

ibm.com/redbooks

Draft Document for Review December 29, 2006 1:50 pm SG24-7315-00

DB2 9 pureXML Guide

Whei-Jen Chen
Art Sammartino

Dobromir Goutev
Felicity Hendricks

Ippei Komi
Ming-Pang Wei

Rav Ahuja

Learning SQL/XML, XQuery, XPath with
working examples

Developing XML applications
with DB2 pureXML

Managing XML for
maximum return

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 9 pureXML Guide

December 2006

International Technical Support Organization

Draft Document for Review December 29, 2006 1:50 pm 7315edno.fm

SG24-7315-00

7315edno.fm Draft Document for Review December 29, 2006 1:50 pm

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2006)

This edition applies to DB2 9 for Linux, UNIX, and Microsoft Windows.

This document created or updated on December 29, 2006.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Draft Document for Review December 29, 2006 1:50 pm 7315TOC.fm
Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. x

Acknowledgement. xi
Become a published author . xii
Comments welcome. xii

Chapter 1. Introducing DB2 9: pureXML . 1
1.1 Growing importance of XML Data . 2

1.1.1 Growth of XML . 2
1.1.2 The value of XML data . 4

1.2 pureXML overview. 4
1.2.1 Traditional methods for managing XML data 5
1.2.2 XML data management with DB2 9 . 6
1.2.3 Setting up databases for XML. 7
1.2.4 XML optimized storage and XML data type . 7
1.2.5 Getting XML data into the database . 8
1.2.6 Querying XML data . 8
1.2.7 Query optimization and indexes for XML . 9
1.2.8 XML schema repository and validation . 10
1.2.9 Full text search for XML . 11
1.2.10 Annotated schema decomposition . 11
1.2.11 Application development support . 11
1.2.12 Tools and utilities . 12
1.2.13 Benefits of DB2 pureXML technology . 13

1.3 pureXML usage scenarios. 13
1.3.1 Integration of diverse data sources . 14
1.3.2 Forms and their processing. 15
1.3.3 Document storage and querying . 16
1.3.4 XML for transactions . 17
1.3.5 Syndication and XML feeds . 18
1.3.6 XML as a better data model . 19

1.4 Summary . 19
1.5 References . 19

Chapter 2. Sample scenario description . 21
2.1 Business requirements . 22
© Copyright IBM Corp. 2006. All rights reserved. iii

7315TOC.fm Draft Document for Review December 29, 2006 1:50 pm
2.1.1 Data modeling . 22
2.2 Application description . 24

2.2.1 Loan application . 25
2.2.2 Loan processing . 31
2.2.3 Loan management . 34

2.3 Application setup . 36

Chapter 3. XML database design . 39
3.1 Architecture overview . 40
3.2 Logical database design . 43

3.2.1 XML data type . 43
3.2.2 Relational structure versus XML structure . 44
3.2.3 XML index . 47
3.2.4 Views. 48
3.2.5 XML schema . 49
3.2.6 XML schema design . 51
3.2.7 Industry standards and XML schemas . 57
3.2.8 XML data validation. 61

3.3 Physical database design . 67
3.4 Creating a database . 70

Chapter 4. Working with XML . 73
4.1 XPath. 74

4.1.1 XQuery/XPath data model . 75
4.1.2 Location paths. 78
4.1.3 Using location paths to retrieve nodes of XML document 80
4.1.4 Predicates . 86

4.2 XQuery . 87
4.2.1 Types, expressions, and functions . 87
4.2.2 FLWOR and selecting XML data. 103
4.2.3 Updating XML data . 120

4.3 XQuery and SQL/XML. 125
4.3.1 XQuery with embedded SQL . 126
4.3.2 SQL/XML. 127
4.3.3 When to use what . 133

4.4 When and how to use namespaces . 136
4.5 Getting XML data in and out of database . 142
4.6 XML full-text search. 153

4.6.1 DB2 Net Search Extender. 154
4.6.2 Preparing the instance for text search . 155
4.6.3 Full-text searching using DB2 NSE. 158
4.6.4 Taking advantage of Net Search Extender text search features. . . 162
4.6.5 Full-text search considerations . 164
iv DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315TOC.fm
4.6.6 The NSE document model . 167

Chapter 5. Managing XML data . 173
5.1 XML indexes . 174

5.1.1 XML index types . 174
5.1.2 Creating XML indexes. 176
5.1.3 How to look up the information for XML index 181
5.1.4 Access plan. 186
5.1.5 Best practices . 195

5.2 Schema management . 198
5.2.1 XML Schema Repository . 199
5.2.2 XML schema registration/dropping . 199
5.2.3 Querying XSR . 203
5.2.4 XSR support on Control Center . 205
5.2.5 Schema evolution . 206

5.3 IMPORT, EXPORT, and RUNSTATS . 208
5.3.1 IMPORT . 208
5.3.2 EXPORT . 221
5.3.3 RUNSTATS. 229

5.4 XML data security . 233
5.4.1 LBAC. 233
5.4.2 Row and column-level access control . 234
5.4.3 Node-level access control . 241

Chapter 6. Application development . 249
6.1 The database application development environment 250
6.2 Application development tools. 250

6.2.1 Developer Workbench. 254
6.2.2 Developer Workbench: Visual Query Builder overview. 255

6.3 Accessing pureXML from application overview. 268
6.3.1 Application programming language support for XML 268
6.3.2 Considerations when updating and inserting XML data 269
6.3.3 Considerations when retrieving XML data 275

6.4 DB2 application development with CLI and ODBC 278
6.4.1 Setting up the CLI environment. 278
6.4.2 Building CLI applications. 279
6.4.3 XML data handling in CLI applications . 282
6.4.4 Embedded SQL Applications: overview . 289

6.5 Building applications in C or C++ . 290
6.5.1 Building C/C++ applications with the sample build script 291
6.5.2 Declaring XML host variables . 294
6.5.3 Referencing XML host variables . 296
6.5.4 Declaring large object type host variables 297
 Contents v

7315TOC.fm Draft Document for Review December 29, 2006 1:50 pm
6.5.5 Referencing LOB type host variables . 299
6.5.6 Executing XQuery expressions in embedded SQL applications . . . 299

6.6 Java application programming . 302
6.6.1 Setting up the DB2 JDBC and SQLJ development environment . . 302
6.6.2 Building JDBC applications . 303
6.6.3 Building SQLJ applications . 309

6.7 Building DB2 applications with PHP . 315
6.7.1 Setting up the PHP application development environment 316
6.7.2 Introduction to PHP application development for DB2 318

6.8 The DB2 .NET environment . 321
6.8.1 Building sample applications for the DB2 .NET data provider 321
6.8.2 XML support in Visual Studio.NET - overview 322
6.8.3 XML data type support in Visual Studio .NET 322
6.8.4 XQuery support in Visual Studio.NET . 333

6.9 XML and stored procedures . 338
6.9.1 XML and XQuery support in SQL procedures. 339
6.9.2 XML support in external routines . 343
6.9.3 XML Schema Repository object registration 348

6.10 Web services. 349
6.10.1 Components of Web Services. 351
6.10.2 Web services in DB2 9 . 353

Appendix A. Sample data . 361
A.1 Creating XMLoan database . 362

A.1.1 Creating database . 362
A.1.2 Creating tables . 362

A.2 contactInfo.xsd . 366
A.3 Sample XML data . 368

Appendix B. Additional material . 373
Locating the Web material . 373
Using the Web material . 374

System requirements for downloading the Web material 374
How to use the Web material . 374

Related publications . 375
IBM Redbooks . 375
Other publications . 375
Online resources . 377
How to get IBM Redbooks . 378
Help from IBM . 378

Index . 379
vi DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. vii

7315spec.fm Draft Document for Review December 29, 2006 1:50 pm
Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
developerWorks®
ibm.com®
iSeries™
pureXML™
z/OS®

DB2 Universal Database™
DB2®
Informix®
IBM®
IMS™
Rational®

Redbooks™
WebSphere®
Workplace™
Workplace Forms™

The following terms are trademarks of other companies:

and Oracle are registered trademarks of Oracle Corporation and/or its affiliates.

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

eXchange, Java, JDBC, JDK, JVM, J2SE, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Expression, Microsoft, Visual Basic, Visual Studio, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315pref.fm
Preface

This IBM® Redbook gives a broad understanding of the DB2® 9 feature
pureXML™. This IBM Redbook is intended for IT managers, IT architects, DBAs,
application developers, and other data server professionals. This book is
organized as follows:

� Chapter 1, “Introducing DB2 9: pureXML” on page 1 explores the importance
of XML data and the need for managing it as a strategic business asset,
provides an overview of the DB2 9 pureXML technology and its features, and
illustrates examples and scenarios for utilizing DB2 9 and pureXML.

� Chapter 2, “Sample scenario description” on page 21 introduces the sample
online unsecured loan application, XMLoan. This chapter covers business
requirements, data modeling, application descriptions, and the application
setup.

� Chapter 3, “XML database design” on page 39 provides information about the
hybrid database design. This chapter describe DB2 9 database architecture,
log database design, and physical database

� Chapter 4, “Working with XML” on page 73 discusses how to work with XML.
The topics discussed including XPath, XQuery, SQL/XML, when and how to
use namespace, getting XML data in and out database, and XML full-text
search.

� Chapter 5, “Managing XML data” on page 173 discusses how to manage
XML data stored in XML column. This chapter introduces the pureXML index
features and schema management. It illustrates how to move data, including
XML documents, in and out table using DB2 9 IMPORT and EXPORT utilities.
We also cover how RUNSTATS work with pureXML features. Finally, we
describe some security solutions correspond to pureXML features.

� Chapter 6, “Application development” on page 249 covers various aspects of
application development using DB2. The information contained in this chapter
feature topics and examples that are specific to application development with
XML. The subjects covered include database application development
environment and tools, how to access pureXML from within an application,
XML and stored procedures, and Web Services. This IBM Redbook will help
you design and create a solution to migrate.
© Copyright IBM Corp. 2006. All rights reserved. ix

7315pref.fm Draft Document for Review December 29, 2006 1:50 pm
The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development as well as an IBM Certified IT Specialist.

Art Sammartino is a certified consulting I/T specialist who has been with the
IBM Database Migration Team (SMPO) since joining IBM seven years ago. He is
responsible for assisting customers who are considering a database migration
from competitive RDBMS products (Oracle®, Sybase, or Microsoft® SQL Server)
to IBM DB2. In addition to demonstrating and performing database and
application conversion, his experience includes supporting clients with
application development environment and setup concerns, as well as migration
tool installation and education. He is certified as both an IBM Database
Administrator and an IBM Application Developer.

Dobromir Goutev is a Release Manager for vivatel in Sofia, Bulgaria. Dobromir
has more than 15 years of experience in application design, development,
teaching and consulting. His areas of expertise include relational databases,
object-oriented analysis and design, and application architecture. He holds a
Master of Science in Computer Science from Sofia University in Bulgaria.

Felicity Hendricks an advisory software engineer working at Silicon Valley
Laboratory. She is entering her seventh year at IBM. She is certified in IBM DB2
Universal Database™ and is currently a member of WebSphere® Federation
Server service team. Her areas of expertise include DB2 Universal Database,
WebSphere Information Integrator, and DB2 XML Extender. Felicity holds a
Bachelor of Science degree in Computer Science from CSU Chico.

Ippei Komi is an IT specialist working at IBM Japan. Ippei has more than nine
years of experience in IT as an application developer. His areas of expertise
include relational databases, object-oriented analysis and design, and
application architecture.

Ming-Pang Wei joined IBM in 2001 and has held various roles within IBM
Canada and IBM Australia. He is an IBM Certified Solutions Expert in Database
Administration and Application Development. Currently, he is working as an
Application Development Specialist within the IBM DB2 Advanced Support
Services team in IBM Toronto Lab where he helps customers and vendors get
the best out of their applications and DB2.
x DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315pref.fm
Rav Ahuja is a worldwide DB2 program manager based at the IBM Toronto Lab.
He has been working with DB2 for Linux®, UNIX®, and Windows® since version
1 and has held various roles in DB2 development, technical support, marketing,
and product strategy. He works with customers and partners around the globe
helping them build and benefit from DB2 and services-based solutions. Rav is a
frequent contributor to DB2 papers, articles, and books. He holds a Computer
Engineering degree from McGill University and MBA from University of Western
Ontario.

Figure 0-1 Left to right: Ming-Pang, Dobromir, Felicity, Ippei, Whei-Jen, Rav, and Art

Acknowledgement
The authors express their deep gratitude for the help they received from Susan
Malaika from the IBM Silicon Valley Laboratory They would also like to thank the
following people for their contributions to this project:

Thanks to the following people for their contributions to this project:

Grant Hutchison
Budi Surjanto
Prashant Juttukonda
Ro Omro
Samir Kapoor
IBM Toronto Laboratory
 Preface xi

7315pref.fm Draft Document for Review December 29, 2006 1:50 pm
Matthias Nicola
Cindy Saracco
Bert Van Der Linden
Christina Lee
Mayank Pradhan
Ted Wasserman
Henrik Loeser
IBM Silicon Valley Laboratory

Barry Faust
IBM Software Migration Project Office

Brian Williams
IBM Software Group

Denise Pirro
IBM Sales and Distribution

Emma Jacobs
International Technical Support Organization, San Jose Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:
xii DB2 9 pureXML Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Draft Document for Review December 29, 2006 1:50 pm 7315pref.fm
� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

7315pref.fm Draft Document for Review December 29, 2006 1:50 pm
xiv DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
Chapter 1. Introducing DB2 9: pureXML

IBM DB2 9 (previously code named Viper) for Linux, UNIX and Microsoft
Windows (luw) marks a new stage in the evolution of data servers. IBM has
continually led the data management industry with the release of innovative
technology, starting with Information Management System (IMS™) in the 1960s,
invention of relational database model and Structured Query Language (SQL) in
the 1970s, DB2 for the mainframe in 1980s, and now with DB2 9, a new
generation data server with revolutionary pureXML technology. The technology
in DB2 9 fundamentally transforms the way XML information is managed for
maximum return while seamlessly integrating XML with relational data. It takes
data services to new levels by lowering costs, delivering greater agility, and
improving business insight, making DB2 9 an essential ingredient of the
information as a service infrastructure.

In this chapter, we:1

� Explore the importance of XML data & the need for managing it as a strategic
business asset.

� Provide an overview of the DB2 9 pureXML technology and its features.

� Illustrate examples and scenarios for utilizing DB2 9 and pureXML.

1

1 Portions of this chapter are excerpted from the papers listed in 1.5, “References” on page 19.
© Copyright IBM Corp. 2006. All rights reserved. 1

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
1.1 Growing importance of XML Data

XML technology has become pervasive in virtually all industries and sectors
owing to its versatility and neutrality for exchanging data among diverse devices,
applications, and systems from different vendors. These qualities of XML along
with its easy to understand self-describing nature, ability to handle structured,
semi-structured and unstructured data, and support for Unicode have made XML
a universal standard for data interchange.

1.1.1 Growth of XML

Nearly every company today comes across XML in some form. The amount of
XML data that organizations need to deal with is growing at a rapid rate. In fact, it
is estimated that the volume of XML data is growing twice as fast as that of
traditional data that typically resides in relational databases. Factors fueling the
growth of XML data include:

� XML-based industry and data standards
� Service-oriented architectures (SOA) and Web services
� Web 2.0 technologies such as XML feeds, syndication services

XML-based standards
Almost every industry has multiple standards based on XML and there are
numerous cross-industry XML standards as well. A few examples of XML-based
industry standards are listed here:

� ACORD - XML for the Insurance Industry
http://www.acord.org/

� FPML - Financial Product
http://www.fpml.org/

� HL7 - Health Care
http://www.hl7.org/

� IFX - Interactive Financial Exchange
http://www.ifxforum.org/

� IXRetail - Standard for Retail operation
http://www.nrf-arts.org/
2 DB2 9 pureXML Guide

http://www.acord.org/
http://www.fpml.org/
http://www.hl7.org/
http://www.ifxforum.org/
http://www.nrf-arts.org/
http://www.nrf-arts.org/

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
� XBRL - Business Reporting / Accounting
http://www.xbrl.org/

� NewsML - News / Publication
http://www.newsml.org/

These standards facilitate purposes such as the exchange of information
between the various players within these industries and their value chain
members, data definitions for ongoing operations, document specifications, and
so on. More and more companies are adopting such XML standards or are being
compelled to adopt them in order to stay competitive, improve efficiencies,
communicate with their trading partners or suppliers, or just to perform everyday
tasks.

SOA and Web services
Services-based frameworks and deployments are growing in popularity, owing to
their ability to integrate systems, permit reuse of resources, and respond quickly
to changing market conditions, allowing companies to save money and improve
competitiveness. In services-based architectures, consumers and service
providers exchange information using messages. These messages are
invariably encapsulated as XML. As such, XML provides the plumbing in SOA
environments as illustrated in Figure 1-1. Therefore the drive towards information
as a service and rapid adoption of SOA environments is also stimulating the
growth of XML.

Figure 1-1 XML: The foundation for Web services

Web 2.0 technologies
Syndication is considered to be the heartbeat of Web 2.0, the next generation of
the Internet. Atom and RSS feeds can be found abundantly on the Web, allowing
the user to subscribe to them and be kept up-to-date about all kinds of Web
content changes such as news stories, articles, wikis, audio and video files, and
so forth. Content for these feeds is rendered as XML files and can contain links,

Service
Requestor

Service
Provider

XML
 Chapter 1. Introducing DB2 9: pureXML 3

http://www.xbrl.org/
http://www.newsml.org/

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
summaries, full articles, and even attached multimedia files such as podcasts.
Syndication and Web feeds are transforming the Web as we know it. New
business models are emerging around these technologies. As a consequence,
XML data now exists not only in companies adopting XML industry standards, or
enterprises implementing SOAs, but also on virtually every Web-connected
desktop.

1.1.2 The value of XML data

As a result of XML industry standards becoming more prevalent, the drive
towards SOA environments, and rapid adoption of syndication technologies,
more and more XML data is being generated every day as Web feeds, purchase
orders, transaction records, messages in SOA environments, financial trades,
insurance applications, and other industry-specific and cross-industry data. That
is, XML data and documents are becoming an important business asset
containing valuable information (such as customer details, transaction data,
order records, operational documents, and so forth)

The growth and pervasiveness of XML assets presents challenges and
opportunities for companies. When XML data is harnessed, and the value of the
information it contains is unlocked, it can translate in to opportunities for
organizations to streamline operations, derive insight, and become agile. On the
other hand, as XML data becomes more critical to the operations of an
enterprise, it presents challenges in that XML data must be secured, maintained,
searched, and shared. And, depending on its use, XML data might also need to
be updated, audited, and integrated with traditional data. And all of these tasks
must be done with the reliability, availability, and scalability afforded to traditional
data assets.

That is, in order to unleash the potential of XML data, it requires storage and
management services similar to what enterprise-class relational database
management systems such as DB2 have been providing for relational data. In
the next section, we explore how this type of data management maturity can be
afforded to XML.

