Key to success:
A directory entry for every local buffer and

GBP data entry (a pointer to every cached page)

DB2A DB2B
BP1 BP1

GBP1
page 1
page 2

page 3
page 4

page 5

p1|p2|p3|p4|p5

Data
entriesDirectory

entries
48 Data Sharing in a Nutshell

And DB2A reports:

....
DSNB788I -DB2A CROSS INVALIDATIONS

DUE TO DIRECTORY RECLAIMS = 4489
DUE TO WRITES = 3624
EXPLICIT = 0

.....

Why are cross invalidations due to directory reclaims bad?

If a page is read from disk and the table is being shared (called GBP-dependent),
it must be registered in the GBP. If there are so few entries that before the page is
referenced, its entry is stolen for another page in the data sharing group, then the
following processing occurs:

1. The page is referenced by DB2, but DB2 determines that the page is invalid.

2. DB2 then attempts to read the page from the GBP, but it is not there.

3. DB2 synchronously reads the page from disk and registers it (again) in the
GBP

The overhead is two extra accesses to the CF structure and, what is worse, one
synchronous I/O to disk. This activity is sometimes referred to as thrashing and
is a sign of too few directory entries and likely a too small GBP.

Writes failed due to lack of storage
From an availability standpoint, there is another serious problem that you should
avoid.

The DB2 -DISPLAY GBPOOL MDETAIL command reports some failed writes, as
shown in the following coding example:

DSNB777I - ASYNCHRONOUS WRITES
CHANGED PAGES = x
CLEAN PAGES = y

FAILED WRITES DUE TO LACK OF STORAGE = z

This means that there were not enough pages available in the GBP to accept a
write from the local buffer pool. The write is attempted a few times while DB2
goes through the castout process in an attempt to free more pages. However,
after a few unsuccessful attempts, DB2 gives up and inserts an entry for the page
in the logical page list (LPL) where it is unavailable for any access until the LPL
condition is removed. DB2 can automatically initiate the LPL recovery or the
pages can be removed from the LPL manually by issuing the -STA DATABASE
command.
 Chapter 3. The coupling facility 49

3.2.1 Implementing Auto Alter

We can avoid both situations and also ensure that there is a proper directory to
data ratio for each GBP by use of a z/OS capability called Auto Alter. This
capability is initiated by the z/OS structure full monitoring that occurs regularly for
each structure. Structure full monitoring adds support for the monitoring of
objects within a coupling facility structure. This type of monitoring determines the
level of usage for objects within a coupling facility, and issues a warning message
if a structure full condition is imminent. Doing this allows tuning actions to avoid a
structure full condition. Structure full monitoring occurs every few seconds.

Auto Alter has algorithms that can request the CF to dynamically increase or
decrease the number of entries and/or data page elements to avoid structure full
conditions. It can increase or decrease the size of the structure if necessary.

Auto Alter applies to all CF structures. For the lock structure, it can only
dynamically increase the RLE portion of the structure. It can increase the size of
the SCA. Its main value in DB2, however, is for the GBPs. Guessing at a proper
directory to data ratio is almost impossible. A GBP usually needs more than a 5:1
ratio. Static values might or might not be accurate and, over time, they could
change as the workload changes. Auto Alter can pinpoint precisely the ratio
needed at any given time and change the ratios dynamically. By comparison, if
the ratio is changed by operator command, the structure must be manually
rebuilt, which causes a slight disruption.

When either the directory entries or data pages exceed the FULLTHRESHOLD,
XES will increase the size of the structure and will increase the component in
short supply while decreasing the other one. For DB2 GBPs, the shortages
usually occur for the data elements, not directory entries.

Note that if there is general storage stress on the CF (less than 10% free
storage), XES can decrease those structures with ALLOWAUTOALTER(YES).
XES will never decrease them below MINSIZE (defaulted to 75% of INITSIZE).

Even though XES is directing the CF to make the changes, the DB2 -DISPLAY
GBPOOL command reflects the current directory to data ratios. The total numbers
of directory entries and data elements are found in the CF usage summary
section of the RMF CF activity report.

For more information, you can refer to the z/OS manual, Setting up a Sysplex,
SA22-7625, section titled “Allowing a Structure to Be Altered Automatically.”

Note: Auto Alter’s design point is for gradual growth, not to handle spikes in
the workload.
50 Data Sharing in a Nutshell

Auto Alter capabilities
These are the main Auto Alter capabilities:

� Auto Alter supports autonomic tuning, because you set the sizes and Auto
Alter does the rest.

� Auto Alter alters ratios in the CF without rebuilding the structure (versus the
DB2 -ALTER GBPOOL command that requires a rebuild).

� Auto Alter builds a better directory to data ratio than manual tuning (up to
40:1). Reclaim avoidance adjusts dynamically to changes with workload.

� Auto Alter can avoid the error: Writes failed due to lack of storage.

� Auto Alter allows DBAs to change local BP sizes or add a member without
needing a CFRM policy change. It adjusts to gradual growth in the workload.

The way we have sized our GBPs is for proactive tuning, where there is enough
storage in each structure to allow for growth, either through increases in local
BPs or by adding another DB2 member. The goal is to allow GBP tuning to be
ignored for a certain amount of time, perhaps six months to a year. This
approach is safe when there is sufficient storage available in the CFs.

Once we have sized our structures, it is easy to start using Auto Alter. We simply
enter the parameter ALLOWAUTOALT(YES) with each STRUCTURE statement
for which we want to allow structure alteration. Example 3-1 shows the GBP0
definition.

Example 3-1 GBP0 definition

STRUCTURE NAME=groupname_GBP0
INITSIZE=16000
SIZE=32000
ALLOWAUTOALT(YES)
FULLTHRESHOLD=80
MINSIZE=16000
PREFLIST=(CF2,CF1)
DUPLEX(ENABLED)
REBUILDPERCENT(1)

Important: Your z/OS systems teams must allow enough white space in each
CF to allocate all of the structures in both CFs. In the rare event that a CF fails,
for whatever reason, the structures should rebuild quickly in the remaining CF.
This is specified in the STRUCTURE statement via the REBUILDPERCENT
value of 1, and the PREF keyword, where at least one other CF is referenced.
 Chapter 3. The coupling facility 51

We do not want the GBP to fall below the INITSIZE we have specified, so we
code MINSIZE with the same value as INITSIZE. We also set the
FULLTHRESHOLD to 80% (also the default).

Monitoring the GBPs
We wish to monitor for the two values “Cross Invalidations due to directory
reclaims” and “Writes failed due to lack of storage”. The easiest way to do this is
through the DB2 command:

DISPLAY GBPOOL(*) GDETAIL(*) TYPE(GCONN)

This command can be issued from any one member that has connectivity to all
the GBPs. TYPE(GCONN) lists only those GBPs that are allocated, reducing the
output greatly from a list of all those possible, most of which are unallocated.
GDETAIL(*) provides the statistics from the time the GBPs have been allocated,
which could be days, weeks, or months. We expect to see zeros for each of the
two thresholds.

If you issue the command with GDETAIL parameter without the asterisk, then you
get the statistics from the last time you entered the command on the same
member. You can use this form of the command if you have your automation
issue this periodically (every shift, every day) to determine the incremental
changes.

As the GBP size is increased by Auto Alter, your z/OS systems staff should be
aware of the increase and change the INITSIZE STRUCTURE statements in the
CFRM policy. Otherwise, when a new policy is activated, the current sizes revert
to INITSIZE and presumably would be increased quickly by Auto Alter.

GBP thresholds
The following DB2 V8 defaults are recommended as GBP best practices for the
current processor generation:

� GBP checkpoint interval: 4 minutes - Use an interval of 4 minutes.

� GBPOOLT: 10-30% - Use the larger number for GBPs < 500,000-1,000,000K.

� CLASST: 2-5% Use the larger number for GBPs < 500,000-1,000,000K.

Do not use 1% unless your -DIS GBPOOL command output shows at least
12,800 pages, not INITSIZE. DB2 tries to cast out 128 pages at a time.

Note: The current directory to data ratio is kept in the BSDS and does not
revert to the 5:1 ratio.
52 Data Sharing in a Nutshell

The idea behind these recommendations is to trickle castout at a reasonable
cost, so the other thresholds trigger castout instead of the GBP checkpoint. For
large GBPs, the checkpoint would castout many pages at once.

If you knew exactly which type of data is in each GBP (such as frequently
re-referenced, never re-referenced) you can choose better thresholds than those
we describe. Our experience is that most users do not know or the content is
mixed (BP2 for indexes) or organized functionally (BP3 for partitioned table
spaces, BP4 for Application A), so the general case will be best.

In order to minimize the occurrence of GBP checkpoints at the same time, you
could use prime numbers as time intervals, such as 3, 5, 7 minutes, depending
on size and activity.

3.3 Duplexing

Structure duplexing was implemented so there is a second copy of the lock and
SCA structures available for immediate access by all members of the data
sharing group. It is strictly an availability option.

There are two forms from the view of z/OS XES component:

� User-managed (DB2) duplexing:

User-managed duplexing is implemented only by DB2. From the duplexing
view, DB2 is the “user” and it is able to optimize duplexing to minimize
overhead, while providing for structure integrity.

� System-managed duplexing:

System-managed duplexing is implemented by XES and is applicable to other
(non-DB2) structures in the coupling facilities. System-managed duplexing is
not used for the DB2 GBPs, but it applies to lock and SCA structures.

The two copies of the structure are referred to by different names in publications.
DB2 and RMF reference them as primary and secondary, while z/OS
publications and displays call them old and new respectively.

Note: Do not use 0% (in case you are matching your VDWQT for local buffer
pool thresholds). While the 0% value is designed to cast out 40 pages, it will
choose as a castout threshold either 40 pages or 1% of the number of pages
in the GBP, whichever value is smaller. If your -DIS GBPOOL command output
shows that you have 450 actual pages, you would trigger castout at 5 pages,
which would be far too often.
 Chapter 3. The coupling facility 53

3.3.1 Group buffer pools (GBP) or user-managed pools

Group buffer pool duplexing was introduced in DB2 V5, in the late 1990s. It was
important because a total CF failure involved lengthy recovery and there were no
other alternatives at the time.

WIthout duplexing, there are two conditions that can occur if there is a disruption
to the CF or its connections:

� Condition 1: If there is connectivity lost between a CF and one of the
members of the data sharing group, but there is at least one other member
that can read the GBP, the condition is detected automatically by a DB2 with
connectivity. If the STRUCTURE REBUILDPERCENT parameter is coded
(we recommend 1%) and it is less than the SFM weight, then a DB2 with
connectivity rebuilds the structure in the other CF named in the preference list
(STRUCTURE PREF keyword). This operation occurs quickly, normally within
a couple of minutes, and with minimal disruption. Situations causing this
condition occur when there is link failure or deactivation. This is one reason
why we strongly recommend two CF links per image to each CF.

� Condition 2: The situation is different if the CF is completely inaccessible to
any of the members. No member can read the structure and initiate the
rebuild. If a CF fails, all data sets that have pages in any GBP will be placed in
group buffer pool recovery pending (GRECP) and are unavailable until they
are recovered. While DB2 will automatically recover them (if this situation
does not occur during DB2 restart), it can take from seconds to minutes (up to
an hour), depending on how many data sets are set to GRECP. The DB2 logs
since the last GBP checkpoint (should be less than 4 minutes of log) are read
and updates are applied from them.

If GBPs are duplexed and a failure occurs, fallback to simplex occurs within
seconds, non-disruptively. There will be no rebuild activity if a link failure alone
occurs. There should be no GRECP or LPL activity that occurs unless both CFs
cannot be accessed.

While there are two copies of the GBP, DB2 achieves efficiency by limiting activity
to the secondary GBP to the writing of changed pages, which is performed
asynchronously. The activities that DB2 performs only for the primary GBP are:
page registration, reads into local buffer pools, and castouts. For this reason, the
overhead of writing to the secondary GBP might be only 10-50% the cost of the
primary. You might see the higher number when there is heavy batch updating
occurring. The lower one is for an OLTP workload. For most customers, 90% of
the accesses to the CF are for page registration (an activity that does not occur
for the secondary GBP), because many more pages are read than are updated.
54 Data Sharing in a Nutshell

3.3.2 System-managed duplexing

System-managed duplexing was introduced by OS/390 V2R8 and implemented
by DB2 for the SCA and lock structures in DB2 V7 in 2001.

System-managed duplexing provides a second copy of the structure that is an
exact copy of the primary structure. When a CF fails, fallback occurs to simplex
within seconds, avoiding an outage.

The following requirements, which are external to the normal concerns of the
DB2 staff, are necessary for duplexing:

� Provide CF to CF links that allow communication and synchronization to
occur between the CFs involved.

� Ensure that there is sufficient host capacity (in the z/OS processors) for
duplexing overhead.

� If your CF CPU utilization as reported by RMF CF activity report is 25% peak,
we recommend adding a second engine. Refer to 7.4, “How many CF engines
are necessary?” on page 126.

Important: The additional cost quoted for writing the secondary GBP is
10-50% of the cost of the initial writes to the GBPs. For example, if the total
system effect of GBP CF activity is, for example, 5%, then the added cost for
duplexing the GBPs is computed as follows:

� For light updating OLTP workloads:

– Multiply 10% times the 5%, yielding .5% additional CPU for duplexing

� For batch updaters:

– Multiply 50% times the 5%, yielding 2.5% additional CPU for duplexing

Confusion sometimes occurs because the cost of duplexing the GBPs is
significantly less than the cost of system-managed duplexing a structure like
the lock structure.

Best practice: It is a strong and best practice recommendation that all GBPs
be duplexed.

If a failure and lengthy recovery occurs without duplexing, a post mortem
review where the situation could have been prevented is hard to explain.
 Chapter 3. The coupling facility 55

Roughly speaking, a duplexed lock can easily take 3 times the cost of a
simplexed DB2 lock request. For example, if a synchronous lock takes 10 µsec,
then a duplexed lock, when performed synchronously, would take about 30 µsec.
It is likely that the lock would be converted to asynchronous in order to spare the
host processor, which must spin while asynchronous activity is performed. The
asynchronous lock is likely to take more than 100 µsec at the least.

For more information, refer to System-Managed Coupling Facility Structure
Duplexing, GM13-0103, at:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130103.html

You can find another related white paper, System-Managed CF Structure
Duplexing Implementation Summary, at:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gm130540.pdf

3.4 CF configuration alternatives

Figure 3-8 shows the possible CF configurations.

They are identified as follows:

� The two external (to the DB2 members) CFs are shown in “A”.

� One external CF and one internal CF are found in “B”.

� Two internal CFs on processors are represented by “C”. There are DB2
members whose structures reside on those CFs.

� Two internal CFs are shown in “D”, but there is no DB2 member on the
processor with ICF02.
56 Data Sharing in a Nutshell

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130103.html
http://www-03.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gm130540.pdf

Figure 3-8 Four possible CF configurations

The System z processors are distinguished by many fast processor engines in
the box and a number of speciality engines. The specialty engine important in
this section is the internal coupling facility (ICF). ICFs have a number of financial
advantages. They are not counted as a general purpose processors, because
they can only run the coupling facility control code (CFCC), the microcode that
turns them into CFs. ICFs require fewer external links than external CFs,
because they are internal to the z/OS images on the same box. Configuration “C”
in Figure 3-8 is the most common configuration for these reasons.

Parallel Sysplex has fast recovery from single failure. If a single CF fails, the DB2
lock/SCA structures should be rebuilt into the other CF. Any GBPs in the affected
CF fall back to simplex.

3.4.1 ICF-only: Double failure for the lock and SCA structures

We assume that you have a 2-ICF configuration, where there are no external
CFs, represented by “C” in Figure 3-8. We assume that the lock and SCA
structures are placed in the same CF due to similar failure characteristics.

Fast rebuild usually implies that each affected member has its own part of the
structure contained in its own virtual storage. Thus rebuild can occur quickly,
within a couple of minutes upon failure of a single CF.

DBP1

CF01

ICF02

DBP2

ICF02

DBP1

ICF01

DBP2
DBP1 DBP2

CF01

CF02

A B

C
DBP2

ICF02

DBP1

ICF01

D

 Chapter 3. The coupling facility 57

If a double failure occurs, recovery is not so quick. A double failure refers to a CF
failure and the failure of at least one z/OS image containing a DB2 whose
structures reside in the failed CF.

Assume that the entire processor containing DBP2 and ICF02 fails. What
happens for the lock and SCA structures follows this general process:

1. ICF02 fails.

1. The structure starts to rebuild in ICF01.

2. DBP1 contributes its part of each structure.

3. Then it is realized that DBP2 has not rebuilt its part of the structure.

4. Rebuild cannot complete, so there is fallback to the original structure, ICF02.

5. ICF02 is no longer there or accessible.

6. Because the rebuild cannot complete, DBP1’s IRLM has no other option than
to come down, and DBP1 will then fail. It must do this to protect data integrity.
The same is true for the SCA. Loss of either one brings down the group for
this condition.

It is important that the z/OS image with DBP2 be failed as soon as possible. Until
that happens and the DBP2 status is “FAILED”, no progress can be made. A
z/OS image that is not responding can be quickly failed if the z/OS systems team
implements a sysplex failure management (SFM) policy with ISOLATETIME(0)
instead of PROMPT. While these are not settings that DB2 staff will be familiar
with, if ISOLATETIME is not used, the failing image waits for an operator
response to the prompt. Meanwhile the data sharing group can do nothing until
the member’s status is changed from “FAILING” to “FAILED”.

Once DBP2 becomes FAILED, you can start DBP1 and it will recreate the lock
and SCA structures in ICF01 by reading its own log and the logs of DBP2. It can
do this even if DBP2 has not yet been started.

What has been happening to the GBPs in this scenario? If they are duplexed,
they will fall back to simplex as soon as the DB2 has been marked FAILED, within
seconds. They remain even though the group is down.

The scenario just described presents a group wide outage. There are two
solutions to avoid this situation, other than accepting the unlikely risk that an
entire processor will fail. In order to provide full availability against this condition,
in the following sections we discuss two possible solutions:

� System-managed duplexing for DB2 lock and other structures

� External CF, such as z890 or z9 BC
58 Data Sharing in a Nutshell

3.4.2 System-managed duplexing for DB2 lock and other structures

System-managed duplexing can provide protection against a double failure.
The duplexed lock structure and SCA will fall back to simplex, as the duplexed
GBPs would do. As we have seen at 3.3.2, “System-managed duplexing” on
page 55, none of this processing occurs without the cost of about 3 times or
more than a simplexed lock access. It is probable that a conversion to
asynchronous will occur for most locks. The asynchronous lock service time
(as measured by the RMF CF activity report) is likely to be the predominate lock
access time, and is significantly longer than synchronous access.

While the ICF itself is less expensive than an external CF, there are some
additional costs for system-managed duplexing, the main one being the extra
capacity in the host processors.

Consider this solution when your DB2 processing is a small part of your
workload. It provides a simplified configuration with no stand-alone server.

3.4.3 External CF, such as z890 or z9 BC

An external CF in which the lock and SCA structures reside eliminates any
double failure exposure.

Referring to Figure 3-8 on page 57, you can see that the external CF can either
reflect configurations “B” or “D”. Configuration “D” requires a third footprint, but it
is possible that there are multiple Parallel Sysplexes or multiple footprints, and
that you can keep a DB2 member from our data sharing group off the processor
with ICF02.

A moderately priced processor, such as the z890 or System z9 BC, can provide
isolation from double failure. These processors have slightly slower internal
speeds than the z990s and System z9 processors, but have many fewer engines
(an S07 model can have up to 7 ICFs) and are cost-effective as external CFs.

The external CF needs two links from each processor, where the ICF-only
configuration needs them only from the opposite processor (to the ICF). This
configuration does need two (internal) IC links for the local processor, but there is
no cost. An external CF avoids the extra host overhead incurred by the
system-managed duplex solution. Access is likely synchronous to the lock
structure when the technology generations are the same.

Links have different characteristics:

� ISC - Up to 100 km but slower
� ICB - Up to 7 m, but faster and more efficient
 Chapter 3. The coupling facility 59

Failure is reduced to a single point (the external CF) and the lock and SCA
structures now can rebuild into the ICF if the external CF fails. Loss of a
processor does not affect the CF, which will remain intact.

Technology considerations for external CFs
An important factor to be considered for an external CF is the technology relative
to the central processors. We recommend that there should be no more than a
one generation difference between the processor and its external CF:

� A System z990 should have either a z990, z890, or z900 external CF.
� A System z9 should have either a System z9 BC or a z890 external CF.

The reason for such a recommendation is that the XCF is sensitive to the
response time of the requests in relationship to the speed of the server it is
running on. The response time depends on link speeds, CF, and distance to CF.