1.2 pureXML overview

pureXML is a new DB2 9 feature which provides the capability of storing XML
data natively in a database table. This sections introduce the pureXML functions
and features.
4 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
1.2.1 Traditional methods for managing XML data

Until DB2 9, management of XML data has involved these common approaches:

� Storing XML documents on file systems
� Stuffing XML data into large objects (LOBs) in relational databases
� Shredding XML data into multiple relational columns and tables
� Isolating data into XML-only database systems

All too often, these obvious choices for managing and sharing XML data do not
meet performance requirements. File systems are fine for simple tasks, but they
do not scale well when you have hundreds or thousands of documents.
Concurrency, recovery, security, and usability issues become unmanageable.
Using database management systems (DBMS) alleviate some of these
constraints of file systems, but up until now the DBMS offerings have had their
own limitations for managing XML data. Two common approaches for using
relational DBMSes are called stuffing and shredding.

� Stuffing involves storing an XML document as a whole in to a single
VARCHAR or large object (CLOB or BLOB) column within a relational
database. This approach works well as long as all you need to do is store and
retrieve the XML documents in their entirety. However if you need to query
the contents of XML documents or retrieve fragments or specific
elements/attributes/sub-trees, it involves scanning through each document at
run-time, which can be highly unwieldy due to performance overhead.

� Shredding or decomposing involves mapping XML data to and from relations
columns and tables. To store XML into the database, the XML document is
shredded into its various pieces (elements and attributes) that are stored in
separate columns, a process that involves some overhead. Complexity of the
XML data, normalization rules, and so on might cause XML documents to
span hundreds of columns in dozens of tables. Similarly, to reconstruct the
document all of these columns and tables need to be accessed using
complex queries and multitable joins that introduce unnecessary complexity.
And it might even become impossible to reconstruct some documents or
preserve the original fidelity of data, such as for digital signatures.
Furthermore, this approach also introduces rigidity of relational data models
into the flexible nature of XML data formats.

During recent years a number of specialized DBMS for XML data have been
introduced that are aware of the XML data structures and allow more efficient
management of XML data. However most of these XML DBMSes are relatively
new and introduce a largely unproven environment into an IT infrastructure,
raising concerns about integration with traditional data, staff skills, and
long-range viability.
 Chapter 1. Introducing DB2 9: pureXML 5

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
1.2.2 XML data management with DB2 9

With the release of DB2 9, IBM is leading the way to a new era in data
management. DB2 9 embodies technology that provides pure XML services.
This pureXML technology is not just for data server external interfaces, rather
pureXML extends to the very core of the DB2 engine. The XML and relational
services in DB2 9 are tightly integrated, thereby offering the industry's first
pureXML and relational hybrid data server. Figure 1-2 illustrates the hybrid
database.

Figure 1-2 pureXML and relational hybrid database

The pureXML technology in DB2 9 includes the following capabilities:

� pure XML data type and storage techniques for efficient management of
hierarchical structures common in XML documents.

� pure XML indexing technology to speed searches of subsets of XML
documents.

� New query language support (for XQuery and SQL/XML) based on industry
standards and new query optimization techniques.

� Industry-leading support for managing, validating, and evolving XML
schemes.

� Comprehensive administrative capabilities, including extensions to popular
database utilities.

� Integration with popular application programming interfaces (APIs), and
development environments
6 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
� XML shredding and publishing facilities for working with existing relational
models.

� Enterprise proven reliability, availability, scalability, performance, security,
and maturity that you have come to expect from DB2

In the next few subsections we take a closer look at some of these capabilities
and how to use them.

1.2.3 Setting up databases for XML

Creating a database for storing XML data in DB2 9 is no different from creating a
database for relational data, because both types of data can be stored and
accessed simultaneously in the same database. However, because XML data is
typically represented as unicode, in DB2 9.1, the database must be created
using a unicode setting:

CREATE DATABASE test USING CODESET utf-8 TERRITORY US

1.2.4 XML optimized storage and XML data type

XML data is inherently hierarchical, and can be naturally represented in a tree
form using nodes having parent, child and sibling relationships. With DB2 9,
collections of XML documents are captured in tables that contain one or more
columns based on a new XML data type. Unlike XML data types offered by some
of the other RDBMs, (that under the covers transform XML data and store using
relational constructs), DB2 offers an XML data type that stores parsed XML
documents and fragments with node-level granularity preserving the hierarchical
structures of the original XML data. By not force fitting XML data into relational
data types and not incurring the associated overhead, the pure XML data type in
DB2 provides efficient access to XML data, or to specific portions of it.

You can create a table with both relational and XML data types:

CREATE TABLE orders (orderid INT, orderinfo XML)

You do not need to have any relational columns in the table, or if you prefer, you
can have multiple columns of XML type along with multiple ones of relational
types:

CREATE TABLE o2 (oid INT, otype CHAR(2), ocust XML, oinfo XML)
 Chapter 1. Introducing DB2 9: pureXML 7

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
1.2.5 Getting XML data into the database

XML data can be easily entered into a table created with XML data types using
the INSERT statement. Or if you need to populate the database with a large
number of XML documents, you can invoke the IMPORT command. As for
relational data, these operations can be performed with user applications, DB2
graphical tools, or a DB2 command line interface. Example 1-1 shows an
example of inserting an XML document into ORDERS table.

Example 1-1 Insert XML document

INSERT INTO orders (orderid, orderinfo) VALUES (5,
'<order>

<orderdate>2006-07-07</orderdate>
<customer id="8">

<name>XYZ</name>
<zip>12345</zip>

</customer>
<shipnote>Fragile Contents</shipnote>

 </order>'
);

1.2.6 Querying XML data

DB2 9 supports query languages familiar to both relational and XML
programmers. That is, you access data using either SQL or XQuery, which is a
new query language that supports navigational (or path-based) expressions. In
fact, your applications can employ freely statements from both query languages,
and a single query statement can actually incorporate both SQL and XQuery.
The results of queries can return data in relational and XML formats, or a
combination of both.

Here, we look at a few examples using the table ORDERS and the document
inserted into this table in Example 1-1. Queries in Example 1-2 use SQL to
access both relational and XML data:

Example 1-2 Using SQL to access both relational and XML data

SELECT * FROM orders WHERE orderid=5
SELECT orderinfo FROM orders

Look the XQuery shown in Example 1-3 on page 9. This XQuery returns the
entire XML document inserted in Example 1-1.
8 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
Example 1-3 Using XQuery to access XML data

XQUERY db2-fn:xmlcolumn('ORDERS.ORDERINFO');

The XQuery in Example 1-4 retrieves the orderdate from XML documents in the
orders table.

Example 1-4 Using XQuery to access part of XML document

XQUERY
 for $d in db2-fn:xmlcolumn('ORDERS.ORDERINFO')/order/orderdate
 return $d;

Result:
<orderdate>
2006-07-07
</orderdate>

Finally, Example 1-5 are examples that combine SQL and XQuery. The first is an
SQL/XML statement, and the next one embeds SQL within XQuery.

Example 1-5 Combining SQL and XQuery

-- retrieve the orderid of orders for a specific customer 'XYZ'
 SELECT orderid FROM orders
 WHERE xmlexists('$o[order/customer/name="XYZ"]'
 PASSING orderinfo AS "o");

-- retrieve info for orders matching specified criteria
 XQUERY db2-fn:sqlquery(
 "SELECT orderinfo FROM orders WHERE orderid > 3"
)/order/customer[zip = "12345"];

We discuss in detail XQuery, SQL, and SQL/XML in Chapter 4, “Working with
XML” on page 73.

1.2.7 Query optimization and indexes for XML

DB2 has two query language parsers: one for XQuery and one for SQL. Both
parsers interoperate and generate a common, language-neutral, internal
representation of queries. This means that queries written in either language are
afforded the full benefits of DB2's cost-based query-optimization techniques,
which include efficient rewriting of query operators and selection of a low-cost
 Chapter 1. Introducing DB2 9: pureXML 9

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
data access plan. In addition, DB2 can leverage new query and join operators,
as well as new index processing techniques, to provide strong runtime
performance for queries involving XML documents.

Along with new hierarchical storage management support for XML, DB2 9
features new indexing technology to speed up searches involving XML data. Like
their relational counterparts, these new XML indexes are created with a familiar
SQL DDL statement: CREATE INDEX. However, in addition to specifying the
target column to index, users also specify an xmlpattern, essentially an XPath
expression without predicates, to identify the subset of the XML document of
interest. Example 1-6 shows a CREATE INDEX statement.

Example 1-6 Creating XML index

CREATE INDEX odindex ON orders(orderinfo) GENERATE
 KEY USING XMLPATTERN '/order/orderdate' as SQL DATE;

1.2.8 XML schema repository and validation

DB2 provides an XML schema repository where the schemas of XML documents
can be registered for validation purposes. If you are not familiar with XML
schemas, they are simply well-formed XML documents that dictate the structure
and content of other documents. For example, XML schemas specify which
elements are valid, in what order these elements should appear in a document,
which XML data types are associated with each element, and so on.

In keeping with the flexibility of XML, DB2 9 offers lots of options for validating
XML data. Depending on requirements, you can chose not to validate XML data
before it is inserted in the database, thereby allowing a single XML column to
contain documents with different schemas. However if business needs dictate
conformance to specific schemas, you can validate documents using schemas
registered with DB2. Furthermore, you can have documents in the same XML
column validated with different versions of schemas. Therefore evolving
business needs requiring changes in schema (also known as schema evolution)
can be quickly accommodated. Using the INSERT statement in Example 1-7, the
XML document will be validated during insertion.

Example 1-7 Inserting XML data with validation

INSERT INTO orders(orderinfo) VALUES XMLVALIDATE(?
 ACCORDING TO XMLSCHEMA ID order.ordschema)
10 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
1.2.9 Full text search for XML

Full-text search is a common operation in document-centric XML applications.
DB2's existing text search capabilities (Net Search Extender) have been
enhanced to work with the new XML column type. Full-text indexes with
awareness of XML document structures can be defined on any XML column in
DB2 9. The documents in an XML column can be fully indexed or partially
indexed, for example if it is known in advance that only a certain part of each
document will be subject to full-text search, such as a description or comment
element. Correspondingly, text search expressions can be applied to specific
paths in a document.

1.2.10 Annotated schema decomposition

Even though the DB2 9 store can insert and query any XML document, there are
cases where it still makes sense to shred XML documents into relational rows
and columns. In certain usage scenarios, XML is only used to transport data to
the database but the XML structure is irrelevant after the data is integrated with
existing relational data. Shredding can also be required because many existing
tools for data mining and business intelligence only work on the relational format
of the data. DB2 offers an improved decomposition facility that automates the
process of mapping XML data into relational tables.

1.2.11 Application development support

As an integral part of pureXML technology, DB2 9 contains rich support for
developing XML centric and hybrid applications to simplify coding, reduce
development time, and improve application change agility. XML development
support in DB2 9 includes:

� Support for common programming languages and application interfaces

– Languages: C/C++, Java™, C#, Visual Basic®, Cobol, PHP
– Interfaces: JDBC™, CLI / ODBC, .NET, Embedded SQL, SQLJ

� Support for querying data using XQuery and SQL/XML (or both together)

� Comprehensive XML capabilities in Developer Workbench (including XQuery
builder)

� Tight integration with Visual Studio® and .NET

� New code samples and DB2 SAMPLE database enhancements

Take, for instance, DB2 support for XML in JDBC. The new DB2 driver for JDBC
has been enhanced for XML data. XML data for query results and input and
output parameters can be bound using Java data types such as: strings, byte
arrays, and streams. Because JDBC 3.0 currently does not define a native XML
 Chapter 1. Introducing DB2 9: pureXML 11

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
data type, DB2 provides an extension XML type known as com.ibm.db2.DB2Xml.
The DB2Xml extension has a number of very useful methods that makes working
with XML data easy. In Example 1-8, a column is retrieved as a DB2Xml object.
Then the getDB2String method returns the serialized representation of the XML
value (without XML declaration) as a string object. The
getDB2XMLBinaryStream (“UTF-16”) then returns a binary stream with the XML
value encoded in UTF-16, including a matching XML declaration.

Example 1-8 Using DB2 provided JDBC extension to access XML data

com.ibm.db2.jcc.DB2Xml xml1 =
(com.ibm.db2.jcc.DB2Xml) rs.getObject (“xml_stuff”);

String s = xml1.getDB2String();
InputStream is = xml1.getDB2XMLBinaryStream(“UTF-16”);

1.2.12 Tools and utilities

Most of the standard DB2 tools and utilities have been enhanced with integrated
support for pureXML technology. These include:

� Import/Export, getting data XML documents in and out of the database

� Backup/Restore, XML data is backed up and restored alongside relational

� Runstats, Updating statistics for query optimization

� High Availability and Disaster Recovery (HADR) using secondary or off-site
systems

� Advanced Security, including fine-grained, label-based access control

� Stored procedures, including ability to pass XML documents as parameters

A number of graphical tools and interfaces in DB2 have also been enhanced for
XML. For instance, in addition to navigating and viewing XML objects using
Control Center, you can visually specify XML data types while creating tables,
build XML index expressions, execute queries involving XML, and view query
access paths and index usage with Visual Explain. And you can use
drag-and-drop features of the XQuery builder (part of DB2 Developer
Workbench) to develop even sophisticated XQuery statements with relative
ease.
12 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
1.2.13 Benefits of DB2 pureXML technology

With integrated hybrid data management in DB2 9 you get an industry-leading,
easy-to-use, standards-based, and enterprise-proven data server for both
relational and XML data. Regardless of whether you want to power
mission-critical solutions, or embed a free edition of the DB2 data server with
your small-business applications, with DB2 9 and pureXML you can:

� Reduce development time through code simplification and avoiding
XML-relational transformations in your applications.

� Increase agility through versatile XML schema evolution allowing you to
quickly modify applications as result of changing/introducing new services,
products, or business processes

� Improve insight by harnessing previously unmanaged XML data and
providing quicker query processing through XML-optimized storage and
indexing.

For instance, Storebrand Group, a large financial services company in Europe, is
seeing dramatic benefits as a result of using DB2 9 pureXML technology for
powering their SOA solution. Development tasks that took them anywhere from
two to eight hours with relational databases, now take them less 30 minutes with
DB2 pureXML. Schema changes using a relational data model that could take up
to one week to implement, can now be done in a matter of minutes with DB2 9.
Long-running queries running over shredded XML data that previously took days
to complete now execute in seconds or minutes with pureXML.

1.3 pureXML usage scenarios

There are many types of solutions and applications that can leverage pureXML
services provided by DB2 9. In this section, we cover several common usage
scenarios.

With the pure XML support available in IBM DB2 9, it is far easier, faster and
less expensive to run queries, share and retrieve data, and make document
changes in response to new business requirements without impacting
applications.

- Thore Thomassen, Senior Enterprise Architect, Storebrand Group
 Chapter 1. Introducing DB2 9: pureXML 13

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
1.3.1 Integration of diverse data sources

The flexible data model of XML and the ability to join diverse documents in
XQuery are ideal for integrating data from different sources. DB2 9 can serve as
a data integration hub in a couple of different ways, depending on the
requirements. Data from different sources can be converted to XML2 and stored
in DB2 9, where it can be joined. Alternatively, a distributed integration approach
can be used where data can be left in their source repositories and accessed
from a DB2 9 database using XML messages. You can also go a step further and
make DB2 9 the integrating database in an SOA environment, using Web
services to communicate between different systems, including existing data
sources.

This last approach, also known as Service Oriented Integration (SOI), is what
Storebrand is using to achieve integration across different products, IT
infrastructures and business processes to respond flexibly to customer requests.
A depiction of their DB2 9-based SOI environment is shown in Figure 1-3.

Figure 1-3 DB2 9 based on SOI environment

2 Companies such as Exegenix provide conversion services to XML

WWW

WAP

Call
Center

Financial
Advisor

Business
Services

Customer

Process
ManagementArchive Data

Warehouse

XML
Integration
Database –

DB2 9

Life
Insurance

YTP
Pensions

ITP
Pensions

Banking

Investments

Mortgage

XML

XML

XML

XML

XMLXML

XML

XML
XML

XML

XML

XML

XM
L XML
14 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
1.3.2 Forms and their processing

Paper-based forms are being replaced by electronic forms such as XForms for all
sorts of goods and services. For example, the insurance industry has life
insurance application and claim forms; banks have loan application forms, and
credit card application forms; and the government and public sectors have their
fair share of forms. One method for storing data in electronic forms is simply to
save the various fields of the form in different columns of a relational database.
This has several drawbacks similar to the shredding approach. Query complexity
increases for large forms, digital signatures are compromised, and changes to
forms require time-consuming schema changes in the database, along with
costly application rewrites.

A more elegant solution for many types of eForms (such as IBM Workplace™
Forms) is to store them as a whole in DB2 9 using XML. For example, some of
the taxation departments are resorting to this approach for tax filings. Tax returns
are complex documents and mapping to relational schemas requires complex
shredding and queries. And there are numerous changes to tax forms every year.
By storing these tax forms as XML documents in DB2 9,“shredding can be
avoided and changes to forms can be easily accommodated using the flexible
schema evolution support.

After the forms are stored in the database, they are subject to subsequent
processing and workflows. An insurance application, for example, goes through
approvals, which could involve multiple departments, and be subject to status
enquiries from brokers and customers. DB2 9 provides quick query and update
access to subportions of documents (for example, qualifying information,
approval sections, status fields, and so on) and allows for multiple people to
access a large library of documents simultaneously. See Figure 1-4.

Figure 1-4 Storing Forms data as XML in DB2 9

DB2 9

<xml>

</xml>

Broker

Application
Form

Status

Approve

Audit

Insight
 Chapter 1. Introducing DB2 9: pureXML 15

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
1.3.3 Document storage and querying

XML is often classified as data-centric or document-centric. Data-centric XML
tends to be more structured while document-centric XML usually has less
structure to it (although there can be some structural aspects). For example,
legal contracts have some structured fields such as names, entities, dates,
locations, addresses, and so forth. However most of the contractual data, such
as terms and clauses, appear as text. These types of XML documents are a
natural fit for storage and management within DB2 9.

Nextance, a contracts management solution provider, is leveraging DB2 9
precisely for this purpose. As illustrated in Figure 1-5, users of a DB2 9-powered
Nextance solution can quickly access both structured and unstructured portions
within contract documents due to XML optimized storage, XML indexes, and
full-text search capabilities in DB2. Versatile subdocument level access in DB2
also allows Nextance to easily search for and re-se clauses in other documents,
while allowing Nextance to customize the solution (make schema changes
easily) for each client, and attend to the evolving nature of contracts.

Figure 1-5 Managing contracts with Nextance and DB2 9

Another example is that of a manufacturer using DB2 9 to store technical
manuals. Their finished products are made up of mechanical parts, each
consisting of other parts or subassemblies. The subparts and subassemblies
have their own instructions or manuals. Each manual has some structured
sections and some free-form sections. By using DB2 9 to store these manuals as
XML documents, they are able build complete manuals of the finished products
using the hierarchy of manuals, while being able to quickly drill down and access
instructions for subassemblies. They are also able to easily adapt and update the
manuals for new models of their products.

DB2 9 is also suitable for simple or application managed document processing.
Library bibliography and online documentation are examples of simple document

NEXTANCE
Contract Performance ManagementContract Performance Management

DB2 9DB2 9

Contract
Dates
Prices

Liabilities
Milestones

Quantities Certificates

Structured Unstructured
Create
Update

Manage

Business Exec /
Analyst

Search
Report

Analyze

Procurement / Sales /
Legal / Finance
16 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
processing applications. These applications can leverage the power of XQuery
for search or dynamic composition of required document elements from the
underlying XML documents. Applications such as Wikis and Blogs are also
examples which require simple document object management and processing
capabilities. These applications store, update, search, and retrieve text and other
fragments in XML. Administrators and power users are likely to perform some
additional query tasks on such application driven simple document systems. DB2
9 provides the necessary capabilities for these simple requirements.

There are numerous other examples where DB2 9 is an excellent fit for storing
document-centric XML. Many business objects are now being generated as XML
documents, such as orders, invoices, and even spreadsheets and
word-processed documents. Storing these documents in a DB2 database allows
for reliable management, fast subdocument level access, and the ability to derive
deep insight. DB2 9 can also be used as a building block for other content and
document management applications.

1.3.4 XML for transactions

The DB2 engine has been proven to deliver scale and performance for even the
most demanding transactional needs, and benchmark data confirms the same
holds true for XML transactions. As an example, see:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0606schiefer/

As business-critical transactions are conducted using XML, DB2 with pureXML
capabilities becomes a natural fit as well. There are numerous drivers behind
XML transactions. Message-based transactions within service-oriented
architectures are one such driver. Companies want to capture critical business
data, route it appropriately, prioritize processing (such as by customer value) and
perform analysis on these data items. For example, a goods distributor is moving
towards a message-based infrastructure to manage business interactions with
other value-chain members. XML data is used as the data objects of the
transactions (such as for purchase and sale of goods). This XML data (such as
buy/sell records) can be retrieved, updated, searched according to filtering
criteria, and analyzed using the XML capabilities in DB2 9.

Another driver behind XML-based transactions is industry standards. FIXML for
example is being used for trading stocks and other financial instruments. DB2 9
can serve as the transactional engine behind such financial transactions and
store the resulting XML data in a native format for fast queries, updates, and so
on, but also provides the flexibility to evolve schemas rapidly to handle new types
of financial instruments and changes in standards. For example, FIXML has had
new versions every one to two years.
 Chapter 1. Introducing DB2 9: pureXML 17

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0606schiefer/

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
1.3.5 Syndication and XML feeds

Syndicating feeds on the Web popularized by blog and news sites are now being
used for a variety of commercial purposes. DB2 9 offers the ability to serve XML
(Atom or RSS) feeds through a Web services interface. Off-the-shelf feed
readers can request current or dynamically generated feeds from DB2 and
access individual XML data entries using appropriate links contained in the
feeds.

DB2 can also serve as a repository for XML feeds and their data. Incoming XML
feeds can be saved using the pureXML storage in DB2 and can be used for
updating the database, deriving insight, or even for generating new feeds. For
example, a brokerage firm can receive constant feeds about financial
transactions or price tickers, which can be stored reliably using DB2 9. Figure 1-6
illustrates that DB2 9 can service XML feeds through a Web services interface
and as a repository for XML feeds.

Figure 1-6 DB2 9 facilitates XML feeds

Consider a commercial scenario involving syndication benefits. A traditional
method for a goods manufacturer or distributor looking to unload excess
inventory is to sell it to a local overstock inventory buyer who typically offers only
a few cents on the dollar. There are now a number of online exchanges and
trading platforms (such as amazon, eBay, overstock.com, and so on) that open
up new markets and channels for selling inventory. The goods manufacturer/
distributor using DB2 9 can now automatically have the database analyze and
post listings for overstock goods on such online marketplaces using Web
services. Furthermore, the goods vendor can use feeds to update information
such as inventory data and pricing information in real time, as a result of supply
and demand variations and changing inventory levels. The goods vendor can
also store feeds using DB2 for other similar and competitive products, analyze
data from these feeds, and adjust their offering tactics dynamically, often
automatically using rule-based criteria.

DB2 9

Web Server

ATOM/RSS
Provider

Web Server

ATOM/RSS
Reader
18 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch01.fm
1.3.6 XML as a better data model

As you build new applications, you might find that the XML flexibility, schema
versatility, hierarchical nature, and so on can provide a better data model than
relational data models, for example when dealing with:

� Semi-structured or unstructured data

– Healthcare records, biological data, contracts, insurance claims, and so
forth

� Inherently hierarchical, nested or complex data

– Manuals, books, catalogs, bills of materials, land records, and so forth

� Data with changing or evolving schemas

– Forms, changing industry standard documents, new product versions, and
so forth

� Data with Null or multiple-values

– Addresses and phone numbers (home, office, mobile), in patient records,
and so forth

If you decide to use XML as the data model for your applications, DB2 9 is a
great choice for storing and managing this XML data for all of the reasons
discussed previously.

1.4 Summary

In this chapter we reviewed the pervasiveness of XML data, its relevance for all
kinds of organizations, and the importance for managing it well. We introduced
pureXML technology in DB2 9 and how it can unlock the latent potential of XML
with performance and development time/cost savings. We also examined
several examples and business scenarios where usage of DB2 9 along with its
pureXML technology is highly applicable.

1.5 References

This chapter contains references or excerpts from papers and articles indicated
below:

� Saracco, C. M. Managing XML for Maximum Return, IBM White Paper,
October 2005.

ftp://ftp.software.ibm.com/software/data/pubs/papers/managingxml.pdf
 Chapter 1. Introducing DB2 9: pureXML 19

ftp://ftp.software.ibm.com/software/data/pubs/papers/managingxml.pdf

7315ch01.fm Draft Document for Review December 29, 2006 1:50 pm
� Nicola, Matthias and Bert Van der Linden. Native XML Support in DB2
Universal Database, Proceedings of the 31st Annual VLDB, 2005.

http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf

� Saracco, C. M. What's New in DB2 Viper: XML to the Core, IBM
developerWorks® article, February 2006.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-060
2saracco/
20 DB2 9 pureXML Guide

http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
Chapter 2. Sample scenario description

In this chapter, we introduce our sample online unsecured loan application,
XMLoan. In this application we explore DB2 9.1 XML native data type and DB2
native XML storage. We demonstrate how to take advantage of the new data
type and DB2 9.1 feature in combination with other essential e-business
technologies such as Web services, Web application server and DB2 9.1
database server.

This chapter covers the following topics:

� Business requirements
� Data modeling
� Application description
� Sample environment requirements and setup

The design approach of our XMLoan application outlined in the following
sections is not as thorough as it would be in real life. However, it serves our
purpose for this book, which is to provide a showcase for what DB2 9.1 pureXML
has to offer for realistic e-business applications.

2

© Copyright IBM Corp. 2006. All rights reserved. 21

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
2.1 Business requirements

This section describes the business requirements of FAMDI Bank, a fictional
financial institution. FAMDI Bank is a growing business which needs to update
and streamline their unsecured loan application process. They are looking for a
way to provide real-time status updates in order to better serve their customers.
In addition, they also need a solution to accept new loan applications anytime
from anywhere in order to reach more potential customers. FAMDI Bank would
like to achieve this by having a Web application that enables customers to apply
for unsecured loan applications, make monthly payments, and send feedback
from the bank Web site.

Figure 2-1 illustrates a high-level overview of the bank business model for
processing an unsecured loan application.

Figure 2-1 Unsecured loan process

The application should have the following functions:

� Customer can select the loan products and submit the loan application.
� Customer can make a payment.
� Customer can send feedback.
� The loan office can process the loan.
� The management team can create reports to analyze the loan, payment, and

so forth.

2.1.1 Data modeling

With the business requirement identified, we can determine all entities and
relationships of those entities in table and database designs.

Figure 2-2 on page 23 shows the high-level of our data model including columns,
keys, and the relationship between entities. The boxes in the diagram provide a

New Loan

Application

Create new
account & send
loan approval

notification

Send loan
rejected

notification

Reject

Approve

submit

Customer Loan Officer
22 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
logical description of the tables we have implemented for the XMLoan sample
application. The columns with XML data type are noted with XML in parentheses.

Figure 2-2 The online loan application database entities

Tables
The XMLoan sample application uses the following DB2 9.1 tables:

� CAMPAIGN

The CAMPAIGN table contains information about predefined advertising
campaign sources and their description. This information helps the bank to
identify the successful campaigns for future advertising.

The primary key is CAMPAIGN_ID.

� FEEDBACK

The FEEDBACK table saves the information entered by the customer from
the bank Web site. The information includes the loan application ID, rating of
loan process, and comment about the loan products. COMMNET column is
defined as XML data type to store customer feedback.

The foreign key LOAN_APPL_ID references LOAN_APPLICATION table.

� LOAN

The LOAN table contains records for approved loans. Loan ID, loan start date
and loan status ID are stored in this table.

The foreign key LOAN_ID references the PAYMENT table.

LOAN TABLE

LOAN_ID(FK)
START_DATE
PYMT_STATUS
PYMT_COUNT
…

PAYMENT TABLE

APPL_ID(FK)
PAYMENT_DATE

…

LOAN APPLICATION TABLE

APPL_ID(PK)
APPL_STATUS(FK)
PROD_ID(FK)
APPL_DOC(XML)

…

FEEDBACK TABLE

APPL_ID(FK)
COMMENT(XML)
…

APPLICATION
STATUS TABLE

STATUS_ID(PK)
STATUS_DESC
…

PRODUCT TABLE

PROD_ID(PK)

PROD_DESC

RATE

AMOUNT

TERM

…

CAMPAIGN TABLE

CAMPAIGN_ID(PK)
CAMPAIGN_DESC
…

 Chapter 2. Sample scenario description 23

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
� LOAN_APPLICATION

The LOAN_APPLICATION table contains information pertaining to the loan
application process such as loan application ID, loan application status,
application document which stored as XML column. The loan application ID is
generated by our application after customer submitted their applications.
APP_DOC is an XML column to store loan application.

The primary key is LOAN_APPL_ID. The foreign key PROD_ID references
the PRODUCT table.

� PAYMENT

The payment table contains payment records. The information includes
application ID and payment date.

The foreign key APPL_ID references LOAN table.

� PRODUCT

The product table contains information about all unsecured loan products
offer by the bank. The information includes loan product ID, description for
each product, the interest rate, loan amount, and loan term.

The primary key is PROD_ID.

� APPL_STATUS

The APPLICATION_STATUS table contains information about the loan
application status.

The primary key is STATUS_ID.

2.2 Application description

The application XMLoan will serve as an online unsecured loan application
processing for the bank to enable the company to attract more potential
customers.

The XMLoan application is a two-sided application. One is the customer side and
the other is the bank employee side, which is the loan officer side. The customer
side provides a Web interface for a customer to apply for a new loan, make a
payment on an existing loan, or to submit feedback about the loan process or
product offers. The bank employee side provides a Web interface for the loan
officer to process the loan, manage customer records, and run monthly reports.

Figure 2-3 shows the home page of XMLoan application.
24 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
Figure 2-3 XMLoan application home page

2.2.1 Loan application

The loan application will utilize a Web interface for the customer. This interface
allows the customer to create a new loan application, make a monthly payment,
or submit feedback on the loan process. When a customer creates a new loan
application, he will be presented with a confirmation page that includes the loan
application identification number and message that the loan was successfully
submitted to the bank. The customer can optionally provide an e-mail address
and receive a notification through e-mail in addition to the Web confirmation. The
loan process flow is shown in Figure 2-4 on page 26.
 Chapter 2. Sample scenario description 25

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 2-4 Loan application process flow

Apply Loan
The loan application form is launched when the customer selects Apply Loan,
as shown in Figure 2-5 on page 27. The customer selects a loan product from
the Product drop-down menu, and enters the required information such as name,
address, financial data, and so forth.

Apply
Loan

Feedback

Loan Application
(XML)

Customer feedback
(XML)

DB2 9.1
database

Select a loan product

Enter personal information

How did you hear about us?

Apply Clear

Submit

Feedback

Submit Reset

Make
payment

Make Payment

SubmitEnter Loan ID

Submit Reset

Make Payment Setup.txt
26 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
Figure 2-5 Online loan application form

After having successfully submitted your unsecured loan information, the
customer receives a confirmation message and assigned a loan application
identification. The confirmation page is shown in Figure 2-6.

Figure 2-6 Loan submission confirmation page
 Chapter 2. Sample scenario description 27

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
Apply Loan process program flow
When the customer click Apply Loan, the XMLoan application accesses the
PRODUCT and CAMPAIGN tables to retrieve product and campaign
descriptions. This information is rendered in the Loan Product Selection and
Campaign fields of loan application form. After the customer clicks Apply button
to submit the loan request, the values that the customer entered are verified for
validity. If the information is all valid, the XMLoan application takes the input
values and generates a well-formed XML document. The XML document then
gets inserted into APPL_DOC column of type XML in LOAN_APPLICATION
table within DB2 9.1 database.

Figure 2-7 shows the program flow.

Figure 2-7 Loan application process behind the scenes

Make Payment
In addition to applying for a new loan, the customer can make a payment on an
existing loan account. To make a payment, the customer can select the hyperlink
Make Payment from the home page. The customer is presented with a payment
page where he or she can enter a loan identification number to bring up his or
her record. By entering the Loan ID and selecting the Enter button, a new page
is launched to allow the customer to view payment information and make a
monthly payment on their loan account. By selecting the Make Payment button,
the customer confirms that the payment will be sent to the bank and will receive a

Index.html

GenXML.java

LOAN_APP
LICATION

INSERT

PRODUCT

SELECT

campaign

SELECT

loanForm.jsp

JSPhtmlJava
Beans TABLELegend:
28 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
confirmation message with the payment history displayed. The make payment
process flow is illustrated in Figure 2-8.

Figure 2-8 Make payment process flow

Making Payment process program flow
When the customer starts a loan payment process by selecting the Make
Payment hyperlink, behind the scenes the application loads the
makePayment.html page where it accepts the Loan ID as input from the
customer and starts the makePayment.jsp. The application then retrieves the
customer record such as name, address, loan total amount, current due date,
and current balance from the LOAN_APPLICATION table and renders the
information to makePayment.jsp where the customer is able to confirm the
payment. After the customer clicks the Make Payment button, the application
updates the PYMT_STATUS column in LOAN table and inserts a new record to
PAYMENT table as well as retrieves payment history to render to the
updatePayment.jsp for the customer to view. The application flow for the make
payment process is shown in the Figure 2-9 on page 30.
 Chapter 2. Sample scenario description 29

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 2-9 Make payment process program flow

Feedback
Alternately, the customer can submit feedback about the loan request process or
current unsecured loan product offers by selecting the Feedback hyperlink from
the home page (Figure 2-10).

Figure 2-10 Feedback form

Index.html

makePayment.html

QUERY to retrieve
name, address,
amount, due date,
current balance

makePayment.jsp updatePayment.jsp

Loan_Application

LOAN

PAYMENT

PAYMENT

UPDATE Loan table.
Update PYMT_STATUS

Insert Payment table.
Create a new record for
payment.

QUERY to retrieve a
history of payment.

JSPhtmlJava
Beans

TABLELegend:
30 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
Feedback process program flow
When the customer completes the form and selects the Submit button, the
application receives the inputs. It then uses the values to generate an XML file
and stores it into FEEDBACK table within the XMLRB database. Figure 2-11
illustrates the program flow behind the scenes.

Figure 2-11 Feedback process program flow

2.2.2 Loan processing

The XMLoan sample application utilizes a Web interface for the loan officer. The
loan officer uses this interface to review submitted unsecured loan applications.
The loan application will be verified for accuracy and analyzed for viability. Based
on analysis, the loan officer will either approve the loan, reject the loan, or
present the customer with a new loan offer if the customer does not qualified for
the amount requested. When the loan officer selects the Loan Process
hyperlink on the loan home page, the loan officer is presented with the Loan
Process page with a listing of all submitted loans. See Figure 2-12 on page 32.

Index.html

FEEDBACK TABLE

Feedback.html

Feedback.jsp
JSPhtmlJava

Beans
TABLELegend:
 Chapter 2. Sample scenario description 31

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 2-12 Main loan process page

The loan officer can start processing an unsecured loan application by selecting
any application from the loan listing. When a loan application is selected, the
processing page (Figure 2-13 on page 33) is presented where the loan officer
can analyze the record and approve or reject the loan.
32 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
Figure 2-13 Process loan application page

When the loan officer approves a loan request, a confirmation page will be
displayed with a message. The message states that the loan has been
successfully approved and a welcome notification is sent to the customer to let
him or her know of the loan approval decision.

When the loan officer rejects a loan request, a loan decision notification is sent to
the customer. The notification will include the information explaining the decision
and, optionally, propose a new loan offer for which the customer can be
approved.

Process loan application process program flow
When the loan officer selects Process loan, the application loads the application
listing page. As a loan application identification number is selected, the
application accesses the LOAN_APPLICATION table to retrieve the loan
document. It also accesses the PRODUCT table to retrieve the product
information and renders to the processApp.jsp page.

If the Approve button is selected, the applicationApproved.jsp page is loaded
and the application inserts a new record to the LOAN table as well as updates
the APPL_STATUS column within the LOAN_APPLICATION table with the
 Chapter 2. Sample scenario description 33

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
approved status. Alternately, if the Reject button is selected, the application
loads the applictionRejected page and just updates the APPL_STATUS column
in the LOAN_APPLICATION table. The process is illustrated in Figure 2-14.

Figure 2-14 Loan processing program flow

2.2.3 Loan management

The XMLoan sample application utilizes the Web interface for the loan officer.
The loan officer will use this interface to display and manage loan records. When
the loan officer selects the Loan Management hyperlink from the loan home
page, the loan officer has the option to run monthly reports such as monthly loan
statistics, payment analysis, campaign analysis, and customer satisfaction
analysis. Figure 2-15 shows the loan management interface.

Figure 2-15 Loan management interface

Index.html

showAppID.jsp processApp.jsp

LOAN_APP
LICATION

SELECT
BY APPID LOAN_APP

LICATION
(PRODUCT)

LOAN_TABLE
(LOAN_ID,

START_DATE,
STATUS_ID)

applicationApproved.jsp

applicationRejected.jsp

Insert

UPDATE

UPDATE

LOAN_APP
LICATION PRODUCT

SELECT

JSPhtmlJava
Beans

TABLELegend:
34 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
When the loan officer selects a monthly report, a separate report page is
displayed for viewing and analysis. For example, when clicking Customer
Satisfaction, the Customer Satisfaction report is displayed (Figure 2-16).

Figure 2-16 Customer Satisfaction report

In the Reports page, we provide Show Queries buttons for each report. In a
real-life application, this field would not be shown to the loan officer. This was
added so that we can show you the XQuery constructed for each report.
Figure 2-17 shows the Customer Satisfaction query.

Figure 2-17 Sample query page
 Chapter 2. Sample scenario description 35

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
Loan Management process program flow
When the loan officer click the, Loan Management hyperlink in the home page,
the XMLoan application loads the report listing page which shows all reports that
the loan officer can display. If any monthly report hyperlink is selected, the
application accesses the LOAN_APPLICATION table to retrieve necessary
information to render to corresponding result page. Figure 2-18 illustrates the
Loan Management process program flow.