If there is more than one processor generation difference, it is likely that most CF
requests will be converted to asynchronous dynamically by XES in order to spare
the CPU cycles of the faster processor. Even if there is a difference of one
generation, some of the CF requests that could have been synchronous will be
converted to asynchronous. This means that requests will take a little longer and
locks will be held longer than would be the case if the processor and CF
technologies matched. Locks that remain synchronous will also take longer.

3.5 CFRM policy

There is one active coupling facility resource management (CFRM) policy per
Parallel Sysplex. This policy contains descriptions of the coupling facilities
available to it and the definitions of all the structures that can be allocated in the
CFs. Statements similar to these will be incorporated by your z/OS Parallel
Sysplex team into the existing CFRM policy.

Important: The highest availability is achieved with two external CFs. A
practical compromise is one external CF (with Lock and SCA structures) and
an ICF without duplexing for the Lock and SCA. Duplexing is considered
mandatory for the GBPs as long as availability is a priority.
60 Data Sharing in a Nutshell

Example 3-2 shows a snippet of the statements we have developed in this
chapter.

Example 3-2 Sample CFRM policy statements

STRUCTURE NAME=groupname_GBP0
INITSIZE=16000
SIZE=32000
ALLOWAUTOALT(YES)
FULLTHRESHOLD=80
MINSIZE=16000
PREFLIST=(CF2,CF1)
DUPLEX(ENABLED)
REBUILDPERCENT(1)

We show only one GBP in this example for brevity.

STRUCTURE NAME=groupname_LOCK1
INITSIZE=64000
SIZE=76000
ALLOWAUTOALT(YES)
FULLTHRESHOLD=80
MINSIZE=64000
PREFLIST=(CF1,CF2)
REBUILDPERCENT(1)

STRUCTURE NAME=groupname_SCA
INITSIZE=64000
SIZE=128000
ALLOWAUTOALT(YES)
FULLTHRESHOLD=80
MINSIZE=64000
PREFLIST=(CF1,CF2)
REBUILDPERCENT(1)

The structure definitions shown in Example 3-2 were developed using sizing
recommendations in this chapter:

� INITSIZE was developed according to sizing recommendations for each type
of structure.

� SIZE was developed as roughly twice the size of the GBPs, assuming that
Auto Alter was being implemented for capacity planning purposes as well as
development of the directory to data ratios. We added a little extra storage to
the lock structure in case the RLEs increase. We have allowed the SCA to
increase as well.
 Chapter 3. The coupling facility 61

� ALLOWAUTOALT(YES) was specified to implement Auto Alter as it pertains
to each structure type.

� FULLTHRESHOLD allows Auto Alter to increase the structure size when the
number of either entries or elements reaches 80% of each one. It is the
default, but we think it is more straightforward to specify it.

� MINSIZE allows Auto Alter to decrease the structure size when the CF is
under storage stress (<10% free CF storage) for structures that specify
ALLOWAUTOALT(YES), but never to decrease it below this size. We have set
it to the same value as INITSIZE for these critical production DB2 structures.

� PREFLIST orders the CFs where a structure should be placed and the
preferred location for the structure. While we show two CFs, it is certainly
possible to specify more than two. The secondary structure (CF2) is the one
chosen for structure rebuild if the preferred structure becomes unavailable,
either due to failure of the CF or the failure of the last link to the structure from
a z/OS image containing a DB2 member of that group.

� We show the GBP0 in CF2 followed by CF1, and the reverse for the lock and
SCA structures. Always place the lock and SCA structures in the same CF,
according to 3.4, “CF configuration alternatives” on page 56. The GBPs do
not have to be placed together, and usually are not. They are apportioned to
the CFs based on load balancing for the total CF CPU utilization (>50% for a
multi-engine CF and > 25% for single engine). Duplexed GBPs need no more
storage than simplexed because the storage in a 2-CF configuration must be
available to handle the entire CF workload in failure situations.

� REBUILDPERCENT describes the percentage of loss of connectivity that is
tolerated before XES rebuilds the structure. Because we always want the
rebuild to occur to the other CF if any loss of connectivity is detected, we
specify 1%.

Your z/OS systems team will know where to place all these structures.

For more formal definitions of these parameters, see z/OS V1R7.0 MVS Setting
Up a Sysplex, SA22-7625-12.
62 Data Sharing in a Nutshell

3.6 Best practices for the coupling facility

Here is a summary of our recommendations for best practices for the coupling
facility:

� Use CFSizer to size the GBPs.

� Start with 64000 for lock structure size.

� Start with 64000 for SCA structure size.

� Implement Auto Alter for the GBPs as long as enough storage exists in the
CFs for the GBPs to be correctly sized.

� Make sure one CF can take over the workload in both CFs in terms of CF
storage.

� Ensure that all DB2 structures rebuild into another CF upon any failure.

� Duplex the GBPs specifying DUPLEX (ENABLED). Because
GBP-dependency occurs only at the time data is shared, the ALLOWED
parameter requires operator intervention.

� Guard against double failure in a Parallel Sysplex through use of an external
CF for the Lock and SCA structures and an ICF.

� Provide 2 links from each image to each CF.

� Match an external CF’s technology to the processor.

� Provide 2 dedicated engines minimum per CF for a production Parallel
Sysplex. Add another, when peak CF CPU utilization exceeds 50%

� If each CF is a single engine, add a second one when peak CF CPU
utilization approaches 25%.

� Set GBP thresholds:

– GBP Checkpoint 4 minutes
– GBPOOLT 10-30%
– CLASST 2-5%
 Chapter 3. The coupling facility 63

64 Data Sharing in a Nutshell

Chapter 4. Implementing data sharing

In this chapter we examine several important topics that you must address when
you implement DB2 data sharing:

� Naming conventions
� Logging
� DSNZPARMs
� Renaming an existing non-data sharing member
� Enabling the data sharing group
� Adding the second member
� Removing a member

In rare cases, you may find it necessary to disable a data sharing group and later
re-enable data sharing. The processes are provided in DB2 for z/OS Version 8
Data Sharing: Planning and Administration, SC18-741.

4

© Copyright IBM Corp. 2006. All rights reserved. 65

4.1 Naming conventions

You should carefully consider the naming convention you define for your DB2
data sharing group. Using a consistent naming convention will help you identify
which entities belong to a particular DB2 member, even if that member is moved
to another LPAR in the Parallel Sysplex.

In this section we discuss the following topics:

� Group name
� Group attachment name
� Subsystem identifier (SSID)
� Log data set names
� Bootstrap data set (BSDS)
� Distributed Data Facility (DDF) related parameters
� Catalog alias
� Temporary work file database
� Some more naming recommendations
� Examples of naming conventions
� Best practices for naming conventions

4.1.1 Group name

The group name is the name that represents the entire data sharing group to
cross-system coupling facility (XCF).

The data sharing group name identifies this group to the Parallel Sysplex. The
data sharing group name is specified primarily for Coupling Facility Resource
Management (CFRM) policy purposes and for related XCF commands. The
coupling facility structure names are based on this name using the following
convention: groupname_LOCK1, groupname_SCA, groupname_GBP0, and so
forth. See Table 4-1.

There are a few restrictions on the first letter of each name. Here is an excerpt of
these restrictions, taken from the section “Data sharing group names” in Chapter
2, “Planning for DB2 data sharing”, of DB2 for z/OS Version 8 Data Sharing:
Planning and Administration, SC18-7417-02.

Restrictions: To avoid names that IBM uses for its XCF groups, do not begin
DB2 group names with the letters A-I unless the first three characters are
DSN. Do not use the string SYS as the first three characters, and do not use
the string UNDESIG as the group name.
66 Data Sharing in a Nutshell

For example, we have seen names such as DSNPROD, DSNPRD1, DSNPRD2,
and DSNTST1 used as group names. However, DB2PRD1 cannot be a group
name, because it violates the stated restrictions.

4.1.2 Group attachment name

The group attachment name acts as a generic name for all the members of the
data sharing group. Utilities and applications that use TSO, batch, DL/I batch, the
RRSAF, the CAF, or DB2I can connect to any member in the group by using the
group attachment name. This allows you to run these applications on any
member without making any changes to the JCL.

Here are our recommendations for developing a naming convention:

� Make the group attachment name the SSID of the originating member of the
data sharing group. The existing JCL already has this value specified, so no
changes to your procedures will be required.

� Rename your existing SSID according to your new naming convention. There
are instructions for doing so in the section “Renaming a member” in Chapter
3, “Installing and enabling DB2 data sharing” of DB2 for z/OS Version 8 Data
sharing: Planning and Administration, SC18-7417. We cover this process in
4.4, “Renaming an existing non-data sharing member” on page 78.

� Do not name your SSID the same as your group attach even if the name fits
with your naming convention. This becomes a consideration when multiple
members of your data sharing group are running on the same z/OS image.

– As long as the SSID is specified in the JCL or the CICS AOR, for example,
the connections will be made to the specific member.

– If a group attach is specified as SSID, then the connection is made to the
first DB2 active member on that z/OS image, according to the IEFSSNxx
member of SYS1.PARMLIB. No balancing of the workload occurs.
For more information on subsystem search order, refer to the section
“Specifying the group attachment name” in Chapter 2, “Planning for data
sharing” of DB2 for z/OS Version 8 Data sharing: Planning and
Administration, SC18-7417.

– Some large DB2 data sharing groups might run two members of the group
on the same z/OS image. DB2 provides a way to balance the workload
between the two members, as described in 7.7, “Usermod for routing to

Important: Never reuse a DB2 group name, even if a data sharing group that
previously used the name no longer exists. Some data sharing information,
such as the DB2 group name, is retained in the Parallel Sysplex couple data
set (CDS).
 Chapter 4. Implementing data sharing 67

multiple DB2s on a z/OS image” on page 130. This method cannot be
used if there is an actual member name that is the same as the group
attach name.

For more information, see Chapter 2, “Planning for DB2 data sharing” of DB2 for
z/OS Version 8 Data sharing: Planning and Administration, SC18-7417. We also
provide some specific examples in Table 4-1 on page 72.

4.1.3 Subsystem identifier (SSID)

A SSID naming convention in a data sharing environment should provide for
easy identification of members within a data sharing group and automation
routines. For example, members could be DBPx, where x represents a value of
1-9 and/or A-Z. Naming the IRLM SSID should be consistent as well. See
Table 4-1 on page 72 for examples.

Using SSIDs that do not follow a naming convention can cause confusion for
operations and increase complexity for automation routines. An example of this
might be: ABCD, DBP1, DBP2.

4.1.4 Log data set names

Each member in the data sharing group still has its own pairs of active logs and
archive logs. To easily identify the log data sets that belong to a particular
member, we recommend that the SSID be included as part of the data set name.
In addition, the DSNZPARM TIMESTAMP=YES makes it much easier to identify
archives necessary for problem diagnostic purposes. To avoid exceeding the
MVS limit of 44-character data set names, we suggest that the archive log data
set name be specified as shown in the second line in Example 4-1.

Example 4-1 Active and archive log names

groupname.ssid.LOGCOPY1.DS01 → DSNDB2P.DBP1.LOGCOPY1.DS01
groupname.ssid.ARCHLOG1 → DSNDB2P.DBP1.ARCLG1.Dyyddd.Thhmmsst.Axxxxxxx

4.1.5 Bootstrap data set (BSDS)

The BSDS of each member contains information about all the other members in
the data sharing group. This is done so that any DB2 member can read any other
member's BSDS, active logs and archive logs. For example, when one member
is running the RECOVER utility for a DB2 object, it may need to read other
members’ BSDSs, active logs, and archive logs. Make sure that the two copies of
the BSDS are allocated on different disk subsystems for high availability.
68 Data Sharing in a Nutshell

We recommend that the SSID be included as part of the data set names. See
Example 4-2.

Example 4-2 BSDS naming convention

groupname.ssid.BSDS01 → DSNDB2P.DBP1.BSDS01
groupname.ssid.BSDS02 → DSNDB2P.DBP1.BSDS02

4.1.6 Distributed Data Facility (DDF) related parameters

There are several DDF parameters that must be defined when you plan to
implement data sharing. These include DB2 LOCATION NAME, DB2 NETWORK
LUNAMEs, and a DB2 GENERIC LUNAME. In the case of TCP/IP, you need to
add DRDA® PORT and RESYNC PORT.

DB2 location name
The data sharing group is treated as a single location by remote requestors. DB2
location name is the name that encompasses the entire data sharing group. An
example might be DB2PLOC. It is defined in install panel DSNTIPR and it is the
same for every member of the data sharing group.

Location aliases
Location aliases represent one member, a few members, or all members of a
data sharing group. For TCP/IP connections, you can additionally specify an
alias-port to indicate that a member belongs to a subset of the group. For system
network architecture (SNA) protocol, you can define one or more alias-names
using the ALIAS option of the change log inventory utility (DSNJU003) for the
location of the data sharing group. For more information about the ALIAS option,
see Chapter 36, “DSNJU003 (change log inventory)” of DB2 UDB for z/OS
Version 8 Utility Guide and Reference, SC18-7427. Location aliases provide the
following benefits:

� Location aliases allow you to define subsets of your data sharing group. This
gives you the ability to control the members to which remote requesters can
connect.

� As you enable an existing non-data sharing subsystem to data sharing or
merge a DB2 system to a data sharing group, you can use the DB2’s old
location name as a location alias to point to the location name of the data
sharing group. No application changes are required.

For more information about location aliases, see Chapter 4, “Communicating with
data sharing groups” of DB2 for z/OS Version 8 Data Sharing: Planning and
Administration, SC18-7417.
 Chapter 4. Implementing data sharing 69

DB2 network logical unit name (LU name)
This name identifies a DB2 subsystem to VTAM® uniquely within the group and
the network. Even if you are planning to use only TCP/IP to communicate with
remote sites, you still have to configure the LU name parameter and VTAM
because DB2 uses the network ID and the LU name to identify units of work. You
should use a convention similar to that used for the SSID. An example is
LUDBP1 for DBP1.

DB2 generic LU name
If you use RACF® pass tickets for your security, use the generic LU name for
RACF to make a valid pass ticket for the remote requesters as a single LU name
for the data sharing group. At this point, the remote requesters could have their
own LU name or generic LU name.

If you do not use both RACF pass ticket and group-generic access, then ignore
the generic name and leave it blank.

We recommend member-specific access instead of group generic for workload
balancing.

DRDA port
If you use TCP/IP network connections, you must specify the DRDA listener port
for the data sharing group. Each member should have the same value for this
DRDA port. Your TCP/IP systems administrator will assign the port numbers to
use. Port 446 is the common SQL listener port, but obviously it can only be used
for one data sharing group. It is defined in install panel DSNTIPS.

RESYNC port
The RESYNC port is used to process requests for two-phase commit
re-synchronization. The number for this port must be different from the DRDA
listener port. Each member has its own unique numbers within the Parallel
Sysplex. Your TCP/IP systems administrator will assign the port numbers to use.

Parallel sysplex domain name
This name lets you take advantage of workload balancing and two-phase commit
for TCP/IP connections. If your site uses a domain name server (DNS), you must
register this name (in the format location.sysplex.domainname) with the server.

The sysplex name is recorded in the COUPLExx z/OS data set. The domain
name comes from the socket calls, gethostid for the host address, and
gethostbyaddr for the host name. For more information about the Parallel Sysplex
domain name, see “Registering names in the domain name server” in Chapter 4,
“Communicating with data sharing groups” of DB2 for z/OS Version 8 Data
Sharing: Planning and Administration, SC18-7417.
70 Data Sharing in a Nutshell

Member domain name
DB2 handles indoubt thread resolution for TCP/IP connections through this
name. You should register each member’s domain name (in the format
luname.location.sysplex.domainname) with the domain name server. For more
information about member domain name, see “Registering names in the domain
name server” in Chapter 4, “Communicating with data sharing groups” of DB2 for
z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417.

4.1.7 Catalog alias

The catalog alias is used to indicate the ICF catalog used for DB2 VSAM data
sets such as DSNDB01, DSNDB06, the logs, and BSDS. If you do not plan to
use the BACKUP SYSTEM / RESTORE SYSTEM DB2 online utilities, you can
use the group name as a catalog alias.

If you plan to use the BACKUP SYSTEM DB2 utility, you must have different ICF
catalogs for the DB2 active logs and BSDS data sets from those for the
Catalog/Directory and user database. The two groups are in separate DFSMS
copypools and are backed up separately. For restoration they must be in sync
with the data they represent at the same point-in-time. For more information
about copypools, see z/OS DFSMSdfp™ Storage Administration Reference,
SC26-7402. And for more information about BACKUP SYSTEM utility and
RESTORE SYSTEM utility, see DB2 UDB for z/OS Version 8 Utility Guide and
Reference, SC18-7427.

4.1.8 Temporary work file database

A DB2 subsystem in non-data sharing uses DSNDB07 for the temporary workfile
database. In a data sharing environment, each member has its own work file
database. It is important to have a meaningful name, such as WRKDBP1, so you
can easily identify which one belongs to each DB2 system.

4.1.9 Some more naming recommendations

In the following sections, we describe a few more naming recommendations.

Command prefix
We recommend that you prefix a special character to the subsystem identifier,
such as the default -DBP1.

Load module for subsystem parameters
We recommend that you include a subsystem identifier in the load module, for
example, DSNZDBP1.
 Chapter 4. Implementing data sharing 71

IRLM group name
Your IRLM subsystems join an XCF group. We recommend that you include your
data sharing group name as part of the IRLM group name such as DXRDB2P.
For more information regarding the IRLM group name, see “IRLM names” in
Chapter 2. “Planning for DB2 data sharing” of DB2 for z/OS Version 8 Data
Sharing: Planning and Administration, SC18-7417.

IRLM subsystem name
We recommend that you have the IRLM subsystem name paired with its DB2
subsystem name, such as IRP1 for DBP1.

4.1.10 Examples of naming conventions

Table 4-1 shows examples of DB2 related entities for DB2 data sharing. If you
are not performing a new installation, you will have to keep some of the entity
names from your existing DB2 subsystem for which you are going to enable data
sharing.

Table 4-1 Examples for naming conventions

Entity Example

z/OS system name SYSA, SYSB

DB2 group name DSNDB2P

DB2 group attach name DB2P use your existing DB2 SSID

DB2 subsystem name DBP1, DBP2

Command prefix -DBP1, -DBP2

IRLM subsystem name IRP1, IRP2

IRLM XES group name DXRDB2P

Catalog alias DSNDB2P you can keep your existing DB2 SSID alias
Important: If you plan to use BACKUP SYSTEM and
RESTORE SYSTEM DB2 online utility, you should have
one ICF catalog for logs and BSDSs and another ICF
catalog for databases.

System load module name DSNZDBP1, DSNZDBP2

Temporary work file name WRKDBP1, WRKDBP2

DB2 location DB2PLOC - use your existing DB2 SSID location

DB2 generic LU name LUDB2P - use your existing DB2SSID LUNAME
72 Data Sharing in a Nutshell

4.1.11 Best practices for naming conventions

Here are our recommendations for choosing a naming convention:

� Keep the DB2 subsystem name of your originating non-data sharing member
as your group attach name, to avoid making changes to your applications.

� Do not name any SSID the same as your group attach name.

� Include the SSID in the BSDS and log data set names for each member.

4.2 Logging

Each DB2 member has its own active and archive log data sets.

In this section we discuss the following topics:

� Active log data sets
� Archive log
� Best practices for DB2 logging

4.2.1 Active log data sets

As with non-data sharing, we recommend keeping the active log copy 1 for each
member on a separate disk subsystem from that of the corresponding active log
copy 2 to assure data integrity and availability. It is possible for any disk to fail.
If its data should not be recoverable, and both copies of the current active log are
co-located, there would be broken DB2 data with no way to determine the extent
of the damage. Similar considerations apply to BSDS.

We recommend that each member should have enough disk space for active and
archive data sets such that tape archive backup would not have to be accessed
during the recovery of a critical DB2 object. Critical data is usually image-copied
every 24 hours, so each member should have at least 24 hours worth of data
available on disk.

DB2 network LU name LUDBP1, LUDBP2

BSDS name DSNDB2P.DBP1.BSDS01
DSNDB2P.DBP1.BSDS02

Log data set name DSNDB2P.DBP1.LOGCOPY1.DS01
DSNDB2P.DBP1.ARCLG1.Dyyddd.Thhmmsst.Axxxxxxx

Entity Example
 Chapter 4. Implementing data sharing 73

4.2.2 Archive log

We recommend archiving to disk. Because the recovery operation may have to
read and merge the logs of several members, the recovery process is optimized
when all log data is on disk.

When the archives are migrated from disk to tape, make sure that the archives
for each member do not end up on the same tape. Two different DB2 subsystems
may call for their archives at the same time period and one of them would have to
wait, or possibly they would deadlock with each other.