Figure 2-18 Loan Management process program flow

2.3 Application setup

In a real-life implementation of our XMLoan application, the customer-side
application would be hosted on one or more HTTP Servers, and the loan officers
would have their own loan officer side -application server which is normally
behind the bank network firewall. To keep the setup simple, and to make it
possible for you to easily replicate our environment, we host the customer side
and the loan officer sides of the application on the same machine where our DB2
9.1 database server is residing.

The XMLoan application, setup script and data files are available for download
from IBM Redbook web site. The download details are in Appendix B, “Additional
material” on page 373.

query2Result.jsp

Index.html

viewSelectQuery.html

query1Result.jsp

QUERY

QUERY

showQuery1.html

JSPhtmlJava
Beans

TABLELegend:
36 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch02.fm
Following are installation instructions for the XMLoan application:

1. Install Apache 41: The Apache HTTP Server can be downloaded from the
following Web site:

http://tomcat.apache.org/download-41.cgi

Apache Tomcat 4.1 requires J2SE™ Software Development Kit (SDK).

2. Install DB2 9.1: You can run any DB2 9.1 edition with XMLoan application.

DB2 Express-C is available for free download at the following IBM DB2
Universal Database Web site:

http://www-306.ibm.com/software/data/db2/udb/db2express/

3. Add the following environment variables:

JAVA_HOME=<db2_install_directory>\SQLLIB\java\jkd
CATALINA_HOME=C:\Program Files\Apache Group\Tomcat 4.1

Edit the existing environment variable PATH and add %JAVA_HOME%\bin to the
path.

4. Copy db2jcc.jar and db2jcc_license_cu.jar from
<DB2_install_directory>\SQLLIB\java to %CATALINA_HOME%\common\lib
directory.

5. Copy XMLoan.war to %CATALINA_HOME%\webapps\ directory

Apache will deploy the application automatically.

6. Run setup.txt from DB2 Command line processor or DB2 Command Editor to
create a UTF-8 database, tables, and populate data needed for the tables as
following:

DB2 -tvf setup.txt

The DDLs for creating database and tables are listed in A.1, “Creating
XMLoan database” on page 362.

7. Install partial update stored procedure DB2XMLFUNCTIONS.jar using the
following steps:

a. Start DB2 command line processor.

b. Setup DB2 environment variable using the following command:

DB2SET DB2_USE_DB2JCCT2_JROUTINE=on;

Note: If you do not have J2SE you can use the copy that comes with DB2
9.1 located under <DB2_install_directory>\SQLLIB\java\jkd. The default
<DB2_install_directory> for Windows is C:\Program Files\IBM\.
 Chapter 2. Sample scenario description 37

http://tomcat.apache.org/download-41.cgi
http://tomcat.apache.org/download-41.cgi
http://www-306.ibm.com/software/data/db2/udb/db2express/

7315ch02.fm Draft Document for Review December 29, 2006 1:50 pm
c. Update the Java heap size using the following command:

DB2 UPDATE DBM CFG USING JAVA_HEAP_SZ 1024;

d. Install the stored procedure jar file into DB2 using the following
commands:

DB2 -TD;
CONNECT TO xmlrb USER db2admin USING db2admin;
CALL SQLJ.INSTALL_JAR('file:///c:/temp/DB2XMLFUNCTIONS.jar',
db2xmlfunctions, 0);

You need to replace the c:/temp with the directory where the XML
application is downloaded.

e. Register the stored procedure: Use command as shown in Example 2-1 to
create the stored procedure. You can copy and paste, then run the
command in CLP.

Example 2-1 Create stored procedure

CREATE PROCEDURE db2xmlfunctions.XMLUPDATE(
 IN COMMANDSQL VARCHAR(32000),
 IN QUERYSQL VARCHAR(32000),
 IN UPDATESQL VARCHAR(32000),
 OUT errorCode INTEGER, OUT errorMsg VARCHAR(32000))
 DYNAMIC RESULT SETS 0
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 NO DBINFO
 FENCED
 NULL CALL MODIFIES SQL DATA
 PROGRAM TYPE SUB
 EXTERNAL NAME
'db2xmlfunctions:com.ibm.db2.xml.functions.XMLUpdate.Update';

8. Start the XMLoan application: Open your browser and enter the following on
your Web address:

http://localhost:8080/XMLoan

The application should start on your browser.
38 DB2 9 pureXML Guide

http://localhost:8080/XMLoan

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Chapter 3. XML database design

It is crucial to design a database that maintains the consistency and integrity of
different forms of data. There are more options when you design a hybrid
database. In this section, we discuss the options available. No matter the
database is hybrid or pure relational, the database design activities include both
logical design and physical design.

In this chapter, we discuss the following topics:

� Architecture overview
� Logical database design
� Physical database design

3

© Copyright IBM Corp. 2006. All rights reserved. 39

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
3.1 Architecture overview

DB2 9 is a hybrid database system. It can have both relational data and native
XML data in same database. DB2 9 introduces an XML data type. The relational
data is stored in tabular structures and the XML data is stored in tree structure.
The structure enables XML data to be stored in their hierarchical form within
columns of a table. Because data is stored in their native form, both types of data
can benefit from the performance. On the top of both tabular structures and tree
structures, there is one hybrid database engine that processes both types of
data. There are two different parsers to process SQL and XQuery. A single
compiler is used for both languages. DB2 9’s compiler and optimizer handle both
languages. An application can use the combinations of SQL and XQuery to
access relational and XML data in the hybrid database.

Figure 3-1 shows the architecture overview of the hybrid database system.

Figure 3-1 DB2 architecture

DB2 V9.1 treats XML as a first-class data type. It has a pureXML storage which
means XML data is stored in XML form which is a hierarchical structure.
Figure 3-1 shows XML data and relational are stored separately.

Storage

XML Data

Relational Table

Hybrid
EngineCompiler

SQL
Parser

XQuery
Parser

ApplicationApplication
SQL

ApplicationApplication
XQuery

ServerClient
40 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Example 3-1 shows an example of XML document.

Example 3-1 XML document

<Customer>
<Name>

<FirstName>John</FirstName>
<LastName>Smith</LastName>

</Name>
<DateOfBirth>1967-02-23</DateOfBirth>
<SSN>123-45-6789</SSN>
<Address>

<Street>46 South Main Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>
<Employer>

<Company>My company</Company>
<Position>Developer</Position>

</Employer>
</Customer>

Figure 3-2 shows XML document in hierarchical form.

Figure 3-2 XML document in hierarchical form

Customer

Los Gatos46 South
Main Street

CA MyCompany95031 DeveloperSmithJohn

First Name Last Name Company Position1967-02-23 123-45-6789 State ZipStreet City

Address Employer Name Date of
Birth SSN
 Chapter 3. XML database design 41

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
XML document needs to be well-formed in order to be inserted and imported to
an XML column. Any attempt to insert/import XML document to an XML column
will fail with error. You can insert and import XML document up to two gigabytes
in size in an XML column. Similar to long data types (LONG VARCHAR, LONG
VARGRAPHIC and LOB data), XML data is stored separately from the other
contents of a table and can be stored in its own individual table space. DB2 9
stores XML data contained in table columns of the type XML in auxiliary XML
storage objects. If the XML columns are stored in system managed space
(SMS), the files associated with XML storage objects have the file type extension
.xda.

XML data objects are stored separately from parent table objects. For each row
of XML type column, there is an XML data specifier (XDS) stored in the table.
The XDS has the information to access the XML data stored in the disk. The
XDS is also used for IMPORT and EXPORT utilities.

Figure 3-3 shows the relationship amount table, XDS, and XML data column.

Figure 3-3 table, XDS, and XML data relationship

DB2 9 supports XML document validation with XML schema. The validation
usually takes place in insert and import time. XML schemas used for validation
are registered in XML Schema Repository (XRS). The XML schema is different
from the schema in the relational database. A relational database schema is a
collection of named database objects. It is used to logically group database
objects and also is used as a name qualifier. XML schema is a language that
describes the structure and constraining the contents of XML documents. XML
schema is discussed in more detail in 3.2.5, “XML schema” on page 49.

XML Column

Table

XDSXDS

XDSXDS

XDSXDS

XDSXDS
42 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
3.2 Logical database design

DB2 V9.1 comes with pureXML features. When you design database on DB2
V9.1, you want to take the advantages of these new pureXML features. In this
section, we discuss the new data type XML, XML index, and views. In a hybrid
database, table design includes considerations of what kind of data should go to
relation tables and what should go to XML columns. In some cases, you might
prefer to decompose XML documents into relational tables. Another
consideration of storing XML document in database is the document validation.
DB2 V9.1 supports XML documents validation during insert and import. In this
section, we talk about the validation types and the advantages and
disadvantages of validate.

3.2.1 XML data type

DB2 9 introduces XML data type. In the current version, DB2 supports tables
with XML data type in an unicode (UTF-8 code set) database. All XML data must
be stored in the database in the UTF-8 code set. Unlike a VARCHAR or a CLOB
type, the XML type has no length associated with it. The XML storage and
processing architecture imposes no limit on the size of an XML document.
Currently, only the client-server communication protocol limits XML bind-in and
bind-out to 2 GB per document.

You can insert only well-formed XML documents. They must adhere to certain
syntax rules specified in the W3C standard for XML. DB2 checks the
well-formedness of inserting XML document at insert time. The insert statement
will fail with error code SQL16110 if the XML document is not well-formed. Once
the XML document is inserted into the database, it is stored in a parsed
hierarchical form, tree structure. Because XML structure is hierarchical structure,
this form is the most natural way to store XML documents.

XML data type is a native DB2 9 data type. DB2 uses an internal representation
to process XML data type. The XML data type is not compatible with string data
type. An XML data type can be transform to string type by using the function
XMLSERIALIZE. In applications, you can bind an XML column to a binary, string,
or XML type variable. Reversely, a string data type can be transform to an XML
data type by using the function XMLPARSE. In applications, you can also bind
an XML column to a binary, string or XML type variable. You can insert, update,
and delete XML data in XML data type columns with SQL data manipulation
statements just as you can with other relational data type columns.

XML documents as LOB type
An XML document can be inserted into LOB/LONG VARCHAR type column. The
advantage of doing this is that the insert is fast because there is no need for
 Chapter 3. XML database design 43

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
parsing for LOB/LONG VARCHAR type. Selecting for the whole XML document
is also fast because, unlike XML type, the data is not store in tree structure and
there is no need for serialization. The trade off is the slow performance for
searching and extracting in the XML document. Because there is no parsing in
insert time, the XML document is not checked for well-formedness.

For XML type, all XML documents are parsed and checked if they are
well-formed. The select of whole XML documents from XML type column also
take more time then from LOB/LONG VARCHAR type column because of the
serialization. The search, extract, partial update from XML type column is faster
than LOB/LONG VARCHAR type column. XQuery is available for XML type
columns.

In general, XML documents can be stored as LOB/LONG VARCHAR type if one
or more followings are true:

� No process is required on the XML document. There is no need to search, to
extract, to partial update the document. For example, the document needs to
be kept intact for business rules or legal reasons.

� The XML document is from a trusted source which guarantees the
well-formedness and there is need for validating.

� The well-formedness is not important for the XML document.

� The only operations on the XML document are insert and whole document
select. The performance of insert and select is the most important.

3.2.2 Relational structure versus XML structure

When it comes to hybrid database design, the first question would be what data
should be stored in relational form and what should be stored in XML? The
answer depends on if the relational schema or the XML is better to describe your
data. The main difference between relational schema and XML schema is that
relational schema describes data as strongly structured and typed. XML schema
describes data as loosely structured and typed. XML schema describes data
order but relational does not.

In general, data that has the following properties should be stored in relational
structure:

� The data is processed with other relational data.
� The data is better described in tabular format.
� The data has value that is independent of XML hierarchies.
� The data needs to be accessed by applications that process relational data.

There are many considerations for designing a relational database. In this book,
we focus our discussion in XML data type. You can find relational database
44 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
design detail in Administration Guide: Planning, SC10-4223. The following link
direct you to the pdf file of this DB2 9 manual:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US/db
2d1e90.pdf

In general, data that has the following properties should be store in XML:

� The data is better described in hierarchal format

High complexity of the hierarchy data might need a high number of relational
tables to store it and can be difficult to map into relational structure. XML is
the most natural way to store such data.

� The schema is constantly changing and evolving

Business rules can change and affect the schema. In general, it is easier to
do XML schema evolution than to change relational schema. We discuss the
schema evolution in more detail in 5.2.5, “Schema evolution” on page 206.

� Many attributes of the data are empty or unknown

If you map the data into relational tables, there will be many null values in the
tables. If the data is complicated and large, you might needs many relational
tables and most of values in the table are null. To process the data in
relational tables, you usually need to join many tables with complicated SQL
statements . XML schema is more flexible. You do not need to store the null
values if the XML schema is well-designed. The XQuery accessing such data
in XML would not be complicated.

� Little data with highly complex structure

If you store such data in relational tables, you will have complicated relational
schema, which means you need many tables. Managing these tables can be
overhead. The SQL query to access such data requires joining many tables. If
you need to process these data with other data, the SQL query will be even
more complicated. Little data with a highly complex structure should be stored
in XML.

Decomposing XML documents into relational tables
XML documents can be decomposed into a relational table. Conversely,
decomposed XML documents in relational tables can be composed and
published to an XML document. However, the published XML document might
be different from the original XML document. During the process of
decomposing, XML document loses most of it structure in order to map into the
relational table; all the tags are not stored in the relational tables. For example,
the order of the XML document is lost. If the order of the document is important,
the XML document should be stored in a CLOB/LONG VARCHAR or XML type
column. Example 3-2 on page 46 is an example of and XML document.
 Chapter 3. XML database design 45

ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US/db2d1e90.pd
ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US/db2d1e90.pd

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
Example 3-2 XML document

<ORDER_ID=’83492’ CUST_ID=’93457’>
 <ITEM>
 <PROD_ID>94872</PROD_ID>
 <PROD_NAME>PEN</PROD_NAME>
 <PRICE>19.95</PRICE>
 <QUANTITY>30</QUANTITY>
 </ITEM>
 <ITEM>
 <PROD_ID>94866</PROD_ID>
 <PROD_NAME>BINDER</PROD_NAME>
 <PRICE>7.95</PRICE>
 <QUANTITY>26</QUANTITY>
 </ITEM>
 <ITEM>
 <PROD_ID>92219</PROD_ID>
 <PROD_NAME>LABELS</PROD_NAME>
 <PRICE>12.95</PRICE>
 <QUANTITY>250</QUANTITY>
 </ITEM>
</ORDER>

An order can have one or more items. We need two relational tables to
decompose the XML document. The ORDER table has two columns.
ORDER_ID is the primary key. The ITEM table has 5 columns. ORDER_ID is a
foreign key from ORDER table. An order can have many items. Table 3-1 and
Table 3-2 show decomposed data in relational tables.

Table 3-1 ORDER table

Table 3-2 iTEM table

After the XML data is decomposed into relational data, you can use SQL to query
the tables and add some indexes to improve the query performance.

ORDER_ID CUST_ID

83492 93457

ORDER_ID PROD_ID PROD_NAME PRICE QUANTITY

83492 94872 PEN 19.95 30

83492 94866 BINDER 7.95 26

83492 92219 LABLES 12.95 250
46 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Decomposing XML documents can be the right approach if the XML structure is
simple. When decomposing XML documents, for every element that occurs more
than one time, you usually need a separate table to represent it. For instance, in
our previous example, the item element needs a separate table. This is fine with
simple XML documents with a small number of elements that occur more than
one time. For complex XML documents, they might require a huge number of
tables. The insertion and selection of the data might then involve huge number of
tables. For complex XML documents, decomposing is not always practical.

In general, XML documents can be decomposed if the data has the following
properties:

� The XML document’s structure can be decomposed to a reasonable number
of relational tables.

� The XML document is used for data exchange. The original document is not
important after the data is exchanged. The decomposing usually does not
keep the structure of the document, for example, the order is lost.

� Partial update is frequent and update performance is important. The relational
tables usually have better performance in individual column update.

� The XML schema does not change. XML schema is usually more flexible than
relational schema. That means schema evolution is easier in XML schema. If
the does not change, decomposing the XML document into relational tables
would be a reasonable choice.

� The XML document must be mapped into existing relational tables. You might
have already have some existing relational tables and you want to map your
XML document into those existing relational tables.

� The XML document must be processed by the application that only has the
ability to access a relational table.

3.2.3 XML index

Indexes are the way to speed up finding and accessing data. They are used
normally to improve query performance. DB2 9 supports XML index creation.
Like relational indexes, while XML indexes proved for faster query, they also can
make update, insert, and delete actions slower because update, insert, and
delete require index data. Indexes also have space overhead, requiring extra
space to store the index data. You can have a relational index which is
composed of one or more table columns. For an XML index, every index uses a
particular XML pattern expression to index paths and values in XML documents
stored within a single column.

Instead of providing access to the beginning of a document, entries in an index
over XML data provide access to nodes within the document by creating index
 Chapter 3. XML database design 47

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
keys based on XML pattern expressions. Because multiple parts of an XML
document can satisfy an XML pattern, multiple index keys can be inserted into
the index for a single document.

If the performance of the query is the only priority, there is no need to perform
update, insert, and delete and you do not care about space overhead, you can
index everything. In reality, storage space is limited and most data requires
update, insert, and delete. In general, data that is queried frequently and does
not require modification is good candidate for indexing. What do you index? DB2
9.0 comes with tools to help, such as visuals and text-based explanations. You
can test you queries against the data with explanations. By studying the
explanation output, you would know if your index is useful and if there is another,
better index. For more information about how to index XML data, see 5.1, “XML
indexes” on page 174.

3.2.4 Views

You can create relational views from data in XML column by invoking the
function XMLTABLE. The function XMLTABLE is discussed in 4.3.2, “SQL/XML”
on page 127. We show how to create a view with XMLTABLE here. In
Example 3-3, a table with XML column is created and one record inserted.

Example 3-3 Create a table with XML column

CREATE TABLE loan_application(appl_id bigint, appl_doc xml, appl_status
integer, prod_id integer);

insert into loan_application values(11111,xmlparse(document’<xml
doc>Preserve whitespace),10,20);

You can create a view with relational column data and data from some elements
in the XML document. Example 3-4 shows creating the view
loan_application_view with three columns. The First name and Last name are
from an XML document.

Example 3-4 create view

CREATE VIEW loan_application_view AS SELECT appl_status, t.lastName,
t.firstName FROM loan_application,
xmltable('$lo/application/customer/name' passing appl_doc as "lo"
columns lastName char(20) path 'lastName', firstName char(20) path
'firstName')as t;

Example 3-5 on page 49 shows selecting the view loan_application_view and the
result.
48 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Example 3-5 select the view

select * from loan_application_view

APPL_STATUS LASTNAME FIRSTNAME
----------- -------------------- --------------------
 10 John Smith

 1 record(s) selected.

Creating relational views for XML column data is easy, but you need to consider
that DB2 does not use XML column indexes when queries are issued against
such a view. For example, if you have an index on the element firstName and
you issue an SQL query that restricted the result of the lastName column to be
Smith, the index on element firstName is not used. DB2 would read all the XML
documents and search for Smith in element firstName. If you have a lot of data,
performance might not be as you expected.

If the query also has a highly restrictive predicate involving the indexed traditional
SQL columns, you can mitigate a slow performance problem. It is because DB2
uses the relational index to filter qualifying rows to a small number and applies
any XML query predicate to these interim results before returning the final result
set.

3.2.5 XML schema

XML schema is a language that defines the structure and data constrains of XML
instance documents. XML schema is published by W3C as a recommendation.
The XML language is also referred as XML Schema Definition (XSD). An XML
schema defines the elements and attributes that can appear in a document. It
also define the parent and children relationship between elements, the data
types and values for elements and attributes. An XML schema can consists of
more then one XML schema documents.

Example 3-6 is a sample XML schema. The line numbers are not part of the XML
schema; they are presented for illustration purposes only.

Example 3-6 A sample XML schema

1 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
2 <xsd:element name="employee">
3 <xsd:complexType>
4 <xsd:sequence>
5 <xsd:element name="id" type="xsd:integer"/>
6 <xsd:element name="name" type="xsd:string"/>
7 <xsd:element name="dateOfBirth" type="xsd:date"/>
 Chapter 3. XML database design 49

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
8 </xsd:sequence>
9 </xsd:complexType>
10 </xsd:element>
11 </xsd:schema>

Line 1 shows the namespace prefix xds in the root element in the XML
document. In this example, the prefix is xds but it can be an arbitrary name. A
namespace is a set of names that can be used as element and attribute names in
an XML document. XML namespaces provide a mechanism to qualify an
attribute and an element name to avoid the naming conflict in XML documents.
For example, if a health insurance company receives insurer information from a
different company as and XML document, it is quite possible that two or more
companies have the same element name defined, but representing different
things in different formats. Qualifying the elements with a namespace resolves
the name-conflicting issue.

Line 2 declares an element named employee. In XML schema, you need a name
and its data type to define an element. Once a data type is defined, the instance
element in the XML instance document can only have the value of the data type
defined in the XML schema. An element can be defined as either a simple type
or complex type.

A simple type element cannot contain any elements or attributes. A simple
element has the format:

<xs:element name="element name" type="data type"/>.

Following two elements defined Example 3-6 on page 49 line 5 and line 6 are
simple elements. The types xsd:string and xsd:integer are XML schema
pre-defined data types.

<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="name" type="xsd:string"/>

A complex type element can contain elements or attributes. Element employee in
Example 3-6 on page 49 line 3 is a complex type. It contains three other
elements: id, name, and dateOfBirth. In this example, The definition of the
complex type is inside of the element employee. This type is called local complex
type. Local complex type can only be used to define the element and its children
elements.

If you want a complex data type that can be used to define other elements, you
can declare the complex data type globally. as shown in Example 3-7 on
page 51. The complex type employeeType is declared globally. The complex type
employeeType is not inside of element employee and can be used to define other
50 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
elements in the same schema document. It also can be used in other schema
documents if the other schema documents include or import it.

Example 3-7 Globally declare complex type exployeeType

<xsd:complexType name="employeeType">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:integer"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="dateOfBirth" type="xsd:date"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="employee" type="employeeType"/>

Just as with any XML documents, XML schema documents need to be
well-formed. You can use an XML schema to validate XML instance documents.
A good XML schema should correctly describe business concepts.

3.2.6 XML schema design

A good schema design is crucial for managing XML data successfully. Unified
Modeling Language (UML) is a visual design language for XML. You can also
use UML to explain XML schema to someone who does not understand XML
technology.

UML modeling
Unified Modeling Language (UML) is an industry standard for modeling business
concepts. It is an object-orientated language. UML is one of the import modeling
languages that can assist you in building XML schemas. You can use UML to
represent business concepts in graphic notions and you can easily turn these
graphic notions into XML schemas.

In a UML diagram, a box represents a business concept or a class. A line
represents relationship. You can turn a sentence into UML diagram. Figure 3-4
on page 52 shows a UML diagram representing the sentence Loan officer
approves a loan. In the Loan officer box, the pertinent information regarding Loan
officer is identified. The Loan box identifies the loan-related information. This
information are often becomes the attributes in an XML schema. The line ,
Approve, identifies the relationship between Loan officer and Loan.
 Chapter 3. XML database design 51

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 3-4 UML diagram representing “loan officer approves loan”

We used the UML in the schema design process for our sample application,
XMLoan, described in Chapter 2, “Sample scenario description” on page 21. We
started from gathering information about the loan application business process
and studying the hard copy of loan application form. For a loan application, the
customer must provide his personal and financial information. This data should
be able to be correlated to the existing account in the bank, if any. The bank also
wants to perform market analysis. We then produce a simple loan application
UML diagram as shown in Figure 3-5 on page 53.

Loan
Loan ID
Amount
...
...

Loan officer

Officer ID
Name
...
...

Approve
52 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Figure 3-5 UML diagram

Figure 3-5 describes business concepts and relationships as follows:

� Application consists of customer, loan type, and campaign.

� Customer consists of name, date of birth, social security number, address,
phone, email, employer, and financial data.

� Name consists of first name and last name.

� Address consists of street, city, state, and zip code.

� Employer consists of company and position.

� Financial data consists of income, debt, expenses, and assets.

From the business process point of view. a loan officer or bank manager can
read the UML diagram as a loan application form separated into different
sections. They can identify easily if there is any missing information. For an
application developer or DBA, the UML diagram can be transformed into an XML
schema with only a little effort. Example 3-8 on page 54 is the schema mapped
from Figure 3-5.

Storage

Consist of

Address
String = String
City = String
State = String
Zip = String

Employer

Company = String
Position = String

Financial Data
Income = decimal
Debt = decimal
Expense = decimal
Assets = decimal

Name

FirstName = String
LastName = String

Financial Data

Name = Name
DateOfBirth = Date
SSN = String
Address = Address
Phone = String
Email = String
Employer = Employer
FinancialData = Financial Data

Application
Customer = Customer
LoanType = Integer
Campaign = Integer

Consist of Consist of Consist of Consist of
 Chapter 3. XML database design 53

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
Example 3-8 application.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:include schemaLocation="complextype.xsd"/>
 <xsd:element name="application">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="customer" type="Customer"/>
 <xsd:element name="loanType" type="xsd:integer"/>
 <xsd:element name="campaign" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The Application class in Example 3-8 is represented by a complex data type. The
complex data type consists of three elements: customer, loanType, and
campaign. The elements loanType and campaign have the built-in data type,
string. The element customer has a complex data type Customer. Note that XML
is case-sensitive. Customer is different from customer. In this case, Customer
with capital C is the complex data type and customer is the element. The
complex type Customer is not defined in this schema document. "<xsd:include
schemaLocation="complextype.xsd"/>" means to include another XML document
complextype.xsd. The definition of complex data type Customer is in the schema
document complextype.xsd, as shown in Example 3-9.

Example 3-9 Complextype.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="Customer">
 <xsd:sequence>
 <xsd:element name="name" type="Name"/>
 <xsd:element name="dateOfBirth" type="xsd:date"/>
 <xsd:element name="ssn" type="xsd:string"/>
 <xsd:element name="address" type="Address"/>
 <xsd:element name="phone" type="xsd:string"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:element name="employer" type="Employer"/>
 <xsd:element name="financialData" type="FinancialData"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Name">
 <xsd:sequence>
54 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Employer">
 <xsd:sequence>
 <xsd:element name="company" type="xsd:string"/>
 <xsd:element name="position" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FinancialData">
 <xsd:sequence>
 <xsd:element name="income" type="xsd:decimal"/>
 <xsd:element name="debt" type="xsd:decimal"/>
 <xsd:element name="expenses" type="xsd:decimal"/>
 <xsd:element name="assets" type="xsd:decimal"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The complex data type Customer has eight elements. The element name has the
complex data type Name. The element address has the complex data type
Address. The element employer has the complex data type Employer. The
element financialData has the complex data type FinancialData. The rest the
elements of the Customer complex data type are built-in data types. The complex
data types Name, Address, Employer, and FinancialData are also defined in this
XML schema document.

Example 3-10 shows an instance document of the application schema.

Example 3-10 Application.xml

<?xml version="1.0"?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\application.xsd">
 <customer>
 <name>
 Chapter 3. XML database design 55

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
 <firstName>Smith</firstName>
 <lastName>John</lastName>
 </name>
 <dateOfBirth>1967-02-23</dateOfBirth>
 <ssn>123-45-6789</ssn>
 <address>
 <street>46 East Main Street</street>
 <city>Los Gatos</city>
 <state>CA</state>
 <zip>95030</zip>
 </address>
 <phone>234-567-8901</phone>
 <email>smith.john@my.com</email>
 <employer>
 <company>My company</company>
 <position>Developer</position>
 </employer>
 <financialData>
 <income>5000</income>
 <debt>10000</debt>
 <expenses>30000</expenses>
 <assets>200000</assets>
 </financialData>
 </customer>
 <loanType>10</loanType>
 <campaign>20</campaign>
</application>

If you had not started building the XML schema by drawing the UML diagram
first, it would be tricky to identify all object types and the relationships among
them. The UML diagram provides not only the big picture, but also the detail of
the business model. UML diagram can also be used to explain the schema to
people who are not familiar with XML schema. The loan department manager
and the loan officer would not understand XML schema, but would understand
the UML diagram. UML diagram can be easily mapped into XML schema.

When designing schema, you also want to consider how and what the business
data should be kept together in a single XML document. The XML document
granularity does impact performance. For more details, refer to 15 best practices
for pureXML performance in DB2 9 on the IBM developerWorks Web site:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0610nicola
/

56 DB2 9 pureXML Guide

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0610nicola/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0610nicola/

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
3.2.7 Industry standards and XML schemas

Corporations in different industries receive process, store, and send data
everyday. Different corporations have data in different formats. Sometimes, the
same corporation has different data formats in different departments. If two
corporations want to exchange data, they need to convert their data formats from
one to the other. The conversion is usually costly and time-consuming. It would
be nice if there were standards for that exchange of data.

Industry standards define agreed ways to exchange information between and
within companies. Developing applications using the standard XML schema and
DTD will allow data exchange between corporations or within company with no
problem. The following sections list some standards-defining organizations and
their URLs.

Financial services industry
In the financial services area, industry standards include:

� ACORD

ACORD (Association for Cooperative Operations Research and
Development) develops and maintains various electronic standards for the
insurance, reinsurance, and related financial services industries. ACORD
standards encompass Life and Annuity, Property and Casualty/ Surety and
Reinsurance industry segments. For more information about ACORD, refer
to:

http://www.acord.org/

� FpML

FpML (Financial products Markup Language) is the business information
exchange standard for electronic dealing and processing of financial
derivatives instruments. It establishes a new protocol for sharing information,
and dealing in swaps, derivatives, and structured products. For more
information about FpML, refer to:

http://www.fpml.org/

� FIXML

The Financial Information eXchange™ (FIX) protocol is a messaging
standard developed specifically for the real-time electronic exchange of
securities transactions. For more information, refer to the Web site:

http://www.fixprotocol.org/

� MISMO

Mortgage Industry Standards Maintenance Organization, Inc. (MISMO) was
established by the Mortgage Bankers Association (MBA) to coordinate the
 Chapter 3. XML database design 57

http://www.acord.org/
http://www.fpml.org/
http://www.fixprotocol.org/

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
development and maintenance of Internet-based Extensible Markup
Language (XML) real estate finance specifications. MISMO utilizes an open
and democratic vendor-neutral approach to the development and
maintenance of a single real estate finance XML DTD transaction repository.
MISMO has published specifications that support mortgage insurance
applications, mortgage insurance loan boarding, secondary, bulk pricing, real
estate services, credit reporting ,and underwriting process areas. For more
information, refer to the Web site:

http://www.mismo.org/default.html

� XBRL

eXtensible Business Reporting Language (XBRL) is a language for the
electronic communication of business and financial data. It provides major
benefits in the preparation, analysis, and communication of business
information. For more information, refer to the Web site:

http://www.xbrl.org

� IXF

The Interactive Financial eXchange (IFX) is a XML-based, financial
messaging protocol. It is an object model represented by an XML Schema, a
communications protocol with well-considered business rules and a Targeted
Financial Solution. For more information, refer to the Web site:

http://www.ifxforum.org/standards/

Other industry standards
Several other industry standards are available for various business sectors such
as tax, health care, publishing, and sports. Following are some of those
standards:

� Tax XML

Tax XML is an initiative to research and analyze personal and business tax
reporting and compliance information, represented in XML, to facilitate
interoperability in a way that is open, flexible, and international in scope. For
more information, refer to the Web site:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tax

� HL7

Health Level Seven (HL7) is one of several American National Standards
Institute (ANSI) accredited Standards Developing Organizations (SDOs)
operating in the health care arena. HL7’s domain is clinical and administrative
data. For more information, refer to the Web site:

http://www.hl7.org/
58 DB2 9 pureXML Guide

http://www.mismo.org/default.html
http://www.xbrl.org
http://www.ifxforum.org/standards/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tax
http://www.hl7.org/

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
� ARTS

The Association for Retail Technology Standards (ARTS) is an international
membership organization. RT is devoted to reduce the costs of technology
through standards. AETS has four standards: The Standard Relational Data
Model, UnifiedPOS, IXRetail and the Standard RFPs. Association for Retail
Technology Standards (ARTS) and International XML Retail Cooperative
(IXRetail) XML schemas for use by retailers provides retailers the ability to
create, deliver, and archive digital receipts using in-store point-of-sale
transaction data. For more information, refer to the Web site

http://www.nrf-arts.org/

� NewsML

News Markup Language is an XML-based standard to represent and manage
news throughout its life cycle, including production, interchange, and
consumer use. NewsML 1.0 was approved by IPTC (International Press
Telecommunications Council) in October 2000. The current version is
NewsML 1.3, which was published in October 2003. For more information,
refer to the Web site

http://www.newsml.org/pages/spec_main.php

� SportsML

Sports Markup Language is an XML-based standard for the interchange of
sports data and statistics. The current release of SportsML is Version 1.0,
which was ratified by the IPTC (International Press Telecommunications
Council). For more information, refer to the Web site

http://www.sportsml.com/specifications.php

� XPRL

XPRL (eXtensible Public Relations Language) is an XML-based standard that
is being designed for use in the public relations sector. It is an open initiative
which developers can use to create business-oriented programs for PR.
XPRL defines how computer data relating to PR campaigns is stored and
shared across the Internet. For more information, refer to the Web site

http://www.xprl.org/

� PhotoML

PhotoML (Photo Markup Language) is a standard of describing details of
photo creation, processing, and content in a collection of photographs. It can
be used for a wide variety of photographic formats, including roll film (such as
35mm and 120/220), sheet film (such as 4x5 and 8x10) and digital images.
For more information, refer to the Web site

http://www.wohlberg.net/public/software/photo/photoml/
 Chapter 3. XML database design 59

http://www.nrf-arts.org/
http://www.newsml.org/pages/spec_main.php
http://www.sportsml.com/specifications.php
http://www.xprl.org/
http://www.xprl.org/
http://www.wohlberg.net/public/software/photo/photoml/

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
� ThML

ThML (Theological Markup Language) is an XML-based standard that is
being used to mark up texts for the Christian Classics Ethereal Library and
other projects. For more information, refer to the Web site:

http://www.ccel.org/ThML/

� XBITS

XBITS (XML Book Industry Transaction Standards) is a Working Group of
IDEAlliance that is designing XML-based standard to facilitate bidirectional
electronic data exchanges between publishers, printers, paper mills, and
component vendors. For more information, refer to the Web site:

http://www.idealliance.org/xbits/

� CBML

CBML(Comic Book Markup Language,) is a TEI-based XML vocabulary (with
DTD and schema representations) designed to accommodate the XML
encoding of comic books and graphic novels. For more information, refer to
the Web site:

http://www.cbml.org/

� GJXDM

The Global JXDM (GJXDM) is an XML standard for criminal justice
information exchanges, providing law enforcement, public safety agencies,
prosecutors, public defenders, and the judicial branch with a tool to share
data and information in a timely manner. For more information, refer to the
Web site:

http://it.ojp.gov/jxdm/3.0/index.html

IT standards
Following are some IT standards used across the industries:

� Web Services provide a way of describing and publishing a general purpose
and agreed interface for accessing data and applications, through the Web
Services Description Language (WSDL) notation. The Web Services
approach provides loose coupling between clients and the data or
applications being accessed and is important for enabling service-oriented
architecture (SOA).

� Atom (and RSS) provide an agreed way for publishing summaries of changes
to data and for interested parties to easily locate these summaries easily.
Atom also makes it possible for general-purpose software readers to offer a
human or programmatic interface to subscribe to changes, to be notified
when the changes happen, and to review the changes. RSS is similar to
Atom, except it has not been standardized and thus has many variants.
60 DB2 9 pureXML Guide

http://www.ccel.org/ThML
http://www.idealliance.org/xbits/
http://www.cbml.org/
http://www.cbml.org/
http://it.ojp.gov/jxdm/3.0/index.htm

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
� XForms is an agreed way to enable a Web forms interface. An XForm can
load external XML documents as initial data in the browser, and can submit
the results to the server as XML. By including the browser in the XML pipeline
through XFORMS, it means you can have end-to-end XML, right up to the
user's desktop. This eliminates data conversions, thereby reducing
processing overhead.

3.2.8 XML data validation

DB2 9.1 supports validating XML documents with XML schema at insert or
import time. The XML schemas needs to be registered in XML Schema
Repository (XSR) before it can be used for validation. We discuss XSR more in
5.2, “Schema management” on page 198. The XML document in the same XML
type column can be validated by a different XML schema of your choice in the
insert/import time. You can also choose not to validate the XML. In general, there
are three choices:

� Validate on the server.
� Validate within application.
� Do not validate.

Validate on the server
DB2 9.1 supports validation on the server. You should validate incoming XML
documents on server if the incoming XML documents must be valid but the XML
document is from an untrusted source. For instance, a mortgage company
received an XML document of an application from a mortgage broker. All brokers
developer their own applications to fill up the application forms, generate XML
documents. Because the mortgage company have no control over the
applications, and the applications might or might not follow the industrial
standard XML schemas, the incoming XML documents are considered as from
untrusted sources. The mortgage company must make sure that all XML
documents are valid. The mortgage company can validate all XML documents on
the server side at insert and import time.

The XMLVALIDATE function is used for validating XML documents with insert
statement in a application. The XMLVALIDATE function checks XML documents
against the specified XML schema and makes sure that the XML document
satisfies the constrains in the XML schema. Details about how to validate at
import time are discussed in 5.3, “IMPORT, EXPORT, and RUNSTATS” on
page 208. When validating XML documents, the schema information passed to
the XML validate function can be either explicitly passed (explicit validation) or
implicitly inferred from the XML document (implicit validation).
 Chapter 3. XML database design 61

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
Explicit validation
Explicit validation means that the information of a precise XML schema is
explicitly specified in XMLVALIDATE function. There are two ways to specify the
information:

� Use namespace and the schema location of the XML schema.
� Use SQL identifier.

Example 3-11 is a primary XML schema document which has been registered
with SQL identifier sample.pets.