If you archive directly to tape devices, make sure that you have enough tape
devices to allocate all members' archive logs at the same time to improve
recovery performance.

4.2.3 Best practices for DB2 logging

We recommend the following best practices for DB2 logging:

� Make sure that active log copy 1 is on a different disk subsystem from that of
active log copy 2.

� Archive to disk.

4.3 DSNZPARMs

During your planning process, you should become familiar with certain data
sharing related system parameters (DSNZPARMs). Also, there are some
parameters in the IRLM startup procedure that you should change, and some
new information that is stored in the BSDS.

In this section we discuss the following topics:

� Data sharing system parameters
� Some other important DSNZPARMs
� IRLM parameters
� Information stored in the BSDS

4.3.1 Data sharing system parameters

Table 4-2 shows the system parameters that you should check when you enable
data sharing or add members to a data sharing group.
74 Data Sharing in a Nutshell

Table 4-2 Data sharing related system parameters

4.3.2 Some other important DSNZPARMs

Here we describe some DSNZPARMs you need to understand:

CTHREAD There is nothing inherently different for this parameter from
its use in non-data sharing. It is one of the key values
affecting the virtual storage consumption of the DBM1
address space. See 7.8, “Determining the number of
threads” on page 131 for a discussion on how this number
should be chosen.

MAXDBAT There is nothing inherently different for this parameter from
its use in non-data sharing. It is one of the key values
affecting the virtual storage consumption of the DBM1
address space. See 7.8, “Determining the number of
threads” on page 131 for a discussion on how this number
should be chosen.

LOGAPSTG The only change you encounter for data sharing recovery is
for GREP/LPL activity, when it occurs during restart in DB2
V8. The default value is 100MB and should be set for best
performance for GRECP/LPL recovery (as well as for the
RECOVER utility).

Parameter Macro Panel Remark

ASSIST DSN6GRP DSNTIPK This parameter allows this member to assist in
sysplex query parallel processing. You should specify
VPPSEQT and VPXPSEQT buffer pool thresholds of
this member to be greater than zero.

COORDNTR DSN6GRP DSNTIPK This parameter allows this DB2 member to be the
coordinator for sysplex query parallel processing with
other members of the group.

DSHARE DSN6GRP DSNTIPA1 This parameter indicates whether data sharing has
been enabled on the subsystem. Use YES in a data
sharing environment.

GRPNAME DSN6GRP DSNTIPK See 4.1.1, “Group name” on page 66.

MEMBNAME DSN6GRP DSNTIPK See 4.1.3, “Subsystem identifier (SSID)” on page 68”

RETLWAIT DSN6SPRM DSNTIPI Keep the default of zero. With reduced IRLMRWT
values, it is hard to restart a DB2 within a reasonable
window.

SSID DSNHDECP DSNTIPM See 4.1.2, “Group attachment name” on page 67
 Chapter 4. Implementing data sharing 75

SYNCVAL There is no difference that occurs in data sharing except the
need to perform analysis on all members or a group. When
they have differing statistics time starts, it is difficult to match
them with each other or with an RMF interval that the z/OS
systems staff might have. Specify it at the offset to an hour
that the z/OS systems staff uses for RMF. Commonly it is
0,15,30,45 (for 15 minute intervals), but occasionally an
installation will choose differently.

PCLOSEN For this setting and that for PCLOSET, we recommend that
you look at “Data sets converted from R/W → R/O” in the
Statistics long report. Leave the default until you see more
than 10-20 per minute converted to R/O. See 7.1, “CLOSE
YES and CLOSE NO table spaces” on page 122.

PCLOSET For this setting and that for PCLOSEN, we recommend that
you look at “Data sets converted from R/W → R/O” in the
Statistics long report. Leave the default until you see more
than 10-20 per minute converted to R/O. See 7.1, “CLOSE
YES and CLOSE NO table spaces” on page 122.

CHKFREQ We recommend 2 or 3 minutes for System z processors and
for each member. There are certain values for data sharing
that need to keep advancing. Having one relatively inactive
member whose CHKFREQ is based on number of records
would delay checkpointing for too long.

URCHKTH This value is just as important in non-data sharing, but the
impact of a runaway updating job without commits has wider
scope. See 7.6, “The problem of runaway threads” on
page 128.

URLGWTH This value is just as important in non-data sharing, but the
impact of a runaway updating job without commits has wider
scope. See 7.6, “The problem of runaway threads” on
page 128.

LRDRTHLD While this value affects only readers, it is well paired with
URLGWTH and URCHKTH as it can prevent the Switch
phase of Online REORG utility. See 7.6, “The problem of
runaway threads” on page 128.

4.3.3 IRLM parameters

Table 4-3 shows the IRLM parameters that you should check when you enable
data sharing or add members to a data sharing group. The installation CLIST
panels creates a procedure with correct data sharing values set.
76 Data Sharing in a Nutshell

Table 4-3 Data sharing related with IRLM parameters in IRLM start procedure

4.3.4 Information stored in the BSDS

Table 4-4 shows the BSDS information that is provided as output of the
installation CLIST when you enable data sharing or add members to a data
sharing group. For more information, see Chapter 6, “Installing, migrating, and
updating system parameters” of DB2 UDB for z/OS Version 8 Installation Guide,
GC18-7418. For more information regarding change log inventory job, see
Chapter 36. “DSNJU003 (change log inventory)” of DB2 for z/OS Version 8 Utility
Guide and Reference, SC18-7427.

Table 4-4 Data sharing input to change log inventory

Parameter / Field
name

Macro Remark

Scope / Disconnect
IRLM

DSNTIPJ Specify GLOBAL

IRLMGRP / IRLM
XCF group name

N/A Do not start the group name with SYS and do not use UNDESIG.
Use a name starting with DXR if it is possible.

LOCKTAB / Lock
entry size

DSNTIPJ Keep default of 2 for width of lock table. It matches with
MAXUSRS=7.

MAXUSRS / n/a N/A Specify 7

IRLMID / Member
identifier

DSNTIPJ

LTE / Number of lock
entries

DSNTIPJ You can specify the number of lock table entries using this
parameter. If you do not, IRLM determines the number of lock table
entries based on the lock structure size that is specified in CFRM
policy and the number of users (MAXUSRS). For more information
about LTE, see 3.1.2, “Sizing the lock structure” on page 46 and
Chapter 2.”Planning for DB2 data sharing” of DB2 for z/OS Version
8 Data Sharing: Planning and Administration, SC18-7417.

Field panel name Panel Remark

DB2 location name DSNTIPR This will apply to the entire data sharing
group.

Location aliases n/a This represents one, more or all
members of your data sharing group.

DB2 network LU name DSNTIPR Each DB2 member has its own LU
name.
 Chapter 4. Implementing data sharing 77

4.4 Renaming an existing non-data sharing member

As stated earlier, defining and adhering to a naming standard is especially
important. We recommended that the SSID of the existing non-data sharing
subsystem that will become the originating member of the data sharing group
should become the group attachment name. We also recommended that the
SSID of every member should be different from the group attachment name. Use
this procedure to change the SSID of the originating member to a new name
based on your naming standards.

The process for renaming a DB2 subsystem is given in DB2 for z/OS Version 8
Data Sharing: Planning and Administration, SC18-7417, under “Renaming a
Member”. We will refer to steps within its sections “Tasks that require an IPL” and
“Tasks at enable time”. We want you to follow those steps, but we elaborate on
some of them, respectively, in 4.4.1, “IPL required for these tasks” on page 79
and 4.4.2, “Enable data sharing tasks” on page 79 of this book and provide
additional information.

The rename process assumes that you take one outage at the time you enable
data sharing to rename your DB2 subsystem from the old name to the new
name. Naturally we want you to make the outage as short as possible. In this
section, as an example of the old name, we will use ABCD. For the new names,
we will use DBP1 for the first member and DBP2 for the second member.

Generic LU name DSNTIPR Required If you want RACF pass tickets.
Required for group-generic access
using SNA (not recommended).

DRDA port DSNTIP5 Each DB2 has the same value.

RESYNC port DSNTIP5 Each DB2 has its own value.

Field panel name Panel Remark

Note: The renaming procedure does not change any high level qualifiers, but
renames certain data sets.

It is not necessary to change the high level qualifier of any of these data sets
or the DB2 data. If you do decide to change it, we recommend that you do so
separately from this procedure, due to its complexity and the outage it incurs.
The section in the DB2 for z/OS Version 8 Administration Guide, SC18-7413,
called “Changing the high-level qualifier for DB2 data sets” contains a
procedure to accomplish this task.
78 Data Sharing in a Nutshell

4.4.1 IPL required for these tasks

After you have chosen your new naming convention, you can perform the “Tasks
that require an IPL” at any time. The only activity is the need to update the
IEFSSNxx member of SYS1.PARMLIB. You must:

1. Update the existing subsystem entry to add the group attach name. (If you do
not do it exactly as coded in the example in the manual, jobs using the call
attach facility (CAF) may not work correctly.)

2. Add the subsystem entries for both the data sharing members you will
implement (according to the naming convention), in our case, DBP1 and
DBP2.

While you can use the z/OS SETSSI command to add new IEFSSNxx
statements without an IPL, you cannot use it to update an existing subsystem.
Therefore, plan for an IPL well ahead of the time you are planning to start DB2 in
data sharing mode.

4.4.2 Enable data sharing tasks

Perform step 1 and step 2 as described in the section “Tasks at enable time” in
DB2 for z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417.

Part of this section in the DB2 for z/OS Version 8 Data Sharing: Planning and
Administration, SC18-7417, instructs you to invoke the installation panels to
enable data sharing with the parameters specific to data sharing. Because you
cannot change the DB2 subsystem name with the installation panels, the output
PDS members of a NEW.SDSNSAMP data set will have data sharing specific
information, but will have the old (ABCD) SSID. See “Changing the rest of the
members of SDSNSAMP PDS” on page 86.

Hints for the installation panel specifications
You invoke the installation CLIST in step 3 of “Tasks at enable time”. Stop before
step 3 and continue here: The hints given in this section provide more specific
information on this topic.

1. On the command line of the first panel, specify: panelid.

You are now on panel DSNTIPA1.

a. Here you specify these values:

Install Type: install
Data Sharing: yes

You then see a pop-up, panel DSNIPP.

b. Choose “3” to enable data sharing.
 Chapter 4. Implementing data sharing 79

2. Panel DSNIPK is where you enter your values for these parameters:

GROUP NAME: DSNDB2P
MEMBER NAME: DBP1
WORK FILE DB name: WRKDBP1
GROUP ATTACH: ABCD
COORDINATOR: enter your value
ASSISTANT: enter your value

As the manual states, you should specify the old subsystem name, ABCD, as
the group attach name. Specifying the new member name of DBP1 ensures
that the DSNTIJUZ job is generated correctly, as is the DSNTIJTM that
creates a work data base for this subsystem. The “Member Name” is not the
same as the SSID, as you will see in a later panel.

3. On panel DSNTIPH, specify:

COPY 1 PREFIX: hlq.DBP1.ARCLG1
COPY 2 PREFIX: hlq.DBP1.ARCLG2
TIMESTAMP ARCHIVES: yes

4. On panel DSNTIPT, specify the output data set that the installation CLIST will
allocate and in which it will place the members it tailors. It is helpful to have
the new member name as part of the data set name, which will be useful
when you have multiple members of the group;

SAMPLE LIBRARY: hlq.DBP1.SDSNSAMP

5. On Panel DSNTIPO, enter the name of our DSNZPARM module using the
new member name, DSNZDBP1.

6. On panel DSNTIPI, specify:

INSTALL IRLM: YES
SUBSYSTEM NAME: IRP1
PROC NAME: DBP1IRLM

7. Panel DSNIPJ is pre-filled for the first IRLM in a group. The only value you
enter is:

IRLM XCF GROUP NAME: DXRDB2P

8. On panel DSNTIPM, the PARMLIB updates panel, you cannot change the
subsystem name (it is “greyed out”). We suggest you leave the “Command
Prefix” as it is, because you have already updated the IEFSSNxx member
with the correct values. (The command prefix is not stored in DSNZPARM).

Note: Make sure you enter a different data set for your SAMPLE LIBRARY
or you will overlay the one you are currently using.
80 Data Sharing in a Nutshell

9. Panel DSNTIPR contains the DDF information:

DB2 LOCATION NAME: LOCABCD
DB2 NETWORK NAME: LUDBP1
DB2 GENERIC LUNAME:LUABCD

The location name of the existing DB2 becomes the group location name. The
luname of the renamed subsystem is LUDBP1. The luname of the existing
DB2 becomes the generic luname.

Later you can establish an alias for the group location name if you do not want
to use LOCABCD.

Most of the installation panels are presented as they would have been during an
initial installation of DB2, but with the values you cannot change “greyed out”,
such as the active logs and the BSDS data sets. There are numerous members
in your newly customized SDSNSAMP data sets, though not quite as many as
those from an initial installation. See “Changing the rest of the members of
SDSNSAMP PDS” on page 86.

Remaining steps of the rename process
Here is the remainder of our renaming procedure:

1. You stop DB2 in Step 4 of “Tasks at enable time” in DB2 for z/OS Version 8
Data Sharing: Planning and Administration, SC18-7417. Ensure that all
activity is complete with these commands:

– STOP DB2 MODE(QUIESCE)
– START DB2 ACCESS(MAINT)
– DB2 status check

• DISPLAY THREAD(*)
• DISPLAY UTILITY(*)
• DISPLAY DB(*) SPACENAM(*) RES LIMIT(*)
• STOP DB2 MODE(QUIESCE)

2. Before you submit the DSNTIJUZ job during Step 5 of the “Tasks at enable
time”, verify the DSN6GRP MEMBNAME=DBP1, the new subsystem name
after the rename procedure is complete. Then run the DSNTIJUZ job to
create the DSNZDBP1 DSNZPARM and the DSNHDECP member (of which
there is only one for the group) in hlq.DSNDB2P.SDSNEXIT. Because
SDSNEXIT is used for the entire group, we chose to specify the group name
as the middle qualifier.

DSNTIJUZ changes the DDF information you entered in panel DSNTIPR, and
a snippet of that job is shown in Example 4-3.
 Chapter 4. Implementing data sharing 81

Example 4-3 Change Log Inventory from DSNTIJUZ for DDF

//***
//* CHANGE LOG INVENTORY:
//* UPDATE BSDS
//***
//DSNTLOG EXEC PGM=DSNJU003,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=DSN810.SDSNLOAD
//SYSUT1 DD DISP=OLD,DSN=DB2810.BSDS01
//SYSUT2 DD DISP=OLD,DSN=DB2810.BSDS02
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
 DDF LOCATION=LOCABCD,LUNAME=LUDBP1,
 GENERIC=LUABCD,RESPORT=5447,PORT=5446
 DDATASHR ENABLE

3. Next, submit the DSNTIJIN job that changes active logs to
SHAREOPTIONS(2,3). The data set names in the JCL are for the active logs
before you have renamed them.

4. Perform step 6 of “Tasks at enable time” in DB2 for z/OS Version 8 Data
Sharing: Planning and Administration, SC18-7417.

5. Perform step 7 of “Tasks at enable time” in DB2 for z/OS Version 8 Data
Sharing: Planning and Administration, SC18-7417 with these additions.

a. In Step 7a, write down the starting and ending timestamps in addition to
the starting and ending ranges for each active log from the print log map
utility (DSNUJ004). The current active log pair will have the status of
NOTREUSABLE. The current active log pair when you stopped DB2 will
not have an ending timestamp, because the data set has not been
completely filled.

b. Perform steps 7b and 7c.

c. In step 7d when you run change log inventory utility (DSNUJ003) you use
the NEWLOG ADD control statement for each renamed active log data,
along with its original range and timestamps. Because you have no ending
timestamp for the current active log pair, you can substitute the current
time (now). When DB2 is later started and the log fills, it will update this
value.

6. Perform step 8 and 9 of “Tasks at enable time” in DB2 for z/OS Version 8 Data
Sharing: Planning and Administration, SC18-7417 if necessary.

7. Step 10 is the rename of the startup procedures. Your new DSNTIJMV job
has two cataloged procedures to be copied to SYS1.PROCLIB: ABCDMSTR,
and DBP1IRLM.
82 Data Sharing in a Nutshell

See Example 4-4 for the DB2 master address space started task procedure.

Example 4-4 DSNTIJMV for MSTR started task

./ ADD NAME=ABCDMSTR
//***
//* JCL FOR PROCEDURE FOR THE STARTUP
//* OF THE DB2 CONTROL ADDRESS SPACE.
//*
//* INSTALLATION MAY CHANGE PROGRAM LIBRARY
//* NAMES IN STEPLIB DD STATEMENT TO THE
//* LIBRARY IN WHICH DB2 MODULES ARE
//* LOADED USING THE PROCEDURE VARIABLE:
//* LIB
//*
//***
//JUDYMSTR PROC LIB='DSN810.SDSNEXIT'
//IEFPROC EXEC PGM=DSNYASCP,DYNAMNBR=119,REGION=0K,
// PARM='ZPARM(DSNZDBP1),GROUP(DSNDB2P),MEMBER(DBP1)'
//STEPLIB DD DSN=&LIB,DISP=SHR
// DD DISP=SHR,DSN=DSN810.SDSNLOAD
//BSDS1 DD DISP=SHR,DSN=hlq.BSDS01
//BSDS2 DD DISP=SHR,DSN=hlq.BSDS02

The PARM parameters are correct, because you entered them on the installation
panel. You must change the name of the procedure to DBP1MSTR (it kept the
old name because you were not able to change the SSID through the installation
CLIST.) You must change the BSDS1/BSDS2 DD statements to have DBP1 as
the middle qualifier, just as you did when they were renamed in step 7 in “Tasks
at enable time”.

The other cataloged procedure is shown in Example 4-5.

Example 4-5 IRLM cataloged procedure

./ ADD NAME=DBP1IRLM
//***
//* JCL FOR PROCEDURE FOR THE STARTUP
//* OF THE IRLM 2.2 LOCK MANAGER
//* ADDRESS SPACE.
lines deleted
//***
//DBP1IRLM PROC RGN=5000K,
// LIB='DSN810.SDXRRESL',
// IRLMNM=IRP1,
// IRLMID=1,
 Chapter 4. Implementing data sharing 83

// SCOPE=GLOBAL,
// DEADLOK='1,1',
// MAXCSA=0,
// PC=YES,
// MAXUSRS=7,
// IRLMGRP=DXRDB2P,
// LOCKTAB=,
// TRACE=YES,
// PGPROT=YES,
// LTE=0,
// MLMT=2G
// EXEC PGM=DXRRLM00,DPRTY=(15,15),
// PARM=(&IRLMNM,&IRLMID,&SCOPE,&DEADLOK,&MAXCSA,&PC,
// &MAXUSRS,&IRLMGRP,&LOCKTAB,&TRACE,&PGPROT,<E),
// REGION=&RGN,
// MEMLIMIT=&MLMT
//STEPLIB DD DSN=&LIB,DISP=SHR
//*
//* The following DUMP DD card should not be specified unless you
//* are having IRLM STARTUP problems and are not getting the dump
//* needed to diagnose the problem.
//*SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*DSNUPROC PEND REMOVE * FOR USE AS INSTREAM PROCEDURE
./ ENDUP

This procedure is correct as it is and only needs to be copied to SYS1.PROCLIB.
The parameters that are bolded were created by the installation CLIST. Of
course, you supplied the IRLM group name of DXRDB2P and the procedure
name, DBP1IRLM.

The other procedures for address spaces that you need to rename manually are:

� ABCDDBM1 > DBP1DBM1
� ABCDDIST > DBP1DIST
� ABCDSPAS > DBP1SPAS

If you have any WLM environments prefixed with ABCD, you do not need to
rename them. You do, however, have to change the WLM environment for the
WLM DB2SSN parameter &IWMSSNM. This parameter tells WLM to substitute
the SSID of the DB2 on that z/OS image. Therefore, you can have one cataloged
procedure in PROCLIB for an environment that all DB2s in the group can use.
See 5.2, “Workload Manager” on page 92.
84 Data Sharing in a Nutshell

8. Complete the steps 11 and 12 of the section “Tasks at enable time” in DB2 for
z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417, then
continue as described in this book in 4.5, “Enabling the data sharing group”
on page 85 without executing step 13.

4.5 Enabling the data sharing group

After renaming the existing non-data sharing subsystem, you can enable DBP1
for data sharing as an originating member. For more information, see “Enabling
DB2 data sharing” in Chapter 3. “Installing and enabling DB2 data sharing” of
DB2 for z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417”.

After you finish the installation panels described in Chapter 3. “Installing and
enabling DB2 data sharing” of DB2 for z/OS Version 8 Data Sharing: Planning
and Administration, SC18-7417, you need the following four jobs, at a minimum,
to enable data sharing:

DSNTIJMV, DSNTIJIN, DSNTIJUZ, DSNTIJTM

DSNTIJMV
The contents of this member has new copies of the started procedures for the
DB2 and IRLM address spaces, with the data sharing specific parameters that
you entered on the installation CLIST ISPF panels.

During the rename process, you copied those members to PROCLIB with the
modifications.

DSNTIJIN
DSNTIJIN is run to allow the other DB2 members of your data sharing group to
have read access to this member’s active log data sets. It changes your active
logs to have SHAREOPTIONS (2,3).

You have already run this job as part of the rename process.

DSNTIJUZ
You have already run this job. Its name has the new member name and the SSID
within DSNTIJUZ is correct for the new name.

DSNTIJTM
This job creates a temporary work file database (described later).
 Chapter 4. Implementing data sharing 85

Changing the rest of the members of SDSNSAMP PDS
Change each of the PDS members of your SDSNSAMP data set that have the
SSID specified as ABCD. When you make your current SSID, ABCD, the group
attach name, there are far fewer changes to be made. As an example, you can
specify in the DSN SYSTEM(ssss) command statement, the group attach name, as
well as the SSID invoked for the utilities that are run in SDSNSAMP.

We illustrate this concept in Example 4-6.

Example 4-6 Snippet of sample job DSNTEJ1

//PH01S06 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
 //SYSTSPRT DD SYSOUT=*
 //SYSTSIN DD *
 DSN SYSTEM(ABCD)
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA81) -
 LIB('DSN810.RUNLIB.LOAD')
 //SYSPRINT DD SYSOUT=*
 //SYSUDUMP DD SYSOUT=*
 //SYSIN DD *

and (intervening lines have been deleted)

//PH01S13 EXEC DSNUPROC,PARM='ABCD,DSNTEX',COND=(4,LT)

Example 4-6 shows part of the sample job DSNTEJ1 which is found in your
customized SDSNAMP data set output from the invocation of the installation
CLIST. It has a common invocation of the DSN command processor in which the
SYSTEM parameter is ABCD. While it will no longer be your subsystem name, it
is your group attach name, and can be submitted on any z/OS image that has a
member of that group active.

The other example is an invocation of a DB2 utility. The subsystem to which you
were attaching in non data-sharing is now the group attach name and it also can
be submitted on any z/OS image that has an active member of your group.

Specification of a group attach name on the JCL is preferred, as you have
maximum flexibility about where the job runs without the need to change the JCL
if you want to run it on a different z/OS image. You also have a single copy of the
JCL versus a copy for each member. This may not seem like a problem with
2-way data sharing, but it certainly is when you have a 6-way group!
86 Data Sharing in a Nutshell

4.5.1 Additional tasks

Here we describe the additional tasks that you have to perform:

1. Make sure the CFRM policy that contains definitions for the DB2 structures
has been activated. This can occur long before you enable data sharing. The
structure sizing and definition are described in 3.1, “Structure sizing” on
page 40 and 3.5, “CFRM policy” on page 60.

2. Make sure that the renamed DB2’s member name (DBP1) has been
incorporated in the automation procedures active in your environment, such
as the ARM policy.

3. You can now start DBP1 in data sharing mode (one way). DB2 will perform a
group restart. It will build a lock structure and SCA during the restart (a GBP
is not allocated until the second member is started and GBP-dependency
occurs for the first time). After DB2 is started, you can issue the following
commands to display the DB2 group information:

D XCF,STR,STRNM=DSNDB2P*
-DBP1 DIS GROUP

DSNTIJTM
In a data sharing environment you do not use the temporary work file database
called DSNDB07 any longer; you use a new temporary work file database
according to your own naming convention. See 4.1, “Naming conventions” on
page 66” for more information about naming convention. With the DSNTIJTM
JOB, you create a new temporary work file database. It drops DSNDB07 and
creates WRKDBP1 in DBP1.

4.6 Adding the second member

When you finish the installation panels described in “Adding new members” of
Chapter 3. “Installing and enabling DB2 data sharing” of DB2 for z/OS Version 8
Data Sharing: Planning and Administration, SC18-7417, you have the following
JOBs in your hlq.DBP2.SDSNSAMP data set:

DSNTIJDE DSNTIJFT DSNTIJGF DSNTIJID DSNTIJIN DSNTIJMV DSNTIJTM
DSNTIJUZ

There are now considerably fewer PDS members than there were when you
enabled data sharing with the original data sharing member.
 Chapter 4. Implementing data sharing 87

Here are the remaining steps to follow:

1. Add the same information to RACF and to the IEFSSNxx PDS member of
SYS1.PARMLIB, though you should have already done this at the same time
you added the information for the originating data sharing member.

2. When you complete DSNTIJIN, DSNTIJID and DSNTIJUZ successfully, you
can start the newly added DB2 sharing member on another z/OS image in the
Parallel Sysplex. You can see your added member by issuing the command:

cmdprefix DIS GROUP

3. Run DSNSTIJTM to create the new temporary work file database for the new
member, DBP2.

4.7 Removing a member

If you want to remove a member from your data sharing group, either temporarily
or permanently, stop that member using MODE(QUIESCE). The member will be
“dormant” until you restart it. A member that is quiesced cleanly can remain
dormant forever. A quiesced member will still appear in displays and reports.
Bring the quiesced member’s log and BSDS data sets to your disaster recovery
site.

The BSDS data sets and logs for the quiesced member must be kept until such
time as they are no longer needed for recovery. The BSDS is also needed for
group restart.

If you plan to keep this member dormant forever, you can delete the BSDS data
sets when they are no longer needed for recovery. Group restart will then issue
the following message:

DSNR020I csect-name START MEMBER member, OR REPLY 'NO' OR 'QUIESCED'

When you respond with QUIESCED, DB2 issues the following message:

DSNR030I csect-name WILL CONTINUE WITHOUT THE member MEMBER'S LOG,
REPLY 'YES' OR 'NO'

You respond YES.

For more detailed information about removing a member from the group, see
“Removing members from the data sharing group” in Chapter 3. “Installing and
enabling DB2 data sharing” of DB2 for z/OS Version 8 Data Sharing: Planning
and Administration, SC18-7417.
88 Data Sharing in a Nutshell

Chapter 5. Dynamic workload
balancing

Dynamic workload balancing is an important factor in achieving business
benefits from data sharing. Continuous availability, flexible configuration, scalable
growth and managing workload spikes provide most advantages when workload
can be routed dynamically to the images in the Parallel Sysplex that have the
most capacity or best throughput.

This chapter describes the components, processes, and features that allow you
to achieve dynamic workload balancing in a DB2 data sharing environment.

We discuss the following topics:

� Objectives of workload balancing
� Workload Manager
� Dynamic virtual IP addressing (DVIPA)
� Sysplex Distributor
� Distributed data facility (DDF)
� Stored procedures
� Batch work
� WebSphere
� CICSPlex Systems Manager (CP/SM)
� IMS Transaction Manager (IMS TM)

5

© Copyright IBM Corp. 2006. All rights reserved. 89

5.1 Objectives of workload balancing

There are several objectives for using dynamic workload balancing:

Availability The objective is to route incoming work to resources that are
currently active, and to avoid resources that are experiencing
planned or unplanned outages.

Capacity The objective is to route incoming work to resources that
provide the best response time or transaction throughput,
and to avoid resources that are overcommitted

Workload spikes The objective is to allow work to flow to resources added to
handle specific workload spikes without re-coding
applications or changing JCL.

Workload routing begins in the network layer. See Figure 5-1.

Figure 5-1 Workload routing in the network layer

Appl

DB2 data sharing group

z/OS Parallel Sysplex

Network

ApplAppl Appl

Transaction Managers

CICS IMS TM DDFWAS
90 Data Sharing in a Nutshell

Requests received from TCP/IP or from VTAM can be routed among resources in
the Parallel Sysplex. TCP/IP traffic can be directed to the target resource using
dynamic virtual IP addressing (DVIPA). DVIPA and Sysplex Distributor, a
component of IBM Communication Server, work with z/OS Workload Manager
(WLM) to distribute incoming network requests based on current system
conditions. VTAM traffic can be directed using VTAM generic resources.

Once the network layer has routed the incoming requests, additional balancing
may occur, depending on whether the requests are for transaction manager
services or directly to DB2 via the distributed data facility (DDF). Some of the
transaction managers can also route requests or balance workload among their
resources. DDF requests are only balanced in the network layer.

The various transaction managers that you use can each play a role in
accomplishing workload balancing. How you define them also determines to
what extent workload balancing can be achieved dynamically.

Figure 5-2 shows the abstract view of the transaction manager layer. In a way
that is similar to the Parallel Sysplex and data sharing group layers, the
transaction manager layer can have instances in any image in the Parallel
Sysplex, so transactions can be executed on any of these instances.

Figure 5-2 Workload routing in the transaction manager layer

Appl

DB2 data sharing group

z/OS Parallel Sysplex

Network

ApplAppl Appl

Transaction Managers

CICS IMS TM DDFWAS
 Chapter 5. Dynamic workload balancing 91

CICStm and CICSPlex® Systems Manager, IMStm Transaction Manager, using
IMS Connect routing or shared message queues, WebSphere Application
Server, and WebSphere MQSeries®, all participate in what we call the
transaction manager layer. Each of these has facilities to route work to available
resources. Some of these facilities are independent of network interaction; other
facilities rely on network interaction to route work.

For example, MQSeries receives messages after network routing, but it can
place those messages on shared queues. Doing this allows applications to pull
from these queues from any image in the Parallel Sysplex. Although DB2’s
distributed data facility (DDF) can also be considered to be in this layer, it is not a
transaction manager and it relies on the network layer for workload routing.

Each of the transaction managers can accept and execute work on any image in
the Parallel Sysplex where they are defined. From a DB2 perspective, each
transaction manager instance will attach to the DB2 member that is coresident
on that z/OS image. If you have more than one transaction manager in one z/OS
image, both can attach to the same DB2 member on that image. While it is likely
that your environment will have more than one such source of DB2 workload, we
limit the discussion in the sections below to one source of work at a time.

5.2 Workload Manager

The z/OS Workload Manager (WLM) plays a key role in achieving dynamic
workload balancing benefits in a data sharing environment. This is in addition to
WLM’s role of managing performance goals within a z/OS image. WLM directs
system resources to achieving business goals as described in a WLM policy.
There is a single active policy for a sysplex, and WLM uses that policy to direct
resources to achieving the business goals.

By interacting with the various subsystems, including DB2, WLM provides
information about system capacity and availability of resources in the Parallel
Sysplex. Generally the z/OS systems administration or performance staff will
manage the WLM policy. Refer to z/OS MVS Planning: Workload Management,
SA22-7602 for more information. The redbook, System Programmer’s Guide to:
Workload Manager, SG24-6472, is also very helpful.

The following Web site is the home page for WLM:

http://www.ibm.com/servers/eserver/zseries/zos/wlm/
92 Data Sharing in a Nutshell

http://www.ibm.com/servers/eserver/zseries/zos/wlm/

From a data sharing perspective, WLM affects the following resources:

� DB2 Distributed Data Facility (DDF):

WLM manages DDF threads against their performance goals, but also
provides information to indicate to which DB2 member a new DDF connection
request should be directed. The key to availability for DDF traffic is Dynamic
Virtual I/P Addressing, or DVIPA, coupled with the Sysplex Distributor.

� WebSphere resources:

WebSphere Application Server can access DB2 data locally from System z or
remotely from System z or other platforms. In the case of local access, WLM
is involved in balancing network requests between WebSphere Application
Server instances on different images in the Parallel Sysplex.

Remote WebSphere Application Server instances access DB2 through DDF
and receive the same balancing benefits that DDF work does.

� CICS Transaction Server:

WLM provides information to Sysplex Distributor, which requesters can use to
balance TCP/IP traffic among CICS regions.

WLM provides information to VTAM Generic Resources to balance logons in
an SNA environment. WLM can manage resources (CPU, I/O, storage) for
CICS.

� CICSPlex Systems Manager (CP/SM):

The CP/SM element of CICS/TS is a system management tool to manage
multiple CICS systems as if they were a single system. CP/SM recommends
to the CICS TOR which AOR to route the transaction to in an MRO
environment.

CP/SM Real-Time Analysis (RTA) function provides automatic, external,
notification of conditions in which you have expressed an interest.

� IMS Transaction Manager:

WLM provides information to Sysplex Distributor to allow clients to direct
TCP/IP requests for IMS services to the appropriate IMS Connect, which is
the IMS interface to TCP/IP.

In an SNA network, WLM provides information to VTAM Generic Resources
to balance logon requests between IMS subsystems. WLM also interacts with
the IMS MPRs and BMPs to help get work through the system.

� Batch work:

WLM monitors batch performance goals and can start initiators throughout
the Parallel Sysplex to allow batch jobs to execute. By starting initiators on
more than one z/OS image, WLM can cause batch work to be executed on
any image where the appropriate initiators are available.
 Chapter 5. Dynamic workload balancing 93

5.3 Dynamic virtual IP addressing (DVIPA)

For data sharing groups in a TCP/IP network, DVIPA is the recommended
approach to meeting the objectives of dynamic workload balancing. The goal is
to make the members of the data sharing group easily accessible for requests
from the network while making minimal changes to the network clients.

Network requesters do not have to change
In a non-data sharing environment, network requesters will specify a location
name for database access and either an IP address or a domain name,
preferably both, for the network access to the server where the database resides.
In a data sharing environment, the location name should be the same as the
location name of the originating DB2 member, but it now refers to more than one
member. Keeping the original location name avoids changing the location name
in the configuration settings in all the distributed requesters.

To allow distributed requesters to connect to any member of the data sharing
group, we must allow the IP address that they already use to refer to any member
of the group. We can do this by defining the IP address of the original DB2
subsystem as the virtual IP address for the group, and assigning unique IP
addresses for each member. Again, this means the network requesters do not
have to change their configurations.

DB2 definitions
Because you will use the original location name to refer to the data sharing group
and the original IP address to refer to the group, you must uniquely identify each
DB2 to TCP/IP and still allow network requesters to reach a specific member in
case it becomes necessary to handle communication failures during two-phase
commit processing.

Besides specifying the listening port and resync ports in the members’ bootstrap
data sets, as described in 4.1.6, “Distributed Data Facility (DDF) related
parameters” on page 69, you will have to bind each of the DB2 members to the
listening port and resync port in the TCP/IP PORT statements. Make sure you
specify SHAREPORT for each member on the common listening port.

In addition, specify the VIPADYNAMIC definitions with VIPADEFINE RANGE
for each specific IP address. Also, in the VIPADYNAMIC definition, make sure
the VIPADEFINE and VIPADISTRIBUTE DEFINE for one member and
VIPABACKUP for each additional member specify the group dynamic VIPA.

See DB2 for z/OS Version 8 Data Sharing: Planning and Administration,
SC18-7417, Chapter 4, section Dynamic VIPA network addressing for a diagram
and further references.
94 Data Sharing in a Nutshell

5.4 Sysplex Distributor

Sysplex Distributor is a component of IBM Communication Server that provides
routing information to clients requesting access to resources in a Parallel
Sysplex. WLM sysplex routing services provide routing information, including
preferred resources, on available servers. TCP/IP domain name server (DNS)
and dynamic virtual IP addressing (DVIPA) use Sysplex Distributor to receive
information about the servers in a Parallel Sysplex.

When Sysplex Distributor requests routing information from WLM, it finds out
which servers are available and the relative weights of the servers. Sysplex
Distributor then provides this information to the clients. The client then uses this
information to balance connection requests among available servers.

Sysplex Distributor provides routing information to client requesters using TCP/IP
to access enterprise servers including:

� DB2 DDF using the DB2 Universal JDBC™ Driver and Type 4 connections
� DB2 DDF using DB2 Connect™ V8.2
� CICS
� IMS

For more information on Sysplex Distributor, see TCP/IP in a Sysplex,
SG24-5235 and Leveraging z/OS TCP/IP Dynamic VIPAs and Sysplex
Distributor for higher availability, GM13-0165.

5.5 Distributed data facility (DDF)

Clients can access DB2 via DDF using TCP/IP or SNA. TCP/IP is the strategic
network alternative and is the focus of our discussion here. If you have an SNA
network that handles DDF requests, see the DB2 for z/OS Version 8 Data
Sharing: Planning and Administration, SC18-7417 for details on using either
member routing (preferred) or VTAM generic resources to achieve workload
balancing.

Clients in a TCP/IP network use distributed relational database architecture
(DRDA) requests to access DB2. The client can either access DB2 directly or via
a gateway. In either case the client may take advantage of sysplex routing
services, as described above in 5.4, “Sysplex Distributor” on page 95. Support
for sysplex routing services is provided in the DB2 Universal JDBC Driver and in
DB2 Connect 8.2. If you are not using either of these, then the client you are
using must have its own support of sysplex routing services to receive maximum
benefit from workload balancing. The following scenario assumes that you are
using sysplex routing services such as those provided by DB2 Connect.
 Chapter 5. Dynamic workload balancing 95

A client will use its configuration files, or those on a gateway, to identify the DB2
data sharing group with a location name and an IP address or DNS name. As
described in 5.3, “Dynamic virtual IP addressing (DVIPA)” on page 94, these
should remain the same after implementing data sharing.

When the client issues a connection request, for example, CONNECT TO DB2PLOC,
the local or gateway configuration will direct the request to the virtual IP address
of the data sharing group. Sysplex Distributor will provide weighted values for the
systems in the Parallel Sysplex that it received from WLM. These weighted
values and the specific IP addresses of the data sharing group members are
returned to the client in response to the connection request. The client then
chooses which member to specify.

It is important to access Sysplex Distributor on the first connection, because that
is the fastest way to identify which members of the data sharing group are
available at the time the request is processed. Subsequent traffic between the
client or gateway and the data sharing group can be balanced between members
of the data sharing group without referencing Sysplex Distributor.

Figure 5-3 shows both an individual client and clients connecting through a
gateway. In both cases the first access is through Sysplex Distributor to identify
which members are currently available.

Figure 5-3 Clients balancing DDF requests into a DB2 data sharing group

pooled
connections

Sysplex
DistributorCONNECT TO

location
CF
96 Data Sharing in a Nutshell

In the case of the gateway, it is possible for the gateway to maintain pooled
connections with the members of the data sharing group. This can reduce
overhead and response time by reducing the time and processing required to
establish connections on a repeated basis. This savings applies at both the
gateway and the members of the data sharing group.

5.6 Stored procedures

Stored procedures themselves do not change with DB2 data sharing. What
changes is that the applications that issue the CALL statements may be running
anywhere in the Parallel Sysplex. This has several implications. One implication
is that to achieve the desired level of availability and to support workload
balancing, each member of the data sharing group must be able to start any
stored procedure. The other implication is that the application considerations for
data sharing apply to stored procedures just as they do to any other application.

Stored procedures that execute in WLM-established stored procedure address
spaces are assigned to an application environment. The definition of the
application environment includes a parameter that specifies the DB2 subsystem
name. We recommend that you share SYS1.PROCLIB among the images in
your Parallel Sysplex. This will allow you to maintain one copy of the JCL
procedure for the application environment.

If you share SYS1.PROCLIB between z/OS images, or if you want a common
JCL procedure for an application environment that may be invoked by any DB2
member, then the JCL procedure for the application environment must specify
the subsystem parameter to allow any of the DB2 member names to be
substituted. This parameter is DB2SSN, which appears in the PROC statement in the
JCL that defines the application environment. Specifying DB2SSN=&IWMSSNM
will allow that JCL procedure to associate with whatever member invokes the
stored procedure.

You should also specify DB2SSN=&IWMSSNM in the Start Parameters field on
the Create an Application Environment WLM panel that defines the JCL for an
application environment.

If you do not share SYS1.PROCLIB between your z/OS images, and only one
DB2 member will use the JCL procedure to define an application environment,
then you do not need to code the symbolic, &IWMSSNM.

Starting in DB2 for z/OS V8, you cannot create stored procedures that execute in
a DB2-established stored procedure address space. You can only invoke these
stored procedures if they were created in DB2 V7 or before. We recommend that
you convert these stored procedures to run in WLM-established stored
 Chapter 5. Dynamic workload balancing 97

procedure address spaces. Until you complete that conversion, for stored
procedures that execute in the DB2-established stored procedure address
space, all that is required is that this address space be started by each member
of the data sharing group.

Refer to DB2 for z/OS Stored Procedures: Through the CALL and Beyond,
SG24-7083 for more information on DB2 stored procedures.

5.7 Batch work

Batch workloads, whether traditional batch or IMS batch message programs
(BMPs), can take advantage of Parallel Sysplex resources if they can be started
on more than one z/OS image. In 2.5, “Application considerations in data
sharing” on page 35 we discussed reasons why you might modify your batch
processes to take advantage of the benefits of the data sharing architecture.