Example 3-11 XML schema pets.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.itso.org/pets"
xmlns:pe="http://www.itso.org/pets" xmlns:ca="http://www.itso.org/cat"
xmlns:do="http://www.itso.org/dog">
<xs:import namespace="http://www.itso.org/cat" schemaLocation="cat.xsd"
/>
<xs:import namespace="http://www.itso.org/dog" schemaLocation="dog.xsd"
/>
 <xs:element name="PETS">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DOG" type="do:DOG"/>
 <xs:element name="CAT" type="ca:CAT"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Example 3-12 shows an XML document pets.xml which requires validation
during insert.

Example 3-12 XML document pets.xml

<?xml version="1.0"?>
<pe:PETS xmlns:pe="http://www.itso.org/pets"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.itso.org/pets pets.xsd">
 <DOG>
 <NAME>SPOT</NAME>
 <AGE>2</AGE>
 </DOG>
 <CAT>
62 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
 <NAME>TOM</NAME>
 <AGE>1</AGE>
 </CAT>
</pe:PETS>

Example 3-13 shows explicitly validating XML document with SQL identifier.
<XML document> means the content of the XML document pets.xml.
sample.pets is the SQL identifier of the registered schema.

Example 3-13 Explicit validation using SQL identifier

insert into test values xmlvalidate (xmlparse(document'<XML document>'
Preserve whitespace) ACCORDING TO XMLSCHEMA ID sample.pets)

An XML schema can contain one or more XML schema documents. One of
these XML documents must be the primary schema, which is at the top of the
hierarchy. In our example, pets.xsd is the primary with two imported schema,
cat.xsd and dog.xsd. When you use namespace and the schema location of the
XML schema to validate the XML document, the namespace and the schema
location you specified must match the namespace and the schema location of
the XML schema primary document.

Example 3-14 shows explicitly validating the XML document with use of
namespace and the schema location of the XML schema.
http://www.itso.org/pets is the namespace and http://sample is the schema
location. <XML document> means the content of the XML document pets.xml.

Example 3-14 Explicit validation using namespace

insert into test values xmlvalidate (xmlparse(document'<XML document>'
Preserve whitespace) ACCORDING TO XMLSCHEMA URI
'http://www.itso.org/pets' LOCATION 'http://sample')

Which one do you use, SQL identifier or namespace and the schema location of
the XML schema? Both have the same performance and provide the same
functionality. You can choose one over the other depending on how you design
the database and application. You might have the same schema that registers in
different databases in different names. If you use namespace and the schema
location of the XML schema, you do not have to change your application to
different SQL identifiers for the same schema. Sometimes, SQL identifier is more
convenient, if your application only accesses one database and you know the
exact SQL identifier that associates to the schema you want to use.
 Chapter 3. XML database design 63

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
Implicit validation
Implicit validation means the schema information is not passed by the INSERT
or IMPORT statement. The schema hints are from the XML document that is
inserted or imported. The schema hints are used to find the specific schema to
validate the XML document.

The schema hints are specified in the following attributes in XML document:

� xsi:schemaLocation has two values, the namespace and the schema location
to the namespace. If the XML document doesn’t have namespace,
xsi:noNamespaceSchemaLocation would be used.

� xsi:noNamespaceSchemaLocation has only one value that is the schema
location.

When using implicit validation, DB2 9 searches the catalog tables using the
values specified in the schema hints and find the XML specific schema to
validate the XML document.

We use a simple example to demonstrate implicit validation. Example 3-15
shows XML schema document person.xsd which we use to implicitly validate
XML instance document person.xml.

Example 3-15 Person.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://person" xmlns:per="http://person">
 <xsd:element name="person">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="age" type="xsd:integer" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

No matter explicit or implicit validation, the schema used for validation needs to
be registered in the database. Example 3-16 shows the commands to register
schema person.xsd.

Example 3-16 Register schema

register xmlschema http://person from c:\person.xsd as john.person
complete xmlschema john.person
64 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Example 3-17 shows an XML document person.xml to be inserted in to table
TEST using implicit validation with schema person.xsd. The actual data in
person.xml is irrelevant. We are interested in the attribute xsi:schemaLocation. It
contains the schema hints. It has the first value http://person as the
namespace and second value http://person as the schema location. Our
example shows namespace and the schema location have the same value, but
they do not need to be the same.

Example 3-17 Person.xml

<?xml version="1.0"?>
<per:person xmlns:per="http://person"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://person http://person" >
 <name>John Doe</name>
 <age>36</age>
</per:person>

Example 3-18 shows the command to implicitly validate with the schema hints in
schemaLocation in XML document during the insert time. <XML document> means
the content of the XML document person.xml.

Example 3-18 Implicit validation

insert into test values xmlvalidate (xmlparse(document'<XML document>'
preserve whitespace))

If the XML document is valid, it will be inserted into the TEST table. If it is not
valid, the insert fails with error code SQL16206N. When you do implicit
validation, you do not use the ACCORDING TO XMLSCHEMA clause. If you do, it
becomes explicit validation. DB2 will use the information provided by the
ACCORDING TO XMLSCHEMA clause and the schema hints in the XML document are
ignored.

In implicit validation, DB2 searches the catalog table for the pair value provided
by xsi:schemaLocation in order to find the correct schema. In our simple
example, DB2 finds the schema john.person by searching the catalog tables
using the pair value http://person and http://person.

Explicit validation versus implicit validation
We have discussed both explicit validation and implicit validation with examples.
You now must be asking which one to use, explicit validation or implicit
validation? It depends on the source of the XML documents, the nature of your
applications, and your business rules.
 Chapter 3. XML database design 65

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
The main difference between explicit validation and implicit validation is where
the schema information (hints) are provided. For explicit validation, schema
information is provided by the ACCORDING TO XMLSCHEMA clause
embedded in the insert statement. For implicit validation, schema hints is provide
by the inserting XML document. If the XML documents are from a trusted source
and the XML documents knows it schema, implicit validation can be a good
choice. If the XML document’s content is unknown, explicit validation is a good
choice.

For explicit validation, only one exact schema can be used to validate. For
implicit validation, one or more schemas can be used to validate. In some
situations, you need to use more than one schema to validate XML document.
For instance, a SOAP message contains header and a body. The header may
have a schema and the body may have another schema. Implicit validation is
needed for the SOAP message since it needs more than one schema.

In general, explicit validation might have better performance than implicit
validation. This is not because the actual explicit validation takes less time than
actual implicit validation. It is because implicit validation requires DB2 to search
the catalog tables to find the correct schemas that match the pair value. Explicit
validation does not require searching the catalog tables.

Validate within application
In some situations, you want to do validation within the application. For example,
you have an on-line loan application program. Customers can log on and fill out
their loan application on-line forms. You have a name field, birthday field, phone
number field and so on in the on-line form. If the customer enters information
which does not satisfy the schema constrains, such as entering character data
into a numeric field, you want to validate the XML document on the
client/application side. If the XML document is not valid, the application can
interactively ask the customer to correct entered data until the XML document is
valid.

Like any computer algorithm, validation takes resources (CPU, memory, and so
on). Imaging that there are thousand of clients that insert massive XML
documents to a server and the validation is done on the one server. Sometimes,
a server does not have enough resources and the clients have the bandwidth. In
this case, it can be a good idea to validate on the client.

Not to validate
If the XML documents are from trusted source, there is no need to validate. For
instance, a bank develops an application for its branches. The application is
guaranteed to generate valid XML documents, therefore no validation is needed.
66 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Sometimes, you do not care if XML documents are valid or not. In this case, the
validation is also not needed.

3.3 Physical database design

In this section, we discuss the considerations of physical design pertinent to
pureXML. For the physical design on relational databases, see Administration
Guide: Planning, SC10-4223.

Space estimation for XML data type
DB2 9 stores XML data as XML data type in a hierarchical tree structure. This
pureXML storage model provides the flexibility in storing XML documents with
various XML schema in same column. The variation of XML data in each row
produces a challenge in estimating the storage required for XML data.

The amount of space that an XML document occupies in a DB2 database is
determined by the initial size of the document in raw form and by a number of
other properties. The following list includes the most important properties:

� Document structure

XML documents that contain complex markup tagging require a larger
amount of storage space than documents with simple markup. For example,
an XML document that has many nested elements, each containing a small
amount of text or having short attribute values, occupies more storage space
than an XML document composed primarily of textual content.

� The number of elements

The pureXML storage model stores all XML data in a hierarchical three form
as a tree structure. Just like any tree structure, besides the real data, it needs
extra storage which is used to describe the tree structure. For example, every
node in the tree needs to store the links to its child nodes and to its parent
node. The more complex tree needs more extra storage for the tree structure
information. For every element in an XML document, DB2 V9.1 will allocate a
small structure to store the element information. There is not data stored in
this structure.

� Node names

The length of element names, attribute names, namespace prefixes and
similar, noncontent data also affect storage size. Any information unit of this

Note: Even if you do not validate documents, you can only insert well-formed
XML documents into XML column in DB2 V9.
 Chapter 3. XML database design 67

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
type that exceeds four bytes in raw form is compressed for storage, resulting
in comparatively greater storage efficiency for longer node names.

� Ratio of attributes to elements

Typically, the more attributes that are used per element, the lower the amount
of storage space that is required for the XML document.

� Document code page

XML documents with encoding that uses more than one byte per character
occupy a larger amount storage space than documents using a single-byte
character set.

� Document validation

XML documents are annotated after having been validated against an XML
schema. The addition of type information after validation results in an
increased storage requirement.

To calculate an XML document manually, add up the size of every element,
attributes, and actual data. Use the following simple XML document as an
example:

<Customer>
 <Name>John Smith</Name>
 <Phone>408-404-1212</Phone>
</Customer>

The size of this document will be the total of the length of <Customer>,
</Customer>, <Name>, </Name>, “John Smith”, <Phone>, </Phone>, and
“408-404-1212”. For each element, DB2 uses a few bytes to store element
information. Because XML document lengths vary, it is not practical to calculate
each document’s size and use it as the base to estimate the space required.

A better way to estimate the XML data space required is by sampling your XML
documents with a typical size and storing the samples into the database. You
can then use administrative table function admin_get_tab_info to check how
much space the sample data takes. Following is the SELECT statement for XML
object size.

SELECT t.xml_object_l_size, t.xml_object_p_size,
 t.data_object_l_size, t.data_object_p_size,
 t.index_object_l_size, t.index_object_p_size
FROM TABLE(admin_get_tab_info('schemaname','tablename')) as t

You can project the storage size of the sample to your actual XML document
amount. The accuracy of the estimating depends on the sampling and the
amount of samples. Note that the monitor element used by the administrative
68 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
function admin_get_tab_info does note take free pages or free page
management into account. It just reports the number of pages on disk.

Physical storage design considerations
In pureXML storage, XML is treated as a first-class data type. This means you
can use the XML type in Data Definition Language (DDL) statements, stored
procedures, and functions, including XML publishing functions. In this section,
we discuss some considerations for design physical storage for XML type:

� Page size for XML

When a large XML document is inserted into an XML column, the XML
document is split into regions and pages. There is a regions index that keeps
track of the XML document parts that split into pages. How many regions or
pages will a document split into? It depends on the size of the document and
the page size. Given a fixed-size XML document inserted into an XML
column, the larger the page size, the less number of regions and pages. For
example, the same XML document takes more regions and pages on
4K-page size than 8K-page size. The fewer regions and pages per document
are better for performance. You should choose the page size depending on
the size of your XML documents. If performance is your only consideration,
the larger page size is better.

� Table spaces for XML

In general, database managed space (DMS) table spaces have better
performance than System Managed Space (SMS) table spaces. This is
because, unlike SMS table spaces, DB2 can directly access DMS table
spaces without going through the operation system. When you create a table
with XML columns, you can place XML data and indexes in separate table
spaces to use different page sizes and separate configuration parameters
(prefetch size, and so on). Example 3-19 shows creating a table in three
different table spaces. The nonlong data types are in tablespace2. Indexes
are in tablespace3. XML types are considered to be long data type. XML will
go into the tablespace4.

Example 3-19 create a table

CREATE TABLE xmltable(c1 char(5), c2 int,c3 char(7), c4 XML)
IN tablespace2
INDEX IN tablespace3
LONG IN tablespace4

� Buffer pools

A buffer pool belongs to a single database and can be used by more than one
table space. When you assign a buffer pool to a table space, the buffer pool
and the table space must have the same page size. If you want to assign a
 Chapter 3. XML database design 69

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
buffer pool to multiple tables spaces, all table spaces must have the same
page size as the buffer pool page size. Buffer pools reduce disk I/O therefore
buffer pools are crucial for the database performance. DB2 V9 snapshot
monitor supports monitoring XML data im buffer pools. The buffer pool
snapshot monitor has new XML data counters to help you on making
decisions to tune your buffer pools. In order to use snapshot monitor, you
need to turn on the buffer pool switch. Example 3-20 shows the commands to
turn on buffer pool monitoring switch and get the snapshot data.

Example 3-20 witch on buffer pool switch

UPDATE MONITOR SWITCHES USING bufferpool on
get snapshot for bufferpools on <database name>

Example 3-21 shows the counters from the buffer pool snapshot output. For
more details on the counters, see the DB2 V9.1 Information Center.

Example 3-21 the new counters for XML data

relational Data Counters
Buffer pool data logical reads = 246
Buffer pool data physical reads = 68
Buffer pool temporary data logical reads = 132
Buffer pool temporary data physical reads = 0

Relational and XML Index Counters
Buffer pool data writes = 16323
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Buffer pool temporary index logical reads = 0
Buffer pool temporary index physical reads = 0

XML Data Counters
Buffer pool xda logical reads = 2921
Buffer pool xda physical reads = 152
Buffer pool temporary xda logical reads = 0
Buffer pool temporary xda physical reads = 0
Buffer pool xda writes = 0

3.4 Creating a database

XML data is stored in code set UTF-8/code page 1208 on DB2 V9.1. In order to
use XML type, you must create a UTF-8 database. Example 3-22 shows creating
a UTF-8 database called xmlrb.
70 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch03.fm
Example 3-22 create database command

create database xmlrb using codeset UTF-8 territory US

Through out this book, we discuss the new supports for creating database
objects such as table, views, index, and so forth. For more information about the
features and options for creating database, refer to Administration Guide:
Implementation, SC10-4221.

DB2 9 has new system catalog views for XML index and XSR objects. The
following are new catalog views:

� SYSCAT.INDEXXMLPATTERNS

Each row represents a pattern clause in an index over an XML column.

� SYSCAT.XDBMAPSHREDTREES

Each row represents one shred tree for a given schema graph identifier.

� SYSCAT.XDBMAPGRAPHS

Each row represents a schema graph for an XDB map (XSR object).

� SYSCAT.XSROBJECTAUTH

Each row represents a user or group that has been granted the USAGE
privilege on a particular XSR object.

� SYSCAT.XSROBJECTCOMPONENTS

Each row represents an XSR object component.

� SYSCAT.XSROBJECTDEP

Each row represents a dependency of an XSR object on some other object.
The XSR object depends on the object of type BTYPE of name BNAME, so a
change to the object affects the XSR object.

� SYSCAT.XSROBJECTHIERARCHIES

Each row represents the hierarchical relationship between an XSR object and
its components.

� SYSCAT.XSROBJECTS

Each row represents an XML schema repository object. SQL Reference
Volume 1 has more detail information about system catalog views.

In Chapter 5, “Managing XML data” on page 173, we discuss in more detail the
system catalog view for XML index and XSR objects.
 Chapter 3. XML database design 71

7315ch03.fm Draft Document for Review December 29, 2006 1:50 pm
72 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Chapter 4. Working with XML

In DB2, you can query XML data in four different ways, using plain SQL,
SQL/XML, XQuery, and XQuery with embedded SQL. In this chapter, we learn
how to query data stored in XML columns using these languages. In addition, we
introduce XML Path Language. XPath is a language used to address portions of
an XML document. XQuery is a new language supported by DB2. XPath
expressions are often used in XQuery to identify particular parts of XML
documents.

In DB2 9, query can combines expressions from both SQL and XQuery. In this
chapter, we discuss each language in detail starting with XPath, followed by
XQuery. We then show you the new SQL/XML functions introduced in DB2 9.
We discuss the concept and use by examples. At the end, we introduce XML
full-text search using DB2 Net Search Extender.

This chapter includes the following topics:

� XPath
� XQuery
� XQuery and SQL/XML
� When and how to use namespace
� Getting XML data in and out database
� XML full-text search

4

© Copyright IBM Corp. 2006. All rights reserved. 73

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
4.1 XPath

XPath 2.0 is an expression language for processing values that conform to the
XQuery/XPath Data Model (XDM). XDM provides a tree representation of XML
documents. Values in the XDM are sequences containing zero or more items
that could be:

� Atomic values such as integers, strings, or Booleans
� XML nodes such as documents, elements, attributes, or texts

Example 4-1 shows an XML document, sample.xml. It contains the following:

� Document node

This XML document contains one document node, sample.xml.

� Comment node

There is only one comment node, which is sample xml file.

� Element node

The element nodes are: Customer, Name, FirstName, LastName, Address,
Street, City, State, Zip. Both Phone and E-mail have two occurrences which
make a total of thirteen element nodes.

� Attribute node

The Address and two Phone elements have attribute nodes associated with
them. "Country" is the attribute node for Address and "type" is the attribute
node for Phone.

� Text node

The ten text nodes and their parent element nodes are: "Steve" - FirstName,
"Ferrington" - LastName, "46 Oak Street" - Street, "Los Gatos" - City, "CA" -
State, "95030" - Zip, "123-456-7890" - Phone, "234-567-8901" - Phone,
"sfer@yahoo.com" - Email, and "stevef@gmail.com" - Email.

Example 4-1 sample.xml

<!-- sample xml file -->
<Customer>

<Name>
<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>
<Address country="US">

<Street>46 Oak Street</Street>
<City>Los Gatos</City>
<State>CA</State>
74 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
<Zip>95030</Zip>
</Address>
<Phone type="work">123-456-7890</Phone>
<Phone type="home">234-567-8901</Phone>
<Email>sfer@yahoo.com</Email>
<Email>stevef@gmail.com</Email>

</Customer>

4.1.1 XQuery/XPath data model

XQuery and XPath expressions transform instances of the XDM and return as
result instances of the same data model. Parsing XML data into the XDM occur
before data is processed by XQuery/XPath. The XML document can be parsed
with or without validation.

During model generation, the XML document is converted into an instance of the
XDM. An instance of the XDM is a sequence. A sequence is an ordered collection
of zero or more items. An item is either an atomic value or a node. Atomic values
and nodes can be mixed in any order in a sequence. Sequences cannot be
nested. When two or more sequences are combined, the result is a sequence
containing all of the items found in the source sequences. For example, inserting
the sequence (<a/>, , 123) between the two items in sequence ("alpha", 2)
results in the sequence ("alpha", <a/>, , 123, 2). The notation used in the
example is consistent with the syntax used to construct sequences in XQuery.
The whole sequence is enclosed in parentheses and the items are separated by
a comma.

An atomic value is an instance of one of the built-in atomic data types that are
defined by XML schema. These types are atomic because they cannot be
decomposed to simpler types. Atomic data types include integers, decimals,
strings, dates, and some other types.