There are two approaches to balancing batch work across the images of a
Parallel Sysplex. One approach uses WLM-managed JES initiators
(MODE=WLM), for JES2 and JES3. The other approach relies on scheduling
software that is customized for your environment.

Typically, a batch job can execute on any z/OS image that has available initiators
for the job's class. WLM monitors the batch jobs against their performance goals.
If batch jobs are not meeting their goals, WLM can start more initiators for the job
classes defined with WLM-managed initiators (MODE=WLM). As long as the
initiators are defined on each z/OS image, the batch jobs can be started on each
image.

Scheduling programs allow for fairly detailed definition of the batch job stream
including predecessor and successor jobs and interdependencies. Your
scheduling program should be aware of the Parallel Sysplex and its resources to
take the most advantage of your available capacity. The IBM Tivoli® Workload
Scheduler provides this function to support execution of batch jobs across the
resources of the Parallel Sysplex.

Tivoli Workload Scheduler for z/OS (TWS) has an interface with WLM that
supports the critical path concept of job scheduling. For example, if TWS detects
that a critical job is running late, TWS calls a documented WLM interface to move
the job to a higher-performance service class. The job receives more system
resources and completes in a quicker time. The delay in the batch workload is
therefore reduced.
98 Data Sharing in a Nutshell

5.8 WebSphere

WebSphere Application Server can access DB2 locally, from the same System z
environment, or remotely, either from System z or other platforms. In the case of
a local WebSphere Application Server instance connecting to a local DB2 with
Type 2 connectivity, there is no workload balancing between WebSphere
Application Server and DB2.

For remote WebSphere Application Server instances, access to DB2 via DDF
can take advantage of sysplex routing services in Sysplex Distributor and the
flexibility of DVIPA to establish connections. WebSphere Application Server uses
connection pooling and connection concentration to balance workload
dynamically. This function is available in the DB2 Universal JDBC Driver Type 4
connectivity.

When a WebSphere transaction issues an SQL request it gets assigned a
connection in the database connection pool. The DB2 Universal JDBC Driver
Type 4 connectivity provides connection concentration function for the
connections in the pool. Each DB connection in the pool is assigned to a logical
connection (LC1, LC2, or LC3 in Figure 5-4). It can also concentrate the logical
connections among fewer transports. The logical connections are eligible to be
assigned to different transports after a commit.

Figure 5-4 Remote WebSphere Application Server using DB2 JDBC Universal Driver to
access a data sharing group

TransportTransport

Application Server

A
pplication

Resource
Adapter

JCA
Connection
Manager

DB
Connection
Pool DB2 Universal

JDBC Driver

pooled
connections

JVM

Transport
1

Transport
2

LC 1

LC 2

LC 3

CF
 Chapter 5. Dynamic workload balancing 99

The transports use pooled connections to the members of the data sharing
group. WebSphere Application Server can balance the connection requests
across the pooled connections to the data sharing group based on availability
and performance feedback. This balancing occurs dynamically and is
transparent to the application processes.

For more information on WebSphere Application Server and connection
concentration and use of Type 4 connectivity in the DB2 Universal JDBC Driver,
see the DB2 for z/OS Application Programming Guide and Reference for JavaTM,
SC18-7414.

5.9 CICSPlex Systems Manager (CP/SM)

CICS and CP/SM take advantage of workload balancing performed in the
network layer by either TCP/IP or VTAM. TCP/IP and the Sysplex Distributor can
balance incoming CICS requests between CICS terminal owning regions
(TORs). For SNA network traffic, VTAM uses generic resource definitions to
balance logons between CICS TORs.

Within the CP/SM environment transaction requests that arrive in one TOR can
be routed to an application owning region (AOR) in the same z/OS image or in
another z/OS image. This routing is based on CPSM information about CICS
resources in target regions and, if running in goal mode, about how well target
regions are meeting their goals.

Figure 5-5 illustrates both balancing in the network layer and workload routing
from the TORs to AORs across the sysplex.
100 Data Sharing in a Nutshell

Figure 5-5 CICS and CP/SM in a Parallel Sysplex environment

5.10 IMS Transaction Manager (IMS TM)

IMS takes advantage of workload balancing performed in the network layer by
either TCP/IP or VTAM. TCP/IP and the Sysplex Distributor can balance
incoming IMS messages between IMS Connect regions. An IMS Connect can
send a message to an IMS based on any algorithm that the user implements in
an exit routine.

Typically, IMS Connect will send messages to one IMS subsystem, but can route
messages to other subsystems based on subsystem availability. For SNA
network traffic, VTAM uses generic resource definitions to balance logons
between IMS subsystems.

DB2DB2

SYSBSYSA

TOR TOR

AOR AOR AOR AOR

TCP/IP TCP/IPVTAM VTAM

Sysplex
Distributor

 CPSM CPSM

DBP1 DBP2
 Chapter 5. Dynamic workload balancing 101

Figure 5-6 shows network requests distributed across two IMS subsystems in a
Parallel Sysplex. IMS transactions can exploit all the advantages of DB2 data
sharing as well as IMS DB data sharing.

Figure 5-6 IMS Subsystems in a Parallel Sysplex

IMS can further distribute requests to handle overflow conditions. If a message
that reaches an IMS subsystem cannot be scheduled right away, the message
can be placed on a shared message queue in the coupling facility, allowing
another IMS subsystem to schedule the message. IMS shared queues can thus
handle intermittent peaks dynamically.

Web
Server

CF

IMS B

Control
Region

Dep.
Region

Dep.
Region

IMS A

CF

VTAM Generic Resources

TCP/IP and Sysplex Distributor

DBRC

IMS
TR1

. . .

IMS
TR1

TSO
BMP4

IMS IMS
DatabasesDatabases

Browser

BrowserCV

Control
Region

Dep.
Region

Dep.
Region

IRLM

DBRC

RECON

DL/I SASDL/I SAS

IMS
Connect

IMS
Connect

IRLM

Dep.
Region

Dep.
Region

Dep.
Region

DB2 DB2
DatabasesDatabases
102 Data Sharing in a Nutshell

5.11 Dynamic workload balancing best practices

� Use Dynamic virtual IP addressing (DVIPA) and Sysplex Distributor for
availability and failover. This combination will ensure that network connection
requests are routed to an available member and, if there is more than one
member available, to the one with the greater capacity.

� Share SYS1.PROCLIB among the members of the data sharing group and
use one copy of the JCL for each stored procedure.

� Ensure that all your DB2 stored procedures run in WLM-established stored
procedure address spaces.

� For DB2 for z/OS requesters to a data sharing group, use TCP/IP connectivity
and take advantage of the benefits of DVIPA.

� If you still use an SNA network, use member routing for requests from a DB2
for z/OS requester to a data sharing group. Member routing provides similar
sysplex routing services to DVIPA and Sysplex Distributor. Avoid using VTAM
generic resources.
 Chapter 5. Dynamic workload balancing 103

104 Data Sharing in a Nutshell

Chapter 6. Operations

DB2 data sharing introduces several new and/or changed concepts to DB2
operations. We strongly recommend that you become familiar with these areas of
operational impact. You should modify your existing operational procedures to
incorporate the necessary changes.

We discuss the following topics:

� Recovery of DB2 objects
� Component failure
� Sysplex failure management (SFM) policy
� Automatic restart manager (ARM)
� Restart Light
� Commands
� Multi-system DB2 diagnostic dumps
� Disaster recovery
� Rolling maintenance

6

© Copyright IBM Corp. 2006. All rights reserved. 105

6.1 Recovery of DB2 objects

The RECOVER utility works basically the same way for data sharing as it does
for the non-data sharing environment. The most recent image copy is restored
and the updates that have been logged since the image copy was created are
applied. The major difference is that the log records that need to be applied could
belong to several members of the data sharing group. Also, the DB2 subsystem
that is performing the recovery needs to ensure that the log records are applied
in the proper sequence. The RECOVER utility can be run on any active member
of the DB2 data sharing group.

In this section we define the following terms:

� Log record sequence number (LSRN)
� Group buffer pool recovery pending (GRECP)
� Logical page list (LPL)

Best practices for GRECP/LPL recovery are also provided.

6.1.1 Log record sequence number (LSRN)

LRSN is a value derived from the stored clock timestamp and synchronized
across the members of a data sharing group by the Sysplex Timer. This is the
mechanism used in data sharing to provide the ordering of log records that have
been updated by any member in the group. In non-data sharing, relative byte
address (RBA) is used for ordering of log records and recovery.

6.1.2 Group buffer pool recovery pending (GRECP)

If a coupling facility fails, or if all members have lost connectivity to a GBP, data
sets with pages in the affected GBP are placed by DB2 in GRECP exception
status. Their recovery consists of applying changes that are recorded in the log
to the page set.

DB2 automatically recovers GRECP page sets when the group buffer pool is
defined with AUTOREC (YES). The exception to this is when DB2 detects
GRECP conditions during restart in DB2 V8.

With duplexed GBPs, the only time you should experience GRECP is when both
coupling facilities (CF) are unavailable. If a single CF fails, fallback to simplex
occurs within a few seconds and no GRECP occurs.
106 Data Sharing in a Nutshell

6.1.3 Logical page list (LPL)

The LPL exception condition is set if pages cannot be read from or written to the
group buffer pool. In non-data sharing, pages can only be set LPL when they
cannot be read from or written to disk because of a transient disk problem.
Messages such as DSNB250E, DSNB303E, DSNB311I, and DSNB312I indicate
that pages have been written to the LPL and provide information as to why they
were put in the LPL. DB2 also automatically recovers LPL conditions unless it is
detected during restart in DB2 V8.

6.1.4 Recommendations for GRECP/LPL recovery

The most common reasons that you may need to manually recover GRECP/LPL
in DB2 V8 occur under the following circumstances:

� When you perform offsite disaster recovery testing (see Disaster Recovery
with DB2 UDB for z/OS, SG24-6370)

� For a Parallel Sysplex wide outage that could occur with a power failure when
auxiliary power is not available

To reduce this unplanned outage, you need to consider these settings:

� Frequency of group buffer pool checkpoints
� Group buffer pool castout threshold
� Group buffer pool class castout threshold
� Use of AUTOREC(YES)

If GRECP/LPL conditions are set during DB2 restart, you must manually remove
them. You normally do this by issuing START DATABASE commands, as it is
much faster than alternate methods such as RECOVER utility or LOAD utility.
The command reads the active logs and applies all records that had not been
externalized to disk.

Best performance is obtained by the use of Fast Log Apply (FLA), a process
enabled by the DSNZPARM LOGAPSTG in the DSN6SYSP macro. This can be
specified on the Log Apply Storage option of the DSNTIPL install panel. The
maximum value that can be specified is 100, which refers to megabytes of
storage in the DBM1 address space that DB2 can use for FLA invocations.

Notes:

� If all the z/OS images were to fail, there is normally no GRECP/LPL
recovery needed on restart as long as the CFs remain available.

� DB2 Version 9.1 for z/OS performs GRECP/LPL recoveries even when the
conditions are detected during restart.
 Chapter 6. Operations 107

Each START command acquires a 10 MB log buffer and sorts the list of objects
in the START command in database/table space/page/LRSN sequence. One
subtask is created for each of the objects in the list, up to 98 (More than 98
objects will wait until one of the subtasks are available).

Not only are the log records ready to be applied in sequence, but also, the pages
of the data set are acquired through a process called list prefetch. This capability
allows a recovery that is up to 10 times faster than without FLA. Without FLA,
each log record is read sequentially, the applicable page is read synchronously
into the buffer pool and applied. The next log record, which is likely for a different
table space, is read, and the process continues.

Create your START commands so that you process multiple objects per
command. Issue no more than 10 START DB commands per DB2 member
because the subsequent commands will not use FLA. We recommend the
commands shown in Example 6-1, which will resolve both GRECP and LPL
conditions at the same time.

Example 6-1 Issuing START commands

-START DB(DSNDB01) SP(*)
-START DB(DSNDB06) SP(*)
-START DATABASE(db1) SPACE(*)
-START DATABASE(db2) SPACE(abc*)

You should always start the DB2 Directory (DSNDB01) and DB2 Catalog
(DSNDB06) first, as shown in Example 6-1. Following their successful restart,
issue the commands for other databases in your own priority sequence.

If the number of objects in a database is fewer than 90 or so, you can issue the
database form of the command. If you have several hundred objects in a
database, then you should split them as shown in the last form of the command,
making sure that you do not exceed the limit of 98. In fact, it is better to restrict it
to about 50-70 objects, which allows for future growth without your having to
recalculate the number each time.

Note: Some users have hesitated to implement FLA because they fear
running out of virtual storage in the DBM1 address space.

If the storage size specified is not available when FLA attempts to allocate it,
DB2 tries to allocate a smaller amount. If there is insufficient storage for FLA,
DB2 reverts to standard log apply.
108 Data Sharing in a Nutshell

You should have Install SYSADM authority for the commands. If you do not, DB2
will check for your authorization, and if the directory objects (DSNDB01) are in
GRECP, it is likely to fail. Because Install SYSADM is defined in DSNZPARM, it is
validated by that means.

If you fail to recover GRECP pages by START DATABASE command, you can
recover the pages by using the RECOVER utility. See Chapter 23. “RECOVER”
of DB2 for z/OS Version 8 Utility Guide and Reference, SC18-7427. It may take a
long time to recover objects in GRECP status, depending on the workload on
your system.

6.1.5 Best practices for GRECP/LPL recovery

Here are some best practices recommendations for GRECP/LPL recovery:

� Use DSNZPARM LOGAPSTG=100 to enable fast log apply recovery code.

� Place active logs on separate devices (for availability) to achieve the best
performance for recovery since both copies of the log are read.

� Submit 10 jobs per member (each job processes 10 MB of the log).

� Issue -STA DB(DSNDB01) SP(*)

� Issue -STA DB(DSNDB06) SP(*)

� Start other databases in priority sequence with pre-coded start commands
with fewer than 70 objects in the list (to allow for growth within the database).
If a database has more than that, then pre-code the start database command
with wildcard, that is, SPACE(ABC*) to limit the list.

Do not issue start commands for each individual object, as that will result in poor
disk performance due to massive contention on the DB2 active log.

6.2 Component failure
One major reason to implement Parallel Sysplex and DB2 data sharing is to
provide continuous availability during both scheduled and unscheduled outages
to any component. It is necessary to set up the environment so that a component
failure has minimal or no visible impact to the availability of the applications to the
users. High availability can be facilitated by properly defining the policies that
control the actions taken by the system when a failure occurs. These include the
CFRM policy, SFM policy, and ARM policy.

Note: Although you predefine the list, nevertheless, at the time of the disaster
the number of objects actually in GRECP/LPL will vary. In a list of 50-70
objects, there may be none, or 5, but that is OK.
 Chapter 6. Operations 109

For more information about the policies and the ways to define them, see z/OS
V1R7.0 MVS Setting Up a Sysplex, SA22-7625.

The following section provides information for the following circumstances:

� DB2 subsystem failure
� z/OS system failure
� CF failure

6.2.1 DB2 subsystem failure

The locks held by a failing DB2 member of a data sharing group environment that
fails become retained locks. These retained locks are necessary to protect data
in the process of being updated from being accessed by another active member
of the group. Retained locks should be released as soon as possible to allow
access to all data by the surviving members of the group.

Normal restart
For this, you simply restart DB2 using automation, either your own or automatic
restart manager (ARM). Automation is much faster than manual operation. Time
to restart becomes a critical path in data sharing, because the DB2 members
that are active can experience timeouts for workload due to retained locks held
on a failed member. Normal restart for a member of data sharing group is exactly
the same as for a non-data sharing group. For more information about normal
restart, see “Normal restart for a data sharing member” in Chapter 5. “Operating
with data sharing” of DB2 for z/OS Version 8 Data Sharing: Planning and
Administration, SC18-7417.

Group restart
A group restart is initiated by DB2 if either the SCA or the lock structure (or both)
are lost (CF failure or deactivation), and can not be rebuilt on the other coupling
facility. When this happens, all members of the data sharing group terminate
abnormally. Group restart rebuilds the information from each member’s logs. Any
member that is restarted will detect the situation and will rebuild the SCA and
lock structures, but it is best to start all members at once. Before performing a
group restart, you need to delete a persistent structure or a failed-persistent
connection.

For more information refer to “Group restart” in Chapter 5. “Operating with data
sharing” in DB2 for z/OS Version 8 Data Sharing: Planning and Administration,
SC18-7417.
110 Data Sharing in a Nutshell

6.2.2 z/OS system failure

If the underlying z/OS system fails, the DB2 subsystem in the z/OS image should
be restarted on another z/OS image in the Parallel Sysplex as soon as possible
so that retained locks are released. You can automate this cross-system restart if
your z/OS systems team has implemented automatic restart manager (ARM)
policy.

In non-data sharing, some users wait for an IPL of the failed z/OS image. For
data sharing users, this is too long to wait. The focus needs to be changed from
the failed image (and its DB2) to the DB2 members that are active on another
image. The active workload can incur timeouts and failures due to the retained
locks still held by the member that remains down.

Once the DB2 subsystem has restarted in another z/OS image, all of the retained
locks will be released.

Refer to z/OS MVS Setting Up a Sysplex, SA22-7625 for information about how
your z/OS systems staff can create an ARM policy.

6.2.3 CF failure

The values you specified for your CF structures play a large part in determining
the recovery actions that are taken when a CF fails. This refers to a single failure
and not to a double failure. Refer to 3.3, “Duplexing” on page 53 and 3.4, “CF
configuration alternatives” on page 56.

From our CFRM policy example shown in 3.5, “CFRM policy” on page 60, we
have two CFs in the preference list. Duplexing is enabled, and a loss of 1% of the
weight, as defined in the SFM policy, results in a rebuild of the structure to the
alternate CF in the preference list (PREF).

For duplexed GBPs, loss of CF will fall back to simplex within seconds and the
outage may not even be noticed.

For the Lock and SCA structures that are not duplexed, rebuild occurs
automatically (normally within a minute or two depending on the amount of
activity at the time of the failure) to the second CF in the preference list.

See z/OS MVS Setting Up a Sysplex, SA22-7625 for information about how to
create CFRM and SFM policies. See “Recovery from coupling facility failures” in
Chapter 5. “Operating with data sharing” of DB2 for z/OS Version 8 Data Sharing:
Planning and Administration, SC18-7417 for more information about CF failures.
 Chapter 6. Operations 111

6.3 Sysplex failure management (SFM) policy

If you have not implemented the sysplex failure management (SMF) policy, you
will realize its benefits when a z/OS image on which a DB2 member in the group
runs appears to hang. A member of the sysplex that has not updated its status
within the specified failure detection interval needs to be partitioned out promptly.

It is rarely possible to save a failed system through operator action after XCF has
detected failure of the system. Automatic removal of the failed system from the
sysplex is preferable to avoid “sympathy sickness” from the lack of access to
resources locked by the failing system. The objective is to minimize timeouts
from surviving DB2 members. When your z/OS system staff implements the SMF
policy, it will accomplish this goal. We recommend the following values for your
z/OS systems staff:

� Implement ISOLATETIME instead of PROMPT.
� Assign appropriate weights to the systems according to their importance.
� Specify an ISOLATETIME of zero in the SMF policy.

6.4 Automatic restart manager (ARM)

Automatic Restart Manager (ARM) provides a quick restart capability without any
operator action. Locks held by the failed members, called retained locks, will be
released as soon as the member is restarted. Releasing the retained locks
quickly is very important to provide high data availability to applications running
on other members while maintaining data integrity. ARM can rebuild CICS
regions associated with the DB2 to resolve in-doubt units of work.

Your z/OS systems staff will set up the ARM policy if ARM has been implemented
in your environment. See z/OS MVS Setting Up a Sysplex, SA22-7625 for
information about how to create ARM policy.

6.5 Restart Light

If the failed DB2 subsystem was running on a z/OS image which is no longer
available, it is critical to restart the failed DB2 in another z/OS image in the same
Parallel Sysplex (where another member might be active) in order to release the
retained locks. Another z/OS image may not have the resources to handle the
workload of an additional DB2 subsystem. RESTART(LIGHT) enables DB2 to
restart with a minimal storage footprint to quickly release retained locks and then
terminate normally.
112 Data Sharing in a Nutshell

The ARM policy described previously also has the capability to perform an
automated restart using the light option. You specify LIGHT(YES) within the
RESTART_METHOD(SYSTERM) keyword for the DB2 element name. For
example:

RESTART_METHOD(SYSTERM,STC,'cmdprfx STA DB2,LIGHT(YES)')

However, Restart Light does not release the locks that are held by postponed
abort units of recovery and IX mode page set P-locks. These locks do not block
access by other members, but they do block drainers such as utilities.

Indoubt units of recovery (UR) with Restart Light
When you start a DB2 with Restart Light mode and there are indoubt units of
recovery, you have the following two choices:

� Do not allow DB2 to recover the unit of recovery:

You can release only the retained locks and then have the restarted DB2
automatically stop. The indoubt URs remain in unresolved status until
connection is eventually made with the commit coordinator.

� Allow DB2 to recover the unit of recovery:

The restarted DB2 with light mode will be active until the last indoubt UR is
resolved. If the appropriate coordinator is started on the same z/OS image,
the indoubt URs will be recovered automatically. Otherwise, you have the
option to recover the indoubt URs manually by issuing the RECOVER INDOUBT
command.

For more information, see “Removing retained locks” in Chapter 5. “Operating
with data sharing” of DB2 for z/OS Version 8 Data Sharing: Planning and
Administration, SC18-7417.

6.5.1 Best practices for failures

Make sure to perform these failure scenarios and practice recovery on a test
system before going into full production.

Here are our best practice recommendations for component failures:
� Make sure that the SCA and Lock structures are duplexed or allocated in an

external coupling facility. See “3.4, “CF configuration alternatives” on
page 56”.

� Enable GBP duplexing.

� Set up SFM and ARM policies to restart failed DB2 members to release
retained locks as quickly as possible.
 Chapter 6. Operations 113

These are our recommendations for group restart:
� Restart all members at the same time for fastest restart and best availability

(all retained locks are released).

� While one member can perform group restart on behalf of the rest of the
group, it can take significantly longer. It still leaves retained locks for the
members that have not yet been started.

� Force any remaining connections or structures.

6.6 Commands

In this section we take a brief look at data sharing related commands. For more
information, see Chapter 5. “Operating with data sharing” of DB2 for z/OS
Version 8 Data Sharing: Planning and Administration, SC18-7417. We
recommend that you issue certain commands to check system status on a
regular schedule, preferably by using automation.

This section includes the following information:

� Basics
� CF and structure related commands
� IRLM commands
� DB2 commands

6.6.1 Basics

If your DB2 is installed with a command prefix scope of “S” meaning STARTED
which is the default (and recommended) value, start DB2 from the z/OS image
on which you want to start DB2 or you can use the z/OS console command to
route it to another z/OS image. For the convenience of operations, you can use
the route command. After DB2 is started, you can issue any DB2 commands
from any z/OS image in the Parallel Sysplex group. The commands are routed to
the appropriate member.

It is preferable for DB2 to be started by automation following IPLs and to be kept
up by automation.

Some commands in a DB2 data sharing environment affect only one member
while others cause an action that affects all members in the group. For example,
STOP DB2 is a member scope command and only affects the member which is to
be stopped. STOP DATABASE is a group scope command and the objects within
that particular database are stopped for all members. It is important that you
review the DB2 UDB for z/OS Version 8 Command Reference, SC18-7416 for
more information.
114 Data Sharing in a Nutshell

6.6.2 CF and structure related commands

In Table 6-1 we show a limited set of commands that display information about
the CFs and their structures. Also listed are commands for starting the policy,
altering the size of structures, rebuilding structures, duplexing group buffer pools,
and forcing structures. Because the CFs are part of the z/OS Parallel Sysplex,
the commands are z/OS commands and not DB2 commands. For more detailed
information about the commands and how to use them, see z/OS V1R7.0 MVS
Setting Up a Sysplex, SA22-7625.

Table 6-1 CF and structure related commands

Category Command Explanation

Starting a new
CFRM policy

SETXCF START,POLICY,TYPE=CFRM,
POLNAME=newpolicy

Activate (apply) new CFRM policy.

SETXCF START,REALLOCATE Resolve all pending changes from
activation of a new policy, including
repositioning duplexed GBPs in the
preferred CF. This one command,
performed by the z/OS systems staff
following activation or a new policy or CF
maintenance, eliminates most of the
reason for the commands in “Rebuilding”
and “Duplexing”.

Displaying D XCF,STR,STRNM=groupname* Display structure information.

D XCF,STRNM=strname,CONN=ALL Display connector information in detail.

D XCF,POLICY,TYPE=CFRM Display the current CFRM policy.

D CF Display information CF and link status.

D XCF,CF,CFNM=ALL Display connections to the CF.

Displaying D M=CHP Display the status of all channel paths.

D XCF,ARMS Display the ARM policy.

Altering SETXCF START,ALTER,STRNAME=strname,
SIZE=nnnn

Change the size of a structure dynamically.
 Chapter 6. Operations 115

SETXCF START,REALLOCATE is a relatively new command that is primarily used
following CF maintenance, where one CF at a time must be cleared. These
activities are usually performed by the z/OS systems staff and operations.
With this one command, the CFRM policy is processed sequentially for best
performance and each structure is placed correctly in its preferred CF. This
command eliminates the primary use of the “Rebuilding” and “Duplexing”
commands that are shown on a CF basis in Table 6-1.

Rebuilding SETXCF
START,RB,STRNM=strname,LOC=OTHER

Rebuild a structure onto another CF.

SETXCF START,RB,STRNM=strname,
LOC=NORMAL

Rebuild a structure based on CFRM policy.

SETXCF START,RB,CFNM=cfname,LOC=OTHER Rebuild all structures onto another CF.
The Reallocate command is preferred.

SETXCF START,RB,POPULATECF=cfname Repopulate all structures back into a CF.
The Reallocate command is preferred.

Duplexing SETXCF START,RB,DUPLEX,STRNM=strname Start duplexing a structure.

SETXCF START,RB,DUPLEX,CFNAME=cfname Start duplexing all eligible structures in a
CF.
The Reallocate command is preferred.

SETXCF STOP,RB,DUPLEX,CFNAME=cfname Stop duplexing all eligible structures in a
CF.
The Reallocate command is preferred.

SETXCF STOP,RB,DUPLEX,STRNM=strname,
KEEP=OLD|NEW

Stop duplexing for a structure.

Forcing SETXCF FORCE,CON,STRNM=strname,
CONNM=ALL

Delete failed-persistent connections by
force.

SETXCF FORCE,STR,STRNM=strname Deallocate a structure by force.

Category Command Explanation
116 Data Sharing in a Nutshell

6.6.3 IRLM commands

Table 6-2 explains the IRLM modify commands. For more information about the
commands, see DB2 UDB for z/OS Version 8 Command Reference, SC18-7416.

Table 6-2 IRLM commands

6.6.4 DB2 commands

Table 6-3 lists some of the DB2 commands that you will find useful in a data
sharing environment. For more information about the commands, see DB2 UDB
for z/OS Version 8 Command Reference, SC18-7416.

Table 6-3 DB2 commands

Command Explanation

F irlmproc,STATUS,ALLI Display group and member function level.

F irlmproc,STATUS,ALLD Display retained locks.

F irlmproc,STATUS Display waiters for locks.

F irlmproc,STATUS,STOR Display the current and “high water” IRLM
storage used by IRLM.
Recommendation: Run regularly by
automation to check storage status.

F irlmproc,SET,CSA=nnn Change the size for MAXCSA parameter
in IRLM startup procedure.

F irlmproc,SET,TRACE=nnn Change the number of component trace
buffers.

F irlmproc,DIAG,HANG Dump all IRLMs in the group.

TRACE CT,ON,COMP=irlm_name Start an IRLM trace in wrap-around mode.

F irlmproc,ABEND,NODUMP Stop IRLM and de-register from ARM
policy.

Command Explanation

cmd_prefix DIS GROUP (DETAIL) Display information about group in detail

cmd_prefix DIS GBPOOL (gbpname) Display information about group buffer
pool.
Recommendation: Run this command
regularly to monitor group buffer pool
structure.
 Chapter 6. Operations 117

6.7 Multi-system DB2 diagnostic dumps

In a DB2 data sharing environment, it is possible for one or more members to
experience problems or even completely fail due to an abnormal situation on a
different member within the group. For problem determination, IBM defect
support may require dumps of particular address spaces from all of the members
of the data sharing group.

Here are our general recommendations for dealing with a “hang” of all the
members in the data sharing group:

� Dump all DB2 address spaces on all members.

� Dump all IRLM address spaces and include XES information for all members:

– Provide SYS1.LOGREC and SYSLOG for all member from about one hour
before the hang to the time of the dumps

– If you can identify the home address space of any job involved in the hang,
its dump would be an added benefit (however, this may not be possible).

cmd_prefix DIS GBPOOL(*) GDETAIL(*)
TYPE(GCONN)

Display statistics about all GBPs since
the GBP was allocated. Issue it on one
member only to get statistics for all
members’ usage of GBPs.
Note: The list produced is small and
contains only those GBPs that are
connected at the time.
Recommendation: Run this command
regularly to monitor for “Cross
Invalidations due to directory reclaims”
and “Writes failed due to lack of storage

cmd_prefix DIS BPOOL(bpname) LIST(*)
GBPDEP(YES)

Display GBP-dependent page sets for this
DB2.

cmd_prefix DIS DB(dbname) SPACE(*)
LOCKS

Display information about locks.

cmd_prefix DIS DB(dbname) SPACE(*)
LPL RES(LPL)

Display information about LPL entries.

cmd_prefix DIS DB(dbname) SPACE(*)
RES

Display information about objects in
restricted status.

cmd_prefix STA DB(dbname)
SPACE(spacename)

Recover objects in LPL or GRECP status.

Command Explanation
118 Data Sharing in a Nutshell

� Set up an SLIP for taking any dump, using the coding in Example 6-2.

Example 6-2 Setting parameters for dumps

SLIP SET,IF,N=(IEAVEDS0,00,FF),A=SVCD,DISABLE,
 JOBLIST=(XCF*,????IRLM,????MSTR,????DBM1),
 SDATA=(XESDATA,COUPLE,PSA,LSQA,LPA,GRSQ,SWA,RGN,CSA,
 SQA,SUM,TRT,ALLNUC),
 REMOTE=(JOBLIST,SDATA),ID=xxxx,END

where ???? is the high level SSID name of the members.
 WHERE XCF* = your XCF name
 WHERE xxxx is your slip id that you can use to
 enable the slip when the error occurs.

When you set the SLIP, it will be set as DISABLED. When you want a dump, just
issue the following command and the dump will be taken at that time:

SLIP MOD,ENABLE,ID=xxxx

6.8 Disaster recovery

It is critical for enterprises to protect their DB2 for z/OS data in case of disaster
and to be able to restart with a consistent copy of the DB2 data as quickly as
possible with minimal loss of data. The implementation of DB2 data sharing
introduces some additional activities that are required both in the preparation for
and execution of the disaster recovery procedure.

The redbook Disaster Recovery with DB2 UDB for z/OS, SG24-6370, provides
information on data sharing disaster recovery requirements as well as those for
non-data sharing.

6.9 Rolling maintenance

Applying maintenance to a DB2 subsystem generally requires a scheduled
outage. With a data sharing group, such outages can be avoided by using a
technique called rolling maintenance.
 Chapter 6. Operations 119

Workload is shifted from one member to another member. This implies that the
applications must be able to run on more than one member. One DB2 member of
the data sharing group is stopped while the other members keep processing the
workload. The system programmer makes appropriate modifications so that
when that DB2 is started again, it loads modules that have the new maintenance
applied. The process is repeated for each of the other members, usually one at a
time, until all the members are running with the new maintenance.

Rolling maintenance across all the members maintains data and application
availability with no apparent outage to end users.

6.9.1 Service recommendations

Use consolidated service test (CST) or recommended service upgrade tape
(RSU) maintenance packages for all main IBM products, as this service has
been tested together and should be more resilient than independent problem
temporary fixes (PTF). After 6 months 60% of errors identified by customers had
PTFs. Putting on a fix for a critical problem if you are far behind may require you
to apply many PTFs that are in the prerequisites chain into production.

Staying between 3 and 6 months behind currency reduces the chances of
encountering a PTF in error (PE). Most PEs are discovered within the first 3
months of PTF close date. This level of currency also reduces the chance of
encountering a known problem for which a fix already exists but has not been
applied in the environment

ERRSYSMOD report warns of fixes that are going PE, new high pervasive APAR
(HIPER) / Security / Integrity / Pervasive PTFs available. If you know you are
exposed to a problem with a critical fix, implement it quickly and do not wait for
the next maintenance cycle.

For a better description of the Consolidated Service Test (CST) process, go to:

http://www.ibm.com/servers/eserver/zseries/zos/servicetst/

6.9.2 Best practices for maintenance

Here are our best practice recommendations for maintenance:

� Apply CST/RSU maintenance minimum of 2-3 times a year. Stay no less than
3 months and no more than 6 months behind in production.

� Download HIPERs weekly and apply them monthly.

� Test maintenance to assure stability in your environment.
120 Data Sharing in a Nutshell

http://www.ibm.com/servers/eserver/zseries/zos/servicetst/

Chapter 7. Advanced topics

This chapter provides information for additional data sharing issues that might
arise. For more details on them, you should consult the referenced publications.
Each topic stands on its own and may not bear any relationship to any other topic
in this section.

We discuss the following topics:

� CLOSE YES and CLOSE NO table spaces
� The problem of runaway threads
� Lock avoidance: CLSN versus GCLSN
� Usermod for routing to multiple DB2s on a z/OS image
� Performance
� Determining the number of threads

7

© Copyright IBM Corp. 2006. All rights reserved. 121

7.1 CLOSE YES and CLOSE NO table spaces

The CLOSE specification you made for CREATE/ALTER TABLESPACE has
different implications in data sharing.

Any table space or index which has remained in a read-only state with no activity
for a period of time longer than the pseudo-close interval (PCLOSEN/PCLOSET
DSNZPARM) is physically closed to reduce data sharing overhead (the object
can become non-GBP-dependent if it is closed on all but one member or if it is
open on multiple members but all are read-only). Its disadvantage is that the next
access to the object must go through physical open again. There can be
significant overhead, particularly if a large number of objects are accessed at the
same time after a period of inactivity (such as beginning of day).

In data sharing, DB2 honors the CLOSE YES or NO attribute of the table space
or index. The physical close now takes place only for CLOSE YES objects, while
CLOSE NO objects remain open indefinitely. You control the behavior on an
object-level basis directly instead of through PCLOSEN/PCLOSET DSNZPARM
values, because lengthening the pseudo-close interval has adverse effects on
recovery.

In all cases pseudo-close still occurs. The ending SYSLGRNX entry is closed,
thereby delimiting for the RECOVER utility the location of updates. Additionally
the HPGRBRBA in the header page is updated for each page set (except for the
seven always open Catalog/Directory table spaces).

There are certain performance considerations to be evaluated:

� CLOSE (YES): After a pseudo-close interval with no other interest, the data
set is physically closed and can experience the performance degradation
described previously, as a physical open must be performed on next access.
For objects that are infrequently GBP-dependent, CLOSE(YES) likely
provides better performance and faster restart after a DB2 crash.

� CLOSE (NO): Data set is not closed. This means that once an object
becomes GBP dependent, it will remain so until the object is pseudo-closed
as the only read/write member. Pages will continue to be registered and
changed pages will be written to the GBP and subsequently castout even if
there has been no other interest for hours or days. This can have an effect on
the amount of data sharing overhead experienced in those cases.
122 Data Sharing in a Nutshell

7.1.1 Best practice

Specify CLOSE(NO) for objects that you expect to be GBP-dependent most of
the time and which are sensitive to response time during first access. Most table
spaces should be CLOSE(YES).

7.2 Performance

The question everyone asks is: “How much overhead will I experience in data
sharing over my current non-shared workload?”

That answer cannot be provided here, as it is workload dependent. The most
accurate way to determine it is to provide an isolated environment with
repeatable workload where you can benchmark, but this is impractical. New data
sharing users are left with commonly accepted rules of thumb (ROT) that are
stated something like, “For a 2-way group, expect overhead of x% and for each
additional member, y%.” The y% value is typically <1%. The numbers given
originally in the mid 1990s were based on 9672 technology and traditional
OLTP-like workloads.

Today’s DB2 user has a much more diverse workload, one that is less
repeatable, more distributed, and uses much faster System z processors with
internal coupling facilities. The old numbers are based on DB2 V4. There have
been numerous improvements in DB2 since that time to reduce data sharing
overhead. The most significant ones have occurred in DB2 V8, which reduces
global locking contention, while it increases batching capability for CF access.

What we can say is that you will achieve the best performance when you adopt
the recommendations we describe in this document:

� Sizing the lock structure to eliminate false contention. See 7.3, “Eliminating
false contention” on page 124.

� Sizing the GBPs to eliminate “cross invalidations due to directory reclaims”.
See 3.1.1, “Group buffer pools” on page 40.

� Implementing auto alter to insure an optimal directory to data ratio for the
GBP. See 3.2, “Auto Alter” on page 47.

� Providing two dedicated links between the z/OS image and each CF to
reduce or eliminate path busy conditions

� Providing at least two CF engines per coupling facility for most predictable
response. See 7.4, “How many CF engines are necessary?” on page 126.

� Committing frequently in batch jobs to allow effective lock avoidance. See 7.5,
“Lock avoidance: CLSN versus GCLSN” on page 128.
 Chapter 7. Advanced topics 123

� CF technology that is no more than one generation behind the processors on
which z/OS reside. See “Technology considerations for external CFs” on
page 60.

� Minimize the GBP-dependency of DB2 objects through scheduling or
direction of workload. This negatively affects the availability afforded when an
application can be routed to any and all members of a group.

7.3 Eliminating false contention

The discussion in this section assumes, at a minimum, all of these conditions:

� DB2 V8
� New Function Mode (NFM)
� Group stop/start to implement lock protocol 2

In DB2 V8 NFM, once you have restated the data sharing group after a group
quiesce, you have automatically enabled protocol 2. This protocol avoids the cost
of global contention processing whenever possible. It also improves availability
due to a reduction in retained locks following a DB2 subsystem or z/OS system
failure making the recommendation for RELEASE(DEALLOCATE) (and thread
reuse) to reduce XES messaging for L-locks no longer required. For details, see
Chapter 8, “Data sharing enhancements” of the redbook DB2 for z/OS Version 8
Performance Topics, SG24-6465.

We have recommended you size your lock structure initially at 64000K. How do
you know if this sizing is correct after you have been in data sharing for awhile?
While we recommend you refer to the DB2 for z/OS Version 8 Data Sharing:
Planning and Administration, SC18-7417 for more detailed performance and
tuning assistance, we discuss in this section how to minimize the false contention
(FC) that can occur when two different objects (a and b) hash to the same lock
table entry (LTE).

When there is false contention on an LTE, the XES component on one member
must resolve it by messaging to a XES component on the other member. The
transaction is suspended while the resolution is accomplished. It is always
successfully resolved by XES without taking the further step of consulting the
IRLMs involved because XES recognizes that a and b are different.

Important: No matter how many members exist, no more than one other
member need be messaged to resolve global lock contention. This means that
for a 6-way data sharing group, it is not necessary for all 6 members to vote if
contention exists. DB2 does not perform pass-the-buck global locking.
124 Data Sharing in a Nutshell

The idea behind tuning to minimize false contention is that if the lock table
contained more entries, a and b would hash to different LTEs and lock requests
would be granted without suspension.

We use the RMF coupling facility activity report to determine quickly if the
structure is sized correctly. This report is normally produced by the z/OS parallel
sysplex team. Example 7-1 is a part of the report with statistics for the lock
structure

Example 7-1 Snippet of RMF CF activity report for the DB2 lock structure

1 C O U P L I N G F A C I L I T Y A C T I V I T Y
 PAGE 30
 z/OS V1R6 SYSPLEX PRODPLEX START 08/10/2006-08.00.00 INTERVAL 001.00.00
 RPT VERSION V1R5 RMF END 08/10/2006-09.00.00 CYCLE 01.000 SECONDS

 COUPLING FACILITY NAME = CF1
 --
 COUPLING FACILITY STRUCTURE ACTIVITY
 --

 STRUCTURE NAME = DSNDBP0_LOCK1 TYPE = LOCK STATUS = ACTIVE
 # REQ -------------- REQUESTS ------------- -------------- DELAYED REQUESTS -------------
 SYSTEM TOTAL # % OF -SERV TIME(MIC)- REASON # % OF ---- AVG TIME(MIC) ----- EXTERNAL REQUEST
 NAME AVG/SEC REQ ALL AVG STD_DEV REQ REQ /DEL STD_DEV /ALL CONTENTIONS

….
. . . Report lines removed

 SYS1 137M SYNC 137M 81.0 16.5 21.0 NO SCH 59K 0.0 90.7 379.3 0.0 REQ TOTAL 121M
 38033 ASYNC 409K 0.2 157.7 219.8 PR WT 0 0.0 0.0 0.0 0.0 REQ DEFERRED 473K
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 0 0.0 0.0 0.0 0.0 -CONT 473K
 -FALSE CONT 309K

 SYS2 31663K SYNC 32M 18.7 18.0 33.3 NO SCH 18K 0.1 153.9 425.9 0.1 REQ TOTAL 26M
 8795 ASYNC 136K 0.1 189.2 227.2 PR WT 0 0.0 0.0 0.0 0.0 REQ DEFERRED 370K
 CHNGD 0 0.0 INCLUDED IN ASYNC PR CMP 0 0.0 0.0 0.0 0.0 -CONT 369K
 -FALSE CONT 217K
 . . . Report lines removed

 --
 TOTAL 169M SYNC 168M 100 16.8 23.8 NO SCH 77K 0.0 105.7 391.8 0.0 REQ TOTAL 148M
 46828 ASYNC 545K 0.3 165.6 222.1 PR WT 0 0.0 0.0 0.0 0.0 REQ DEFERRED 843K
 CHNGD 0 0.0 PR CMP 0 0.0 0.0 0.0 0.0 -CONT 842K
 -FALSE CONT 526K

Example 7-1 shows the part of an RMF CF activity report that identifies the lock
structure of a 2-way data sharing group. The fields to look at are those in bold in
the lower right corner of the report titled:

REQ TOTAL 148M
REQ DEFERRED 843K
-CONT 842K
-FALSE CONT 526K

The total number of lock requests during this interval was 148M. Of those 526K
were for false contention. Our false contention is 526K/148M for .3%. The current
size of this lock structure is correct. We expect some amount of false contention.
 Chapter 7. Advanced topics 125

If false contention exceeds 1%, we would recommend increasing the LTEs to the
next power of 2.