The nodes of a sequences form one or more hierarchies, or trees. Each
hierarchy consists of a root node and all the nodes that are accessible from it.
Every node belongs to only one hierarchy and every hierarchy has exactly one
root node.

A node’s qualified name (or QName) is composed of two parts: an optional
namespace URI and a local name. Lexically it has the following format:
prefix:localName. In our sample XML document we do not use namespaces. We
discuss this topic in 4.4, “When and how to use namespaces” on page 136.

Figure 4-1 on page 76 shows a simplified representation of the data model for
sample.xml. The diagram includes a document node (D), comment node (C),
element nodes (E), attribute nodes (A), and text nodes (T). It shows that a node
 Chapter 4. Working with XML 75

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
can have other nodes as children forming one or more node hierarchies. For
example the element Address is a child of Customer (or saying in other way, the
element Customer is a parent of Address). The Address element has one
attribute (country) and four child elements (Street, City, State, and Zip).

Figure 4-1 Data model diagram for sample.xml

DB2 supports six types of nodes: document, element, attribute, text, processing
instruction, and comment. Each type of node has its own set of properties which
76 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
are different from each other. A node’s properties can include its name, its parent
node, and its attributes. Table 4-1 on page 77 lists node properties.

Table 4-1 Node properties

Table 4-2 lists node type supported in DB2 and their properties.

Table 4-2 Node supported in DB2

Node property Description

node-name The name of the node as a QName

type-name The dynamic (run-time) type of the node

string-value A string value that can be extracted from the node

typed-value A sequence of zero or more atomic values that can be
extracted from the node

in-scope namespaces The in-scope namespaces that are associated with the node

content The content of the node

attributes The sequence of attribute nodes that are children of the
current node

parent The node that is parent of the current node

children The sequence of nodes that are children of the current node

target The application name as QName

Node type Description Properties

Document node encapsulates XML document string-value
typed-value
children

Element node encapsulates an XML element node-name
type-name
string-value
typed-value
in-scope namespaces
attributes
parent
children
 Chapter 4. Working with XML 77

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
We can illustrate node types and properties using the sample.xml document. The
Address and Names are element type nodes. The following list is of some
properties of the Address node:

� Node-name: The qualified name of the node is Address.
� Attributes: This node has one attribute, country.
� Parent: The parent of the node is the Customer node.
� Children: This node has four children, Street, City, State, and Zip nodes.

4.1.2 Location paths

Location paths are the most used expressions in XPath. They consist of one or
more steps separated by slash(/) or double-slash (//). Each step before the final
step produces a sequence of nodes that are used as context nodes for the step
that follows. Every step is executed repeatedly, once for every context node that
is produced by the previous step. The results of these executions are combined
and form the sequence of context nodes for the following step. The value of the
location path is the sequence of the items produced from the final step in the
path. This sequence can contain only nodes or only atomic values. A location
path that generates a mixture of atomic values and nodes results in an error.

The first step defines the starting point of the location path. Often it is a function
call or variable reference that returns sequence of nodes. An initial "/" means that
the path begins from the root node. An initial "//" means that the path begins with
a sequence formed from the root node plus all of its descendants.

Each step can be another axis step or filter expression. An axis step consist of
three parts: an optional axis, that specifies a direction of movement through the
XML document or fragment; a node test that defines the criteria that is used to

Attribute node encapsulates an XML attribute node-name
type-name
string-value
typed-value
parent

Text node encapsulates XML character
content

content
parent

Processing
instruction node

encapsulates XML processing
instruction

content
parent
target

Comment node encapsulates XML comment content
parent

Node type Description Properties
78 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
select nodes; and zero or mode predicates that filter the sequence that is
produced by the step. The result of an axis step is sequence of nodes and each
node is assigned a context position that corresponds to its position in the
sequence. Context positions allow every node to be accessed by its position.
Table 4-3 on page 79 describes the axes supported in DB2.

Table 4-3 Axes supported in DB2

A node test is a condition that must be true for each node that is selected by an
axis step. The node test can be either a name test or kind test.

A name test filters nodes based on their names. It consists of a QName or a
wildcard and, when used, selects the nodes (elements or attributes) with
matching QNames. The QNames match if the expanded QName of the node is
equal to the expanded QName in the name test. Two expanded QNames are
equal if they belong to the same namespace and their local names are equal.
Table 4-4 describes all name tests supported in DB2.

Table 4-4 Name tests supported in DB2

A kind test filters nodes based of their kind. Table 4-5 on page 80 describes all
kind tests supported in DB2.

Axis Description Direction

self Returns the context node. Forward

child Returns the children of the context node Forward

descendant Returns the descendants of the context node Forward

descendant-or-self Returns the context node and its descendants Forward

parent Returns the parent of the context node Reverse

attribute Returns the attributes of the context node Forward

Test Description

QName Matches all nodes whose QName is equal to the specified QName

NCName.* Matches all nodes whose namespace URI is the same as the
namespace to which the specified prefix is bound

*.NCName Matches all nodes whose local name is equal to the specified
NCName

* Matches all nodes
 Chapter 4. Working with XML 79

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Table 4-5 Kind test supported in DB2

There are two syntaxes for axis steps: unabbreviated and abbreviated. The
unabbreviated syntax consist of an axis name and node test that are separated
by a double colon (::). In the abbreviated syntax, the axis is omitted by using
shorthand notations. Table 4-6 describes abbreviated syntax supported in DB2.

Table 4-6 Abbreviated syntax supported in DB2

4.1.3 Using location paths to retrieve nodes of XML document

Here we show you how to use location paths to select different parts of an XML
document. We use sample.xml document as a starting context node for all of our
examples. We use DB2 to execute our path expressions.

Test Description

node() Matches any node

text() Matches any text node

comment() Matches any comment node

processing-instruction() Matches any processing instruction node

element() Matches any element node

attribute() Matches any attribute node

document-node() Matches any document node

Abbreviated syntax Description

no axis specified child::, except when the node test is attribute(). In that case
omitted axis is shorthand for attribute::.

@ attribute::

// /descendant-or-self::node()/, except when appears in the
beginning of the path expression. In that case the axes step
selects the root of the tree plus all nodes that are its
descendants

. self::node()

.. parent::node()
80 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Setting up DB2 database environment
We use the XMLRB database for our examples. If you have not created it yet,
see Chapter 2, “Sample scenario description” on page 21. for instructions.

1. Create an XPS table using the commands in Example 4-2.

Example 4-2 Creating XPS table

CONNECT TO xmlrb;
CREATE TABLE xps(id INTEGER NOT NULL, doc XML);

2. Insert our sample xml document into DOC column of XPS table using the
command in Example 4-3.

Example 4-3 Inserting sample.xml into xps table

INSERT INTO xps (id, doc) VALUES (1, XMLPARSE (DOCUMENT
'<!-- sample xml file -->
<Customer>

<Name>
<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>
<Address country="US">

<Street>46 Oak Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>
<Phone type="work">123-456-7890</Phone>
<Phone type="home">234-567-8901</Phone>
<Email>sfer@yahoo.com</Email>
<Email>stevef@gmail.com</Email>

</Customer>'));

3. We use the template shown in Example 4-4 to execute our path expressions.
We will replace the <path_expression> with the actual path expression that is
to be executed. The db2-fn:xmlcolumn('XPS.DOC') function returns sequence
of all XML documents stored in DOC column of XPS table. We discuss this
function in more detail in the next section. We have inserted only one row in
the XPS table, so the result of this function call is a sequence containing only
sample.xml document which will be used for all of our examples.

Example 4-4 Template for execution of path expressions

XQUERY db2-fn:xmlcolumn('XPS.DOC')<path_expression>;
 Chapter 4. Working with XML 81

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Later in this chapter, we add more data into XPS table. If you have more data in
the table and would like to get the same results as shown in our examples, you
can replace the db2-fn:xmlcolumn('XPS.DOC') with db2-fn:sqlquery('select DOC
from XPS where id = 1'). The db2-fn:xmlcolumn and db2-fn:sqlquery functions
are described later in this chapter.

Executing XQuery
You can execute XQuery using DB2 Command Line Processor (CLP) or DB2
Command Editor. Figure 4-2 shows an XQuery executed using Command Editor.

Figure 4-2 Running XQuery using DB2 Command Editor

Note: XPath is a case-sensitive language. /Customer and /customer are
different.
82 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-5 shows the same XQuery executed using DB2 CLP.

Example 4-5 Executing XQuery at DB2 CLP

E:\SQLLIB\BIN>db2 xquery for $i in (1 to 3) return $i

1

1
2
3

Because DB2 is not case-sensitive, when executing XQuery using DB2 CLP or
Command editor, the key word XQUERY can be lower or upper case. In this
chapter, we capitalize key word XQUERY in our examples for stylistic reasons.

You might need to adjust your DB2 CLP settings in order to display the XML
output with all the indents and line spacing.

Location paths examples
In the following subsections, we show how location paths can be used for
retrieving different parts of an XML document.

Retrieving the whole XML document
Example 4-6 demonstrates how to retrieve the whole XML document.

Example 4-6 Retrieving the whole document (abbreviated syntax)

XQUERY db2-fn:xmlcolumn('XPS.DOC')/.;

Retrieving the root element of the document
Example 4-7 and Example 4-8 demonstrate how to retrieve the root element of
the document. In Example 4-7 we use the name of the root element (Customer).
In Example 4-8 we use the node kind test to select the child node of the whole
XML document (which is the root element).

Example 4-7 Retrieving the root element using its name

XQUERY db2-fn:xmlcolumn('XPS.DOC')/Customer;

Example 4-8 Retrieving the root element

XQUERY db2-fn:xmlcolumn('XPS.DOC')/node();
 Chapter 4. Working with XML 83

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Retrieving specific elements in a document
Example 4-9 demonstrate how to retrieve the Address element. This type of path
expression, where we know the exact path to the element in the document tree,
is used very often.

Example 4-9 Retrieving an element using its name and location (abbreviated syntax)

XQUERY db2-fn:xmlcolumn('XPS.DOC')/Customer/Address;

If we do not know the exact location of the element in the document, instead of
specifying the full path (using the child axis), we use the descendant-or-self axis
to look at all nodes that are in the hierarchy under the context node.
Example 4-10 demonstrate how to retrieve the Address element without
specifying its location in the document.

Example 4-10 Retrieving an element anywhere in an XML document

XQUERY db2-fn:xmlcolumn('XPS.DOC')//Address;

Retrieving elements with specific location
It is also possible that we know the location of an element without knowing its
name (or want to retrieve all elements with specific location). In this case, we use
* name test that matches all elements. Example 4-11 shows how to retrieve all
the elements that are child of the Address element.

Example 4-11 Retrieving all child elements of the Address element

XQUERY db2-fn:xmlcolumn('XPS.DOC')/Customer/Address/*;

Retrieving all elements in a hierarchy
Example 4-12 shows how to retrieve all elements in a document. Here we use //
to get all the descendants of the context node (the whole XML document)
including the context node itself. Then using * name test, we select all elements.

Example 4-12 Retrieving all elements

XQUERY db2-fn:xmlcolumn('PS.DOC')//*;

If we need to retrieve all elements in a hierarchy (instead of in the whole
document) we first locate the root of the hierarchy, then retrieve the elements.
84 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
We illustrate this with the hierarchy under the Address element as shown in
Example 4-13.

Example 4-13 Fragment of sample.xml containing Address element

...
</Name>
<Address country="US">

<Street>46 Oak Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>
<Phone type="work">123-456-7890</Phone>

...

Example 4-14 shows how to retrieve all elements in a hierarchy including the root
of the hierarchy. In Example 4-15 we retrieve all the elements without the root.

Example 4-14 Retrieving hierarchy

XQUERY
db2-fn:xmlcolumn('XPS.DOC')//Address/descendant-or-self::element();

Example 4-15 Retrieving hierarchy without root element

XQUERY db2-fn:xmlcolumn('XPS.DOC')//Address//*;

Retrieving text nodes
Often we need to extract text nodes from an XML document. Example 4-16
shows how to retrieve telephone numbers. Text nodes are children of the Phone
element).

Example 4-16 Retrieving the phone number

XQUERY db2-fn:xmlcolumn('XPS.DOC')/Customer/Phone/text();

Example 4-17 and Example 4-18 on page 86 show how to retrieve text nodes
containing the address information for a customer.

Example 4-17 Retrieving the address information (A)

XQUERY db2-fn:xmlcolumn('XPS.DOC')//Address//text();
 Chapter 4. Working with XML 85

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Example 4-18 Retrieving the address information (B)

XQUERY db2-fn:xmlcolumn('XPS.DOC')//Address/*/text();

Retrieving attribute nodes
Example 4-19 shows how to retrieve the attribute node of the Address node
(country in our case). Here we use name() function which returns a name of a
node. We discuss XPath functions later in this chapter. If we omit it, we will
receive an error because in DB2 there is no default rule for serializing an attribute
node. We discuss serialization later in this chapter. Note that this example works
only when that Address element has no more than one attribute.

Example 4-19 Retrieving the name of attribute node

XQUERY
db2-fn:xmlcolumn('XPS.DOC')/Customer/Address/fn:name(attribute());

Example 4-20 shows how to retrieve attribute values. It returns as result values of
type attribute for Phone elements in sample.xml. Similar to our previous example,
we use a function call. Here the function is string, which transforms a value to
string.

Example 4-20 Retrieving the value of attribute node

XQUERY db2-fn:xmlcolumn('XPS.DOC')/Customer/Address/fn:string(@type));

4.1.4 Predicates

A predicate filters a sequence by keeping only the qualifying items. It consists of
a predicate expression that is enclosed in square brackets ([]). The predicate
expression is evaluated for each item in the sequence with the selected item as
the context item. The result of the evaluation is xs:boolean and is called
predicate truth value. Only the items for which the predicate truth value is true
are retained. All the other items are filtered.

The predicate true value is calculated based on the type of the predicate
expression:

� If the predicate expression returns a numeric value, the predicate truth value
is true only for the item that is at the same position in the sequence as the
value of the predicate expression.

� If the predicate returns a nonnumeric value, the predicate truth value is the
boolean value of the predicate expression.
86 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
The most common use of predicates is to filter the result of path expression
based on some criteria. Example 4-21 shows how to retrieve the work phone
number. We use a predicate to select only these Phone elements which type
attribute equals "work".

Example 4-21 Retrieving the work phone number

XQUERY db2-fn:xmlcolumn('XPS.DOC')//Phone[@type=”work”]/text();

Example 4-22 shows the use of numeric predicate. It demonstrates how to
retrieve the first Email element from sample.xml.

Example 4-22 Usage of numeric predicate

XQUERY db2-fn:xmlcolumn('XPS.DOC')/Customer/Email[1];

4.2 XQuery

XQuery is a functional language that extends XPath. Its basic building blocks are
expressions constructed from keywords, operators (symbols), and operands
(that are usually other expressions). Expressions can be nested with full
generality. A query is composed of a prologue and a body. The query prologue is
optional and consists of declarations that define the execution environment of the
query. The query body consists of an expression that provides the result of the
query. The input and the output of the query are values (instances) of the XDM.

In Example 4-23 we show a typical XQuery query. It begins with the XQUERY
key word followed with a prologue (optional) and a body. The prologue in our
example contains default namespace declaration (the second line). The rest of
the query is its body. It consists of one or more XQuery expressions.

Example 4-23 Sample XQuery

XQUERY
declare default element namespace "http://sample.name.space.com";
for $cust in db2-fn:xmlcolumn('XPS.DOC')
return $cust/Name/LastName;

4.2.1 Types, expressions, and functions

In this section, we explain XQuery data types, expressions, and functions. We
start with data types because XQuery is strongly-typed language and every
expression and function has its type. We continue with expressions which are the
 Chapter 4. Working with XML 87

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
main building blocks of a query. Finally, we describe DB2 XQuery built-in
functions.

XQuery data types
XQuery is strongly-typed language. The operands of every expression, function,
or operator must be of their expected types. For example, ’mod’ operator returns
as numeric value result and requires that both of its arguments are numeric data
type. DB2 XQuery data types include the predefine types of XQuery and built-in
types of XML Schema.

The predefined types of XQuery are in the namespace
http://www.w3.org/2005/xpath-datatypes. This namespace has a predeclared
prefix xdt. Some examples of predefined data types are xdt:dayTimeDuration,
xdt:yearMonthDuration.

The built-in data types of XML Schema are in the namespace
http://www.w3.org/2001/XMLSchema. This namespace has a predeclared prefix
xs. Some examples of built-in data types are xs:boolean, xs:double, xs:date.

It is expected that xdt data types will be moved in xs namespace.

Figure 4-3 on page 89 shows the DB2 XQuery type hierarchy. All the types are
derived from xs:anyType. Links in the diagram connect each derived data type
with the base type from which it is derived. For example, the xs:long data type is
derived from xs:integer data type. which is derived from xs:decimal data type.

Derived data types can always be used instead of more generic data type. For
example if a function requires an xs:integer type argument, we can use xs:long
instead.
88 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Figure 4-3 DB2 XQuery type hierarchy

There is a constructor function for each of the atomic types which converts a
value of one atomic type into an instance of another atomic type. All constructor
functions for built-in data types share the same generic syntax:

type-name(value)

Where value is the value that has to be converted into an instance of the target
data type and the type-name is the target data type. Example 4-24 on page 90
shows a invocation of the constructor function for the xs:string atomic data type
with an argument of integer data type.
 Chapter 4. Working with XML 89

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Example 4-24 Invocation of string constructor function

xs:string(-123)

XQuery expressions
Expressions are the basic building blocks of a query. They can be used alone or
in a combination to form complex queries. DB2 supports several kind of
expressions for working with XML data. In our previous section, we discussed
path expressions and predicates. Here we present the rest of expression types.
The FLWOR expression is presented in the following section.

Primary expressions
Primary expressions are the basic primitive XQuery expressions. They include
literals, variable references, parenthesized expressions, context item
expressions, constructors, and function calls. Following are some primary
expressions:.

� Literals: 12, -134.97, “apple”
� Variable references: $i, $phone, $seq
� Parenthesized expressions: (27 + 16) * (43 - 18)
� Context item expressions: (1, 3, 5, 7, 9)[2]
� Constructors: xs:date(“2006-08-26”), xs:string(“a b c”)
� Function calls: fn:true(), fn:abs(-7)

Arithmetic expressions
Arithmetic expressions perform addition, subtraction, multiplication, division and
modulus. Table 4-7 describes the arithmetic operators and lists them in order of
operator precedence.

Table 4-7 Arithmetic expressions

Comparison expressions
XQuery provides three kinds of comparison expressions: value comparisons,
general comparisons, and node comparisons.

Value comparisons compare two atomic values. The operands must be of the
same type or one of them has to be a subtype of the other. The result of value
comparison is Boolean. Table 4-8 lists the value comparison operators in DB2.

Operator Purpose

- (unary), + (unary) Negates value of operand.

*, div, idiv, mod Multiplication, division, integer division, modulus.

+, - Addition, subtraction.
90 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Table 4-8 Value comparison operators

Example 4-25 shows an expression containing value comparison.