REQ DEFFERED shows how many lock requests were deferred, usually
because of contention. The -CONT field of 842K identifies all contention, whether
it is for:

� FC contention, where two different objects hash to the same LTE
� XES contention, where the same table is open with an S mode Logical lock

(L-lock)
� IRLM contention, where two different members want an exclusive lock on the

same page

From RMF you can identify only global contention (REQ DEFERRED) and
FALSE CONT. For IRLM and XES contention you need to look at the
SUSPENDS - XES GLOBAL CONT and SUSPENDS - IRLM GLOBAL CONT
fields in the OMEGAMON XE for DB2 PM/PE Statistics Long report.

For best performance the global lock contention should be less than 5%. If it
exceeds 5% and is attributed to IRLM contention, the only way to reduce it is
through changes to the application SQL statements.

Most of the time REQ DEFERRED is the same value as -CONT, but it can be
different when there is a deferral for certain other internal activities, such as XES
latch contentions.

Another anomaly is the difference between the total requests on the left hand
side, which are less than those on the right hand side. The total requests value
on the left side is actual CF requests. The total requests value on the right side is
logical requests. For the most part these are 1:1, but not necessarily. The
classic example is batch unlock processing, where 1 CF request on the left could
handle more than 1 unlock request (as counted on the right).

7.4 How many CF engines are necessary?

DB2 V8 introduced new CF instructions that handle multiple CF requests at one
time. They are Read For Castout Multiple (RFCOM) and Write and Register
Multiple (WARM). The intent of these instructions is to take a number of
individual instructions and lump them into one instruction that provides a list of
actions to be performed. WARM allows multiple pages to be written to the CF
and registered with a single write request. The intent is to take a CF request that
would take 30 µsec. synchronous service time (about 10 µsec. on the CF CPU)
and combine may be 10 of them into one instruction that executes in 100 µsec.
on the CF CPU. CF utilization remains the same but host and link activity is
reduced, especially in DB2 batch insert/update applications.
126 Data Sharing in a Nutshell

The new instructions contribute to significant increases in asynchronous
requests, as synchronous requests are converted to asynchronous most of the
time due to the increased time to process Multiple requests.

Single CF engine effect: Assume there are two CF requests that arrive about
the same time. The first request will consume 100 µsec. on the CF itself (and is
likely asynchronous). The second request will consume 10 µsec. on the CF and
is synchronous. The synchronous request must wait on the only CF processor
(not a subchannel) until the first request completes. If there had been a second
CF engine, it could have processed the synchronous request immediately. The
result of this activity on a CF with a single engine is to have variable response
times that are reflected in the RMF CF Activity Report in the STD_DEV column
under SERV TIME (MICS) and DELAY /ALL.

The longer running commands have the side-effect of monopolizing the single
CF CPU while they are running, so that any other single-entry CF requests
(Register Page, for example) that come through will have to wait behind them.
This will tend to elongate the SERV TIME (MICS) sync service time of the
single-entry requests and increase their standard deviation as well. If it happens
to a very significant extent, it could increase the average service time for even
single-entry commands to the point where they also start to get converted to
async. When your peak CF CPU utilization on a single engine CF approaches
25%, we recommend you add a second engine.

For this reason alone, we recommend that you follow these suggestions:

� Do not share CF engines in a production parallel sysplex.

� Consider providing two dedicated engines minimum per CF for a production
parallel sysplex for consistent service times.

For less-than-optimal configurations, our guidelines are as follows:

� Do not share CF engines in a production parallel sysplex (test and
development environments have less stringent requirements)

� If you currently have a single CF engine (per CF), add a second when peak
CF CPU utilization exceeds 25% (single engine effect).

Look at the RMF CF activity report, under the coupling facility usage
summary and find the number beside Average CF utilization (% busy)

� If you have a multi-engine CF, add another engine when peak CF CPU
utilization exceeds 50%.

Note: The numbers used in this section are for illustrative purpose only.
 Chapter 7. Advanced topics 127

These guidelines also apply if you implement system-managed duplexing:

� If you currently have a single CF engine per CF, add a second engine when
peak CF CPU utilization exceeds 25%.

� If you have a multi engine CF, add another engine when peak CF CPU
utilization exceeds 50%.

7.5 Lock avoidance: CLSN versus GCLSN

Lock avoidance in a data sharing environment uses the same techniques as
those for non-shared DB2s. The only new concept added for this environment is
the global commit log sequence number (GCLSN). For non-GBP-dependent
page sets or partitions, each member uses a local commit log sequence number
(CLSN), which is the lowest uncommitted log sequence number for all active
transactions for a given page set.

For GBP-dependent page sets, a single GCLSN value is maintained and used for
lock avoidance for the entire data sharing group. The single GCLSN value is
derived from each member’s CLSN values. The member’s CLSN value is
maintained at the DB2 subsystem level, not at the page set or partition level. It is
the beginning of unit of recovery (UR) LRSN value of the oldest UR in this DB2
member.

The GCLSN is the earliest CLSN value across all members across all page sets
or partitions, regardless of whether the page sets or partitions are
GBP-dependent or not. Each member independently updates the GCLSN
periodically, based on timer interval. Periodically, each member pushes the latest
CLSN value into the SCA and pulls from the SCA the lowest value across all
members.

One long-running update process without intermediate commit points can
effectively stop the GCLSN value from moving forward regardless of whether the
process is updating GBP-dependent or non-GBP-dependent objects. Because
this value is low, the CLSN technique qualifies fewer pages for lock avoidance.
also see 7.6, “The problem of runaway threads” on page 128.

7.6 The problem of runaway threads

The problem is pervasive to all DB2 applications with or without data sharing. A
“minor” application may be developed and tested successfully and moved into
production. Once there the “minor” application is enhanced to process more
128 Data Sharing in a Nutshell

data, access other tables, and send results to other applications to process. It
now becomes a critical application, but its basic application characteristics
remain as they were when it was developed. The amount of data becomes much
larger than the original scope and the application, which doesn't commit its work,
runs longer, perhaps an hour, before ending. If it abends after 50 minutes, it is
likely to take 100 minutes to roll back, consuming resources as it “undoes” its 50
minutes of updates.

These are the issues concerning runaway jobs:

� An online system has high concurrency requirements and long running
updaters prevent concurrency either by taking many locks until the job
finishes or by escalating page/row locks into exclusive table space locks and
preventing all access until the job commits or completes.

� Lock avoidance techniques fail, resulting in increased locking rates, increased
CPU and sometimes increased response time. Lock avoidance is enhanced
for packages bound with CURSOR STABILITY and CURRENTDATA(NO).
When a long running updater has been running an hour or more, many more
locks are taken by all other users in the entire data sharing group. When in the
past a requestor could read an entire page, examining every row without a
lock, now chances are good that a lock must be taken. See 7.5, “Lock
avoidance: CLSN versus GCLSN” on page 128.

� Utilities cannot break in. They may not be able to break in via the DRAIN lock,
as claims by non-utilities are not released until commit. While updaters hurt
concurrency far more than readers, readers that do not commit can cause
Online Reorg to fail in the Switch phase.

� Resources are wasted if the job abends. Back out consumes many resources
and all work is thrown away.

� Even with the improvements in DB2 restart such that a long running job
backing out does not prevent new work, the data involved in the back out are
unavailable to new work until back out is complete.

� A long running updater continues to acquire thread storage in the DBM1
address space,

� A long running update acquires many locks and can stress the RLE part of
the lock structure.

Customers have wanted DB2 to tell them when this situation is beginning, so that
they can prevent the problem by canceling the job. DB2 provides warning
messages when user-established DSNZPARM thresholds are exceeded
(DSNR035I for URCHKTH and DSNJ031I for URLGWTH).

What action can be taken other than to cancel the job? This is a drastic measure
if the application is critical. Once messages are issued, the application should be
 Chapter 7. Advanced topics 129

coerced into incorporating a reasonable commit scope. This is hard to do and is
usually done as part of a long term project that must have full management
support from both the operations and application perspectives.

One approach is to set the URCHKTH and URLGWTH higher in the beginning,
gather the messages issued and request the offenders to write commit logic in
their programs. What would be high values in a fast processor? If CHKFREQ is 3
minutes, then set URCHKTH to 15, which would mean that a UR had gone 45
minutes without a commit, an extremely long time. The goal would be to reduce it
over time to 3 times the CHKFREQ. Similarly, set URLGWTH to 100 (100,000
updates) and reduce it over time to a goal that the business can support.

The DSNZPARM LRDRTHLD is used to identify readers that do not commit (in
number of minutes). IFCID313 is produced when readers exceed this threshold,
but no DB2 message is issued.

7.7 Usermod for routing to multiple DB2s on a z/OS
image

The situation described in this section is the reason we do not want you to have a
member with the same name as the group attach name.

7.7.1 Multiple DB2 members in one z/OS image

As long as the connection is made to a DB2 member by its subsystem name
(SSID), each DB2 receives the work intended for it.

There is great flexibility enabled by the specification of the group attach name for
various connections (TSO, utilities, and others). If connection is made through
specification of the group attach, it can run on any z/OS image that has a
member of the group. If there are multiple members of the same z/OS, then it will
be routed to one of the members only. The IEFSSNxx member of
SYS1.PARMLIB is searched for the first active DB2 with the specific group
attache, but it is not possible to predict which one will receive the traffic as the
IEFSSNxx member used is hashed.

With DB2 V8, if you want to distribute workload among two DB2 members on a
single z/OS image, you can request a usermod from the IBM Support Center
through DB2 Level 2. Because there are restrictions on its use, you must contact
the IBM Support Center directly. General restrictions are:

� You cannot have a member with the same name as the group attach.

� You cannot use ODBC.
130 Data Sharing in a Nutshell

� You cannot use JDBC Type 2 driver connectivity and specify the group attach
name.

The JDBC T2 driver does not use the NOGROUP option to connect. So if
MemberName = GroupName then this name would be treated as a Group
Name in some cases. If you are not using JDBC Type 2 driver connectivity or
if JDBC connections always use member name and it is not the same as the
group name, then the usermod can be used.

For DB2 Version 9.1 for z/OS, no usermod is necessary.

7.8 Determining the number of threads

You should read this section when you are trying to determine if you need to add
another DB2 member.

In DB2 V8 the maximum number of concurrent threads is 2000 and must be
apportioned between CTHREAD and MAXDBAT in DSNZPARM. The actual
number of concurrent threads that can be supported in the ssssDBM1 address
space is commonly many fewer than that.

DB2 needs a certain minimum virtual storage, called the storage cushion in order
to stay up. If the amount of storage available remaining in the DBM1 address
space goes below this threshold, DB2 triggers a process to free storage. This
process has a considerable CPU overhead and can be very disruptive for
service. If the storage continues to drop DB2 will cancel existing work
(E20003/E20016 abends). If it cannot recover enough storage from these
actions, DB2 may fail in order to protect the integrity of its data. The storage
cushion size is determined by the MVS Extended Region Size (EPVT) and three
DSNZPARM values: the maximum number of open data sets (DSMAX); the
maximum number of allocated threads (CTHREAD); and the maximum number
of distributed threads (MAXDBAT).

One of the most frequent problems today in large DB2 subsystems is lack of
sufficient virtual storage. Usual causes are widespread usage of dynamic SQL
with the dynamic statement cache, large numbers of threads, both CTHREAD
and MAXDBAT, and a large number of open data sets (DSMAX). Proper
management of DB2 virtual storage will prevent E20003/E20016 abends and
subsequent abnormal termination of DB2.

Note: In order to have multiple DB2 members on the same z/OS image at all,
you must specify TCP/IP SHAREPORT for the SQL listening port (not for the
RESPORT).
 Chapter 7. Advanced topics 131

7.8.1 REXX tools package

The most accurate way to determine the maximum number of threads is to use a
package consisting of REXX execs distributed on an as-is basis on the DB2 for
z/OS Examples Trading Post at

http://www.ibm.com/software/data/db2/zos/exHome.html

Look for it under the REXX Execs topic. It is called “REXX tools package to
retrieve storage information.” It is commonly called MEMU or MEMU2.

It consists of the following files that are zipped:

� MEMU2 REXX – outputs IFCID225 information invoked as batch job
� MEMUSAGE REXX – outputs IFCID225 (now) if invoked from TSO Option 6

(once)
� Memu2.jcl.txt – Sample JCL to invoke MEMU2 REXX as a batch job
� Memory Usage-V3-IFCID225.doc – documentation to install, modify, and use

MEMU2 REXX is

� Invoked via JCL on single member basis
� Outputs IFCID225 information to comma delimited data set
� at 5 minute interval (default) independent of STATIME
� for 12 intervals default (one hour)
� JCL specifies SSID and overrides to above

The primary exec, MEMU2, runs as a simple JCL job that writes the DBM1 virtual
storage trace, IFCID225, to a comma delimited file. It can run for as long an
interval as you wish. To get an accurate picture of virtual storage characteristics,
you should run MEMU2 for long enough to identify peak virtual storage periods,
such as heavy first of month or end of month activity, weekend utility jobs or other
periods where you suspect virtual storage demand may be heavy.

The goal of this process is to determine the correct value for maximum number of
threads that can be supported with the workload measured. Once you have
identified the value, you should divide it between CTHREAD and MAXDBAT.

There is a teleconference presentation available, of which a section about virtual
storage tells you how to use the MEMU2 output to determine the maximum
number of threads. It is expected to be available until July 2008. You can register
for the replay at

http://www.ibm.com/software/zseries/telecon/25jul

Once registered, you will be sent an E-mail with the Web site for the MP3 replay
and the presentation.
132 Data Sharing in a Nutshell

http://www.ibm.com/software/data/db2/zos/exHome.html
http://www.ibm.com/software/zseries/telecon/25jul

See the redbook DB2 for z/OS Version 8 Performance Topics, SG24-6465,
Section 4.3, for a more thorough discussion of DBM1 Virtual Storage
calculations.

Periodically review the informational APAR II10817 to ensure you have applied
any service that affects DB2 storage.

7.8.2 Statistics Spreadsheet support

An alternative to MEMU is available for users of IBM Tivoli OMEGAMON XE for
DB2 Performance Expert on z/OS. PK31073 (PTF UK17906) introduces the
SPREADSHEETDD subcommand for the STATISTICS FILE. This option allows
you to extract virtual storage data in data sets with comma-separated values.
This format can be easily imported into workstation-based spreadsheet
programs. You can then use spreadsheet functions, such as sorting and filtering,
to evaluate the data.

The output file is similar to that produced by MEMU, but its data is produced only
at the statistics interval STATIME.

A description of the new function is described in a document entitled
“SPREADSHEETDD subcommand option for STATISTICS FILE”, which is
available at:

http://www.ibm.com/support/docview.wss?uid=swg27008487
 Chapter 7. Advanced topics 133

http://www.ibm.com/support/docview.wss?uid=swg27008487

134 Data Sharing in a Nutshell

Chapter 8. Best practices

In this chapter we summarize the best practices that we have mentioned in the
preceding chapters of this book.

As stated in “Our assumptions” on page ix, we are assuming that you are an
experienced DB2 user who is working in DB2 V8 New Function Mode, that you
already have a Parallel Sysplex, and that you are going to implement two way
data sharing for the first time.

Most of our recommendations in this list are specifically intended for the new
data sharing user.

Experienced data sharing users may want to evaluate their environments as well
using this list.

Most of the DB2 considerations are applicable to DB2 Version 7 environments as
well, with the exceptions noted in “Our assumptions” on page ix.

8

© Copyright IBM Corp. 2006. All rights reserved. 135

8.1 Table of best practice recommendations

Table 8-1 shows the best practices for data sharing. The left hand column
contains a recommendation, and the right hand column contains a reference to
where that topic is discussed in this book.

Table 8-1 Best practices for data sharing

Best practices for getting started Where discussed in this book

Keep the DB2 subsystem name of your non-data sharing
member as your group attach name.

4.1.1, “Group name” on page 66

Do not name a DB2 member with the same SSID the same as
your group attach name.

4.1.1, “Group name” on page 66

Make the SSID part of your log and BSDS data set names.
Include the date/time in the archive data set name.

4.1.4, “Log data set names” on
page 68 and 4.1.5, “Bootstrap data set
(BSDS)” on page 68

For availability during for planned outages, ensure the
application can run on more than one z/OS image (at least two
DB2 members)

2.5.1, “Portability” on page 36

Implement location aliases to avoid making changes to your
applications coming from other DB2 subsystems.

4.1.6, “Distributed Data Facility (DDF)
related parameters” on page 69

Make sure that active log copy 1 is on a different disk from that
of active log copy 2.

4.2.1, “Active log data sets” on
page 73

Archive to disk and offload to tape after 24-48 hours or in line
with your image copy cycle. Do not place archive data sets from
different members on the same physical tape,

4.2.2, “Archive log” on page 74

Use CFSizer to size the GBPs. 3.1.1, “Group buffer pools” on page 40

Start with 64,000 for lock structure size. 3.1.2, “Sizing the lock structure” on
page 46

Start with 64,000 for SCA structure size. 3.1.3, “Sizing the SCA structure” on
page 47

Implement Auto Alter for the GBPs as long as enough storage
exists in the CFs for the GBPs to be correctly sized.

3.2.1, “Implementing Auto Alter” on
page 50

Make sure one CF can take over the workload in both CFs in
terms of CF storage.

3.2.1, “Implementing Auto Alter” on
page 50

Ensure all DB2 structures rebuild into another CF upon any
failure.

3.4, “CF configuration alternatives” on
page 56
136 Data Sharing in a Nutshell

Duplex the GBPs specifying DUPLEX (ENABLED). 3.3.1, “Group buffer pools (GBP) or
user-managed pools” on page 54 and
6.2.3, “CF failure” on page 111

Guard against double failure in a Parallel Sysplex through use of
an external CF for the Lock and SCA structures and an ICF.

3.4.1, “ICF-only: Double failure for the
lock and SCA structures” on page 57

Provide 2 links from each image to each CF. 3.3.1, “Group buffer pools (GBP) or
user-managed pools” on page 54

Match an external CF’s technology to the processor. “Technology considerations for
external CFs” on page 60

Provide 2 dedicated engines minimum per CF for a production
Parallel Sysplex. Add another, when peak CF CPU utilization
exceeds 50%.

If each CF is a single engine, add a second engine when the
peak CF CPU utilization approaches 25%.

7.4, “How many CF engines are
necessary?” on page 126

Set GBP thresholds
– GBP Checkpoint 4 minutes
– GBPOOLT 10-30%
– CLASST 2-5%

“GBP thresholds” on page 52

Use Dynamic virtual IP addressing (DVIPA) for availability and
failover.

5.3, “Dynamic virtual IP addressing
(DVIPA)” on page 94

Share SYS1.PROCLIB among the members of the data sharing
group and use one copy of the JCL for each stored procedure.

5.6, “Stored procedures” on page 97

Ensure all your DB2 stored procedures run in WLM-established
stored procedure address spaces.

5.6, “Stored procedures” on page 97

For DB2 for z/OS requesters to a data sharing group, use TCP/IP
connectivity.

5.5, “Distributed data facility (DDF)” on
page 95

If you still use an SNA network, use member routing for requests
from a DB2 for z/OS requester to a data sharing group.

5.5, “Distributed data facility (DDF)” on
page 95

Apply CST/RSU maintenance 2-3 times a year. Stay no less than
3 months and no more than 6 months behind in production

6.9.1, “Service recommendations” on
page 120

For any manual GRECP/LPL recovery start databases in priority
sequence using a list. Enable fast log apply.

6.1.4, “Recommendations for
GRECP/LPL recovery” on page 107

Do not issue start commands for each individual object for
manual GRECP/LPL recovery.

6.1.4, “Recommendations for
GRECP/LPL recovery” on page 107

Best practices for getting started Where discussed in this book
 Chapter 8. Best practices 137

Use existing automation or ARM for restarts in place. 6.4, “Automatic restart manager
(ARM)” on page 112

Have the z/OS systems team Implement an ARM policy for cross
system restart to release retained locks as quickly as possible

6.2, “Component failure” on page 109,
“ICF-only: Double failure for the lock
and SCA structures” on page 57
and “Automatic restart manager
(ARM)” on page 112

Restart all members at the same time for group restart 6.2, “Component failure” on page 109

Implement a naming convention that is easy for operators and
automation routines.
� Good: DBP1, DBP2, DBP3
� Bad: ABCD, DBP1, DBP2

4.1, “Naming conventions” on page 66

Rename your existing non-shared DB2 subsystem before you
enable data sharing.

4.4, “Renaming an existing non-data
sharing member” on page 78

Activate your data sharing related CFRM policy before enabling
data sharing,

4.5, “Enabling the data sharing group”
on page 85

Have the z/OS systems team implement SFM policy with
ISOLATETIME parameter.

6.3, “Sysplex failure management
(SFM) policy” on page 112

Keep false contention <1% of total Global Locks. 7.3, “Eliminating false contention” on
page 124

Specify CLOSE(NO) for objects that you expect to be
GBP-dependent most of the time and which are sensitive to
response time during first access. Most table spaces should be
CLOSE(YES).

7.1, “CLOSE YES and CLOSE NO
table spaces” on page 122

Ensure batch or other updaters commit work frequently
according to a business-defined scope.

7.6, “The problem of runaway threads”
on page 128 and 7.5, “Lock
avoidance: CLSN versus GCLSN” on
page 128

Best practices for getting started Where discussed in this book
138 Data Sharing in a Nutshell

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 142. Note that some of the documents referenced here may
be available in softcopy only.

� DB2 for z/OS Version 8 Performance Topics, SG24-6465

� Disaster Recovery with DB2 UDB for z/OS, SG24-6370

� Parallel Sysplex Application Considerations, SG24-6523

� Achieving the Highest Levels of Parallel Sysplex Availability in a DB2
Environment, REDP-3960

� Use of Shared Engines for Coupling Facilities - Implementation and Impact,
TIPS0237

� DB2 for z/OS Stored Procedures: Through the CALL and Beyond,
SG24-7083

� DB2 UDB for z/OS Version 8: Everything You ever Wanted to Know,... and
More, SG24-6079

� System Programmer’s Guide to: Workload Manager, SG24-6472

� TCP/IP in a Sysplex, SG24-5235

Other publications
These publications are also relevant as further information sources:

� DB2 for z/OS Version 8 Data Sharing: Planning and Administration,
SC18-7417-03

� DB2 UDB for z/OS Version 8 Utility Guide and Reference, SC18-7427-02

� DB2 UDB for z/OS Version 8 Installation Guide, GC18-7418-03

� DB2 UDB for z/OS Version 8 Command Reference, SC18-7416-03

� z/OS DFSMSdfp Storage Administration Reference, SC26-7402-05
© Copyright IBM Corp. 2006. All rights reserved. 139

� DB2 for z/OS Application Programming Guide and Reference for JavaTM,
SC18-7414

� z/OS V1R7.0 MVS Setting Up a Sysplex, SA22-7625-12

� z/OS V1R7.0 MVS System Commands, SA22-7627-13

� z/OS MVS Planning: Workload Management, SA22-7602

� Leveraging z/OS TCP/IP Dynamic VIPAs and Sysplex Distributor for higher
availability, GM13-0165

� Coupling Facility Performance: A Real World Perspective, REDP-4014

� White Paper entitled “Coupling Facility Configuration Options,” available on
the Web, at:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gf
225042.pdf

� System-Managed Coupling Facility Structure Duplexing, GM13-0103, at:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm1301
03.html

� White paper called System-Managed CF Structure Duplexing Implementation
Summary, at:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gm
130540.pdf

Online resources
These Web sites are also relevant as further information sources:

� Parallel sysplex technology and benefits:

http://www.ibm.com/systems/z/resiliency/parsys.html

� Getting started with Parallel Sysplex documents:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/zswpdf/zospsys
gstart.html

� System z Server Time Protocol (STP):

http://www.ibm.com/servers/eserver/zseries/pso/stp.html

� Web site for WLM home page:

http://www.ibm.com/servers/eserver/zseries/zos/wlm/

� CFSIZER can be found at:

http://www.ibm.com/servers/eserver/zseries/cfsizer/
140 Data Sharing in a Nutshell

http://www.ibm.com/servers/eserver/zseries/cfsizer/
http://www.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gm130540.pdf
http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130103.html
http://www.ibm.com/systems/z/resiliency/parsys.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/zswpdf/zospsysgstart.html
http://www.ibm.com/servers/eserver/zseries/pso/stp.html
http://www.ibm.com/servers/eserver/zseries/zos/wlm/
http://www.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gf225042.pd
http://www.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gf225042.pd

� Consolidated Service Test (CST) process:

http://www.ibm.com/servers/eserver/zseries/zos/servicetst/

� DB2 for z/OS Examples Trading Post can be found at:

http://www.ibm.com/software/data/db2/zos/exHome.html

Look under the REXX Execs topic for “REXX tools package to retrieve storage
information.” The virtual storage EXEC is commonly called MEMU or
MEMU2.

� Teleconference presentations:

There are two teleconference presentations available for data sharing,
presented by the authors of this book. The recordings and presentations are
expected to be available until July 2008. You can register for each replay and
you will be sent an E-mail with the Web site for the MP3 replay and the
presentation.

– “Why DB2 for z/OS data sharing should be in your life…” is directed at the
reader of this book and covers the following topics:

• Why are customers doing data sharing?
• How much overhead can you expect from data sharing?
• How long does it take to implement data sharing?
• Do my applications have to change when I implement data sharing?
• Does data sharing allow for parallelism?

http://www.ibm.com/software/zseries/telecon/11jul

– “Data Sharing Health Checks: what we have learned” is directed at current
data sharing users and covers the following topics:

• How many directory entries do I really need for my Group Buffer
Pools...how do I handle GBP growth as my data sharing group adds
new members…and what changes should I make to GBPs as each
member’s local buffer pools change?

• How much work can I process in this DB2...how many threads can I
have?

• My data sharing group has two Internal Coupling Facilities (ICFs)….
is this a problem?

• How can I identify runaway jobs before they disrupt my environment…..
what can I do about them?

http://www.ibm.com/software/zseries/telecon/25jul
 Related publications 141

http://www.ibm.com/software/data/db2/zos/exHome.html
http://www.ibm.com/software/zseries/telecon/11jul
http://www.ibm.com/software/zseries/telecon/25jul
http://www.ibm.com/software/data/db2/zos/exHome.html
http://www.ibm.com/servers/eserver/zseries/zos/servicetst/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
142 Data Sharing in a Nutshell

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
active log copy placement 73
ALLOWAUTOALT(YES) 51
ALTER GBPOOL 51
AOR 100
application considerations 35
application owning region 100
application portability 36
applications

best practices 36
ARM 112
ARM policy 138
ASSIST 75
Auto Alter 50
Auto Call Selection routine 68
Automatic Restart Manager 112
availability 2, 90
availability best practice 60

B
Batch work 93
best practices

summary 135
BSDS 68, 74
BSDS information 77
buffer coherency control 18

C
CALL 97
capacity 2, 8, 90
castout 22
castout owner 22
catalog alias 71
CDS 67
central processor complex 2
CF ix, 11, 19, 39–40, 44, 47, 49, 106, 111, 123–127
CF commands 115
CF failure 111
CFCC 57
CFRM 25
CFRM policy 60
CFSIZER 41
© Copyright IBM Corp. 2006. All rights reserved.
change log inventory 77
CHKFREQ 76
CICS 12, 67, 92
CICSPlex Systems Manager 93, 100
CLOSE NO 122
CLOSE YES 122
CLSN 128
Command prefix 71
Commit 36
component failure 109
concurrency 37
concurrency control 18
configuration flexibility 9, 31
configurations for growth 32
Consolidated Service Test 120, 141
consolidated service test 120
continuous availability 25
COORDNTR 75
copypools 71
coupling facility 13, 40, 44–45, 66

best practices 63
GBP sizing 40
lock structure sizing 46
SCA structure sizing 47
sizing strategy 40

coupling facility control code (CFCC) 57
coupling facility resource management 25
CPC 2
cross invalidation 23, 47
cross-system extended services 19
cross-system restart 30
CTHREAD 75

D
data availability 6
data elements 22
data set name limit 68
data sharing ix–x, 3, 7, 15, 18–19, 40, 42, 66–67,
89, 92, 94, 105–106, 109, 121–123

architecture 15
best performance 123
business value 5
cost 18
 143

enabling group 85
higher transaction rate 10
introduction 1
remove a member from the group 88
roadmap 11
why implement? 2

data sharing environment 4
data sharing group 3–4
data sharing overhead 123
DB2 commands 117
DB2 dump 118
DB2 location name 69
DB2 subsystem failure 110
DDF 12, 69, 92–93
decision support 33
design for scalability 18
directory entries 22, 48
DIS GBPOOL 52, 117–118
DIS GROUP 87–88, 117
disaster recovery 119
disaster recovery site 88
distributed data facility 92
distributed relational database architecture 95
DRDA port 70
DSHARE 75
DSMAX 131
DSNB250E 107
DSNDB01 109
DSNDB07 71
DSNHDECP 67
DSNR020I 88
DSNTIJIN 85
DSNTIJMV 85
DSNTIJTM 87
DSNTIJUZ 85
DSNZPARM 68, 107, 109, 122, 129, 131

TIMESTAMP=YES 68
DSNZPARMs 74
DVIPA 91, 94
dynamic virtual IP addressing 91
Dynamic workload balancing

best practices 103

E
ERRSYSMOD 120
Explicit hierarchical locking 20
external CF 59

F
failures

best practices 113
false contention 124
FULLTHRESHOLD 50

G
GBP 21

monitoring 52
GBP checkpoint 53–54
GBP optimizations 25
GBP-dependent 21
GBP-dependent objects 128
GCLSN 128
GDETAIL 52
generic LU name 70
global locking 18–19
GRECP 54, 75, 106–108
GRECP/LPL recovery

best practices 109
group attach 67
group buffer pools 21
group name 66–68

restrictions 66
group restart 110
group wide outage 58
growth 2
GRPNAME 75

H
hash 19
hash class 19
hashing algorithm 19

I
IBM Tivoli Workload Scheduler 98
ICF 57
IEFSSNxx 67
II10817 133
Implementation tasks 13
IMS Transaction Manager 93, 101
incremental growth 7
indoubt units of recovery (URs) 113
indoubt URs 113
inter-DB2 read/write interest 18, 21
internal coupling facility (ICF) 57
internal resource lock manager 19
144 Data Sharing in a Nutshell

IRLM 19–20, 46–47, 68, 72, 74, 77, 117, 126
IRLM commands 117
IRLM group name 72
IRLM parameter 76
IRLM subsystem name 72
ISOLATETIME 112

L
LIGHT(YES) 113
list prefetch 108
L-locks 20, 124
Load module for subsystem parameters 71
Location aliases 69
lock avoidance 36–37, 128
lock contention 20
lock structure 19
lock table entries 46
locking optimization 20
LOCKTAB 77
Log 106
log data set name 68
log record sequence number 106
LOGAPSTG 75
logging 73

best practices 74
Logical 107
Logical locks 20
logical page list 49
LPARs 26
LPL 47, 49, 54, 75, 107–110, 137
LPL recovery 75, 107
LRDRTHLD 76, 130
LSRN 106
LTE 47
LU name 70
luname 81

M
maintenance best practices 120
MAXDBAT 75
MAXUSRS 77
member 3
Member domain name 71
MEMBNAME 75
Monitoring the GBPs 52

N
naming convention 66

best practices 73
examples 72

network requester 94
Normal restart 110
number of CF engines 126
number of threads 131

O
outage 6

P
page set 21, 106, 113, 122, 128
parallel database architectures 16
Parallel Sysplex 2
Parallel Sysplex domain name 70
PCLOSEN 76
PCLOSET 76, 122
Physical locks, 20
PK31073 133
Planned outages 26
Planning task 11
P-locks 20–21, 113
pooled connections 100
POPULATECF 28
Post-implementation tasks 14
processing capacity 7
PTF in error 120

Q
QUIESCE 81, 88

R
Read For Castout Multiple 126
REALLOCATE 27
recommended service upgrade 120
record list entries 46
RECOVER 75, 106, 109, 113, 122
recovery of DB2 objects 106
Redbooks Web site 142

Contact us xiii
rename existing non-data sharing member 78
RESTART(LIGHT) 112
RESYNC port 70
Retained locks 110, 124
RETLWAIT 75
 Index 145

RFCOM 126
RLE 46
RMF 47, 59, 76, 125–126
rolling maintenance 26
routing to multiple DB2s 130
RRSAF 67
runaway threads 128

S
SCA 28, 47, 50, 55, 57, 110–111, 113, 128
scheduled outage 119
Server Time Protocol 2
SFM 112
shared communications area 28
Shared data 17
Shared disks 17
Shared nothing 16
SLIP 119
SSID 68, 75
START DATABASE 107–109
Stored procedures 97
STRUCTURE 45
structure duplexing 53
STRUCTURE NAME 45
subsystem identifier 68
SYNCVAL 76
SYSLGRNX 122
Sysplex 2
Sysplex Distributor 95
sysplex failure management 112
System-managed duplexing 53, 55
systems management 2, 31

T
TCP/IP 95, 131
thrashing 49
Tivoli Workload Scheduler for z/OS 98
transaction manager layer 91
transaction rates 10
trickle 53

U
Unplanned outages 29
URCHKTH 76, 130
URLGWTH 76, 130
User-managed duplexing 53

V
VIPA 94
VIPABACKUP 94
VIPADEFINE 94
VIPADYNAMIC 94
virtual IP address 94
virtual storage constraint 131

W
WARM 126
WebSphere 93
WebSphere Application Server 99
WLM panel 97
work file database 71
workload balancing 2, 7

objectives 90
Workload Manager 92
Workload spikes 90
WRKDBP1 71

X
XES 19, 46, 50, 53, 60, 62, 124, 126

Z
z/OS system failure 111, 124
z890 59
z9 BC 59
146 Data Sharing in a Nutshell

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

DB2 for z/OS: Data Sharing in a Nutshell

®

SG24-7322-00 ISBN 0738496553

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 for z/OS:
Data Sharing
in a Nutshell
Get a quick start with
your DB2 for z/OS
data sharing
installation

Understand
alternatives and
priorities

Find support and
references

DB2 for z/OS takes advantage of data sharing technology in a
z Parallel Sysplex to provide applications with full concurrent
read and write access to shared DB2 data. Data sharing
allows users on multiple DB2 subsystems, members of a
data sharing group, to share a single copy of the DB2
catalog, directory, and user data sets.

Data sharing provides many improvements to availability and
capacity without impacting existing applications. The road to
data sharing might seem arduous if you are a novice user,
but once you have started to learn terminology and gain
basic understanding, things will become much easier.

This IBM Redbook is meant to facilitate your journey towards
data sharing by providing a cookbook approach to the main
tasks in enabling data sharing and workload balancing. Our
book does not have all the answers, because it is a brief
summary of a large field of knowledge, but it contains the
key elements and it points you in the right direction to get
more details. Throughout this document we assume that
your sysplex environment is set up and a DB2 subsystem
exists at a currently supported level.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Our assumptions
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Why should you implement DB2 data sharing?
	1.2 Overview of Parallel Sysplex and DB2 data sharing
	1.3 Business value of data sharing
	1.3.1 Improved data availability
	1.3.2 Extended processing capacity
	1.3.3 Configuration flexibility
	1.3.4 Higher transaction rates
	1.3.5 Application interface unchanged

	1.4 Roadmap to implementing data sharing

	Chapter 2. Data sharing architecture
	2.1 Parallel database architecture alternatives
	2.2 Data sharing design for scalability
	2.2.1 Global locking and the lock structure
	2.2.2 Managing changed data and group buffer pools

	2.3 Data sharing design for continuous availability
	2.4 Configuration flexibility and systems management
	2.5 Application considerations in data sharing
	2.5.1 Portability
	2.5.2 Commit and lock avoidance
	2.5.3 Concurrency

	Chapter 3. The coupling facility
	3.1 Structure sizing
	3.1.1 Group buffer pools
	3.1.2 Sizing the lock structure
	3.1.3 Sizing the SCA structure

	3.2 Auto Alter
	3.2.1 Implementing Auto Alter

	3.3 Duplexing
	3.3.1 Group buffer pools (GBP) or user-managed pools
	3.3.2 System-managed duplexing

	3.4 CF configuration alternatives
	3.4.1 ICF-only: Double failure for the lock and SCA structures
	3.4.2 System-managed duplexing for DB2 lock and other structures
	3.4.3 External CF, such as z890 or z9 BC

	3.5 CFRM policy
	3.6 Best practices for the coupling facility

	Chapter 4. Implementing data sharing
	4.1 Naming conventions
	4.1.1 Group name
	4.1.2 Group attachment name
	4.1.3 Subsystem identifier (SSID)
	4.1.4 Log data set names
	4.1.5 Bootstrap data set (BSDS)
	4.1.6 Distributed Data Facility (DDF) related parameters
	4.1.7 Catalog alias
	4.1.8 Temporary work file database
	4.1.9 Some more naming recommendations
	4.1.10 Examples of naming conventions
	4.1.11 Best practices for naming conventions

	4.2 Logging
	4.2.1 Active log data sets
	4.2.2 Archive log
	4.2.3 Best practices for DB2 logging

	4.3 DSNZPARMs
	4.3.1 Data sharing system parameters
	4.3.2 Some other important DSNZPARMs
	4.3.3 IRLM parameters
	4.3.4 Information stored in the BSDS

	4.4 Renaming an existing non-data sharing member
	4.4.1 IPL required for these tasks
	4.4.2 Enable data sharing tasks

	4.5 Enabling the data sharing group
	4.5.1 Additional tasks

	4.6 Adding the second member
	4.7 Removing a member

	Chapter 5. Dynamic workload balancing
	5.1 Objectives of workload balancing
	5.2 Workload Manager
	5.3 Dynamic virtual IP addressing (DVIPA)
	5.4 Sysplex Distributor
	5.5 Distributed data facility (DDF)
	5.6 Stored procedures
	5.7 Batch work
	5.8 WebSphere
	5.9 CICSPlex Systems Manager (CP/SM)
	5.10 IMS Transaction Manager (IMS TM)
	5.11 Dynamic workload balancing best practices

	Chapter 6. Operations
	6.1 Recovery of DB2 objects
	6.1.1 Log record sequence number (LSRN)
	6.1.2 Group buffer pool recovery pending (GRECP)
	6.1.3 Logical page list (LPL)
	6.1.4 Recommendations for GRECP/LPL recovery
	6.1.5 Best practices for GRECP/LPL recovery

	6.2 Component failure
	6.2.1 DB2 subsystem failure
	6.2.2 z/OS system failure
	6.2.3 CF failure

	6.3 Sysplex failure management (SFM) policy
	6.4 Automatic restart manager (ARM)
	6.5 Restart Light
	6.5.1 Best practices for failures

	6.6 Commands
	6.6.1 Basics
	6.6.2 CF and structure related commands
	6.6.3 IRLM commands
	6.6.4 DB2 commands

	6.7 Multi-system DB2 diagnostic dumps
	6.8 Disaster recovery
	6.9 Rolling maintenance
	6.9.1 Service recommendations
	6.9.2 Best practices for maintenance

	Chapter 7. Advanced topics
	7.1 CLOSE YES and CLOSE NO table spaces
	7.1.1 Best practice

	7.2 Performance
	7.3 Eliminating false contention
	7.4 How many CF engines are necessary?
	7.5 Lock avoidance: CLSN versus GCLSN
	7.6 The problem of runaway threads
	7.7 Usermod for routing to multiple DB2s on a z/OS image
	7.7.1 Multiple DB2 members in one z/OS image

	7.8 Determining the number of threads
	7.8.1 REXX tools package
	7.8.2 Statistics Spreadsheet support

	Chapter 8. Best practices
	8.1 Table of best practice recommendations

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