Example 4-25 Value comparison expression

/Customer/Name[FirstName eq “Steve”]/LastName/text()

General comparisons compare two sequences of any length. The result is
Boolean. General comparisons return true if at least one item in the first
sequence and one item in the second sequence satisfy the comparison. Each of
the items is atomized before comparison. Table 4-9 lists general comparison
operators.

Table 4-9 General comparison operators

Operator Description

eq Returns true if the first value is equal to the second value.

ne Returns true if the first value is not equal to the second value.

lt Returns true if the first value is less than the second value.

le Returns true if the first value is less than or equal to the second value.

gt Returns true if the first value is greater than the second value.

ge Returns true if the first value is greater than or equal to the second
value.

Operator Description

= Returns true if some value in the first sequence is equal to some
value in the second sequence.

!= Returns true if some value in the first sequence is not equal to some
value in the second sequence.

< Returns true if some value in the first sequence is less than some
value in the second sequence.

<= Returns true if some value in the first sequence is less than or equal
to some value in the second sequence.

> Returns true if some value in the first sequence is greater than some
value in the second sequence.

>= Returns true if some value in the first sequence is greater than or
equal to some value in the second sequence.
 Chapter 4. Working with XML 91

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Table 4-10 lists the results of comparing (1, 2) and (2, 3) sequences.

Table 4-10 Results of sample general comparisons

Note that if we add 4 to the first sequence, all general comparisons will return
true.

Node comparisons compare the position of two nodes in the document order.
The result of comparison is Boolean. Table 4-11 lists the node comparison
operators.

Table 4-11 Node comparison operators

Logical expressions
Logical expressions use and and or operators. Their arguments are of Boolean
type and they return results in boolean value. Table 4-12 on page 92 lists logical
operators. The and operator is with higher precedence than or operator.

Table 4-12 Logical expression operators

Expression® Result Comments

(1, 2) = (2, 3) true 2 = 2

(1, 2) != (2, 3) true 1 != 2

(1, 2) < (2, 3) true 1 < 2

(1, 2) <= (2, 3) true 1 <=2

(1, 2) > (2, 3) false neither 1 or 2 greater than 2 or 3

(1, 2) >= (2, 3) true 2 >= 2

Operator Description

is Returns true if the two nodes have the same identity.

<< Returns true if the first operand node precedes the second operand
node in document order.

>> Returns true if the first operand node follows the second operand node
in document order.

Operator Description

and Returns true if both arguments are true.

or Returns true if at least one of arguments is true.
92 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Constructors
Constructors create XML structures inside a query. There are two types of
constructors: direct and computed.

Direct constructors create XML structures within query using XML-like notation.
Example 4-26 shows direct constructor creating Address element containing an
attribute and four child elements. The attribute is country and the child elements
are Street, City, State, and Zip. Each of the child elements has an text node as its
child.

Example 4-26 Using direct constructor

XQUERY
<Address country="US">

<Street>46 Oak Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>;

result:
<Address country="US">
<Street>

46 Oak Street
</Street>
<City>

Los Gatos
</City>
<State>

CA
</State>
<Zip>

95030
</Zip>
</Address>
 Chapter 4. Working with XML 93

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Computed constructors create XML structures within query using enclosed
expressions. It starts with a keyword describing the type of node to be created
and is followed by the name of the node and its content. Example 4-27 shows
creation of the same XML element as in Example 4-26 on page 93 using
computed constructor.

Example 4-27 Using computed constructor

XQUERY
element Address {

attribute country {"US"},
element Street {"46 Oak Street"},
element City {"Los Gatos"},
element State {"CA"},
element Zip {"95030"}

};

result:
<Address country="US">
<Street>

46 Oak Street
</Street>
<City>

Los Gatos
</City>
<State>

CA
</State>
<Zip>

95030
</Zip>
</Address>

Conditional expressions
Conditional expressions evaluate one of two expressions based on whether the
value of a test expression is true or false. The structure of a conditional
expression is shown in Table 4-13.

Table 4-13 Conditional expression

Expression Description

if (test_expr) then expr1 else expr2 test_expr is evaluated. If its value is true the
result is the evaluation of expr1, otherwise the
result is the evaluation of expr2.
94 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Quantified expressions
Quantified expressions return true or false depending on whether some or every
item in one or more sequence satisfies a specific condition. Here are two
examples:

some $i in (1 to 10) satisfies $i mod 7 eq 0
every $i in (1 to 5) , $j in (6, 10) satisfies $i < $j

The quantified expression begins with a quantifier: some or every. The quantifier
is followed by one or more clauses that bind variables to sequences that are
returned by expressions. In our first example, $i is the variable and (1 to 10) is
the sequence. In second example we have two variables $i and $j that are bound
to (1 to 5) and (6 to 10). Then we have a test expression in which bound
variables are referenced. Test expression is used to determine if some or all of
bound variables satisfy a specific condition. In our first example the condition is if
$i mod 7 is equal to 0. The qualifier for this expression is some so the result is
true (there is a value for which test expression is true). In the second example
the condition is if $i is less than $j. The qualifier is every so we check that every
$i is less than every $j. The result is true.

Cast expressions
Cast expressions are used to transform a value from one type into a value of
another type, for example string to integer. A cast expression takes two
arguments: an input expression and a target data type. It evaluates the
expression and attempts to create a new value of the target data type based on
the result of the evaluation. Here is an example of cast expression converting
string to double:

"123.456" cast as xs:double

Sequence expressions
Sequence expressions are used to construct, combine, and filter sequence of
items. A sequence can be constructed using comma operator or range
expression.

Using comma operator, we specify two or more items separated by a comma.
Example 4-28 shows using the comma operator to create a sequence containing
numbers 1, 3, 5, and 7.

Example 4-28 Creating sequence using comma operator

(1, 3, 5, 7)

Using the range expression we create sequences of consecutive integers. We
specifies the firs and the last values separating them with to operator.
 Chapter 4. Working with XML 95

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Example 4-29 shows a sequence containing numbers 4, 5, 6, and 7 is created
using a range expression.

Example 4-29 Creating sequence using range expression

(4 to 7)

Example 4-30 shows that comma operator and range expressions can be
combined. The resulting sequence is (1, 2, 3, 1, 7, 9, 11).

Example 4-30 Combining comma operator and range expression

(1 to 3, 1, 7, 9 to 9, 11)

The result of every expression that returns a sequence can be filtered using a
predicate. The combination of primary expression and one or more predicates is
called filtering expression. Example 4-31 shows creating a sequence containing
numbers 5 and 10 using filtering expression.

Example 4-31 Filtering expression

(4 to 11)[. mod 5 eq 0]

The information that is available at the time an expression is evaluated is called
dynamic context. The focus, which consist of the context item, context position,
and context size, is an important part of the dynamic context. The focus changes
as DB2 processes each item in a sequence. The focus consist of the following
information:

� Context item is the atomic value of the node that is currently processed. It can
be retrieved using the context item expression, which consist of a single dot
(.).

� Context position is the position of the context item in the sequence that is
processed. It can be retrieved using the fn:position() function.

� Context size is the number of items in the sequence that is processed.

In Example 4-31, the sequence that is processed is (4, 5, 6, 7, 8, 9, 10, 11). The
context size is eight because the sequence contains eight items. The context
position of item ‘5’ is two because it is the second item in the sequence. The
context position of ‘10’ is seven. During the processing all the nodes in the
sequence are iterated one by one and the atomic value of every one of them is
processed as a context item. It is referenced in the predicate using a dot (.).
96 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
The process of converting the sequence of items into sequence of atomic values
is called atomization. Each item in a sequence is converted to an atomic value by
applying the following rules:

� If the item is atomic value, then its value is returned.

� if the item is a node, then its typed value is returned. The typed value of a
node is a sequence of zero or more atomic values that can be extracted from
the node. If the node has no typed value then an error is returned.

Example 4-32 shows the atomization. First two items, <a>4 and 5,
in the sequence are nodes. After the atomization they are converted to 4 and 5.
The result of the filtering expression is the same as in Example 4-31 on page 96.

Example 4-32 Atomization

(<a>4, 5, 6 to 11)[. mod 5 eq 0]

XQuery functions
DB2 supports a set of built-in functions for working with XML data. These
functions include DB2-defined functions and XQuery-defined functions.

DB2-defined functions
There are two DB2-defined functions which are used to access XML data from a
DB2 database. They belong to the namespace which is bound to the db2-fn
prefix.

The db2-fn:xmlcolumn function accepts as an argument a name of an XML
column in a table or a view and returns as a result a sequence that is the
concatenation of the non-null XML values in the specified column. Example 4-33
shows a call to db2-fn:xmlcolumn function. It returns a sequence of all XML
documents stored in the column DOC of XPS table.

Example 4-33 Invocation of the db2-fn:xmlcolumn function

XQUERY db2-fn:xmlcolumn('XPS.DOC');

The db2-fn:sqlquery function accepts as an argument string containing fullselect
that specify a single-column result set of XML data type and returns as a result a
sequence that is the concatenation of the non-null values returned by the
specified fullselect. Example 4-34 shows a call to db2-fn:sqlquery function. It
returns the same result as Example 4-33.

Example 4-34 Invocation of the db2-fn:sqlquery

XQUERY db2-fn:sqlquery('SELECT doc FROM xps');
 Chapter 4. Working with XML 97

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
The db2-fn:sqlquery function is very important. It allows us to integrate SQL
statements inside XQuery. We discuss the usage of db2-fn:sqlquery in more
details in 4.3.2, “SQL/XML” on page 127.

XQuery-defined functions
XQuery-defined functions are in the namespace which is bound to the fn prefix.
This is the default namespace. XQuery defined functions can be invoked without
specifying their namespace (unless you want to override the default function
namespace).

XQuery-defined functions can be divided in eight different categories based on
the type of the data they process.

� String functions

Table 4-14 lists the strings function of XQuery-defined functions.

Table 4-14 XQuery-defined string functions

Function Description

fn:codepoints-to-string Returns the string equivalent of a sequence of Unicode
code points.

fn:compare Compares two strings. Returns -1, 0, or 1.

fn:concat Returns a string that is the concatenation of two or
more atomic values.

fn:contains Determines whether a string contains a given
substring. Returns true or false.

fn:ends-with Determines whether a string end with a given
substring. Returns true or false.

fn:lower-case Converts a string to lowercase.

fn:matches Determines whether a string matches a given pattern.
Returns true or false.

fn:normalize-space Strips leading and trailing whitespace characters from
a string and replaces each internal sequence of
whitespace characters with a single blank character.

fn:normalize-unicode Performs Unicode normalization on a string.

fn:replace Compares each set of characters within a string to a
given pattern and then replaces the characters that
match the pattern with another set of characters.

fn:starts-with Determines whether a string begins with a given
substring.
98 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
� Boolean functions

Table 4-15 lists the boolean functions of XQuery defined functions.

Table 4-15 XQuery-defined Boolean functions

� Number functions

Table 4-16 on page 100 lists the XQuery-defined number functions.

fn:string Returns the string representation of a value.

fn:string-join Returns a string that is generated by concatenating
items separated by a separator character.

fn:string-length Returns the length of a string.

fn:string-to-codepoints Returns a sequence of Unicode code points that
correspond to a string value.

fn:substring Returns a substring that occurs in a string.

fn:substring-after Returns a substring that occurs in a string after the end
of the first occurrence of a given search string.

fn:substring-before Returns a substring that occurs in a string before the
first occurrence of a given search string

fn:tokenize Breaks a string into a sequence of substrings.

fn:translate Replaces selected characters in a string with
replacement characters.

fn:upper-case Converts a string to uppercase.

Function Description

fn:boolean Returns the effective boolean value of a sequence.

fn:false Returns the xs:boolean value false.

fn:not Returns true if its argument is false and false if its argument is
true.

fn:true Returns the xs:boolean value true.

fn:zero-or-one Returns its argument if it is a sequence containing zero or one
elements. Otherwise, an error is returned.

Function Description
 Chapter 4. Working with XML 99

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Table 4-16 XQuery-defined number functions

� Date functions

Table 4-17 lists the XQuery-defined date functions.

Table 4-17 XQuery-defined date functions

Function Description

fn:abs Returns the absolute value of a numeric value.

fn:avg Returns the average of the values in a sequence.

fn:ceiling Returns the smallest integer that is greater than or equal
to the argument.

fn:floor Returns the largest integer that is less than or equal to
the argument.

fn:max Returns the maximum of the values in a sequence.

fn:min Returns the minimum of the values in a sequence.

fn:number Converts the value of its argument to xs:double data
type.

fn:round Returns the integer that is closest to the a given numeric
value.

fn:round-half-to-even Returns the integer value with a specified precision that
is closest to a given numeric value.

fn:sum Returns the sum of the values in a sequence.

Function Description

fn:current-date Returns the current date in the implicit time zone of UTC.

fn:current-dateTime Returns the current date and time in the implicit time zone
of UTC.

fn:current-time Returns the current time in the implicit time zone of UTC.

fn:dateTime Constructs and returns an xs:dateTime value from an
xs:date and an xs:time values.

fn:implicit-timezone Returns the implicit time zone value of PTOS, which is of
type xs:dayTimeDuration. The value PTOS indicates that
UTC is the implicit time zone.
100 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
� Sequence functions

Table 4-18 lists XQuery-defined sequence functions.

Table 4-18 XQuery-defined sequence functions

Function Description

fn:count Returns the number of values in a sequence.

fn:data Returns the input sequence after replacing any nodes by
their typed values.

fn:deep-equal Compares two sequences to determine whether they meet
requirements for deep equality.

fn:distinct-value Returns the distinct values in a sequence.

fn:empty Returns true if its argument is an empty sequence. Otherwise
returns false.

fn:exactly-one Returns its argument if it is a sequence containing exactly
one element. Otherwise error is returned.

fn:exist Returns true if its argument is a sequence with at least one
element. Otherwise returns false.

fn:last Returns the number of values in the sequence that is
currently processed.

fn:index-of Returns a position where an item appears in a sequence.

fn:insert-before Inserts a sequence before a given position in another
sequence.

fn:one-or-more Returns its argument if it is a sequence containing one or
more items. Otherwise returns an error.

fn:position Returns the position of the context item in the sequence that
is currently processed.

fn:remove Removes an item from a sequence.

fn:reverse Reverses the order of the items in a sequence.

fn:subsequence Returns a subsequence of a sequence.

fn:unordered Returns the items in a sequence in non-deterministic order.
 Chapter 4. Working with XML 101

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
� QName functions

Table 4-19 lists XQuery-defined QName functions.

Table 4-19 XQuery-defined QName functions

� Node functions

Table 4-20 lists XQuery-defined node functions.

Table 4-20 XQuery-defined node functions

Function Description

fn:in-scope-prefixes Returns list of prefixes for all in-scope
namespaces of an element.

fn:local-name-from-QName Returns the local part of an xs:Qname value.

fn:namespace-uri-for-prefix Returns the namespace URI that is associated
with a prefix in the in-scope namespaces of an
element.

fn:namespace-uri-from-QName Returns the namespace URI part from of an
xs:QName value.

fn:QName Builds and returns an expanded name from a
namespace URI and a string that contains a
lexical QName (with an optional prefix).

fn:resolve-QName Converts a string containing a lexical QName
into an expanded QName by using the
in-scope namespaces of an element to
resolve the namespace prefix to a namespace
URI.

Function Description

fn:local-name Returns the local name property of a node.

fn:name Returns the prefix and local name parts of a node name.

fn:namespace-uri Returns the namespace URI of the qualified name of a
node.

fn:node-name Returns the expanded QName of a node.

fn:root Returns the root node of a tree to which a node belongs.
102 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
� Other functions

Table 4-21 lists some other XQuery-defined functions.

Table 4-21 XQuery-defined functions

4.2.2 FLWOR and selecting XML data

Very often the FLWOR (for, let, where, order by, and return) expression in
XQuery is compared with SELECT-FROM-WHERE block in SQL. They have
similar structure and contain multiple clauses denoted by keywords. Table 4-22
lists clauses in a FLWOR expression.

Table 4-22 FLWOR expression clauses

We discuss and provide examples for each of the clauses.

For and return clauses
We discuss for and return together in order to show a complete example.
Without the return clause, the FLWOR expression will not be complete. A for
clause iterates through the result of an expression and binds a variable to each
item in the sequence. Example 4-35 on page 104 shows the simplest type of for
clause containing one variable $i and an expression that results in the sequence
(1, 2, 3).

Function Description

fn:default-collation Returns a URI that represents the default collation that
is defined for the database.

db2-fn:sqlquery Retrieves a sequence that is the result of an SQL
fullselect in the currently connected DB2 database.

db2-fn:sqlcolumn Retrieves a sequence from a column in the currently
connected DB2 database.

Clause Description

for Iterates through an input sequence, binding a variable to each of its
items in turn.

let Declares a variable and assigns it a value. The value could be a
sequence containing multiple elements.

where Specifies criteria for filtering query results.

order by Specify the sort order of the result.

return Generates the result to be returned by FLWOR expression.
 Chapter 4. Working with XML 103

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Example 4-35 for and return clauses

XQUERY
for $i in (1 to 3)
return $i;

result:
1
2
3

The expression in for clause (1 to 3) is evaluated and it generates the sequence
(1, 2, 3). Each of the values in this sequence binds to the variable $i, one at a
time. The return clause is evaluated for each of the bindings. The results of these
evaluations form a sequence that is returned as a result. In Example 4-35, return
clause is executed for each of the bindings of variable $i and returns a sequence
of its values.

A for clause can contain multiple variables bound to different expressions.
Example 4-36 shows a for clause containing two variables $i and $j, and two
expressions whose results are bind to the variables.

Example 4-36 for clause with two variables

XQUERY
for $i in (1 to 2), $j in (2 to 3)
return ($i, $j);

result:
1
2
2
2
1
3
2
3

When the for clause is evaluated, a tuple of variable bindings is created for each
combination of values. $i can be bind to 1 and to 2. $j can be bind to 2 and to 3.
The four possible combinations results in four tuples of variable bindings:

$i = 1, $j = 1
$i = 2, $j = 1
$i = 1, $j = 2
$i = 2, $j = 2
104 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
The return clause executes ones for each tuple of bindings returning the values
of $i and $j.

If a binding expression evaluates to an empty sequence no for bindings is
generated and no iteration occur. Example 4-37 shows a for clause where the
expression for variable $j is empty sequence. As a result there are no iterations
and the result returned by the return clause is an empty sequence.

Example 4-37 for clause with empty sequence

XQUERY
for $i in (1 to 2), $j in (3 to 2)
return $i;

result:

Note that even that $j is not part of the return clause, the result is empty
sequence.

When a variable iterates over the items in a sequence, an index or position
number is generated for each item in the list. You can declare a position variable
for this index with the for clause. The positions are integers starting with 1. The
positional variable is defined by the keyword at. Example 4-38 shows the usage
of positional variables.

Example 4-38 for clause with positional variable

XQUERY
for $name at $pos in ("Elena", "Maria", "Emma")
return <name pos="{$pos}">{$name}</name>;

result:
<name pos="1">
Elena
</name>
<name pos="2">
Maria
</name>
<name pos="3">
Emma
</name>
 Chapter 4. Working with XML 105

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Note that the actual order of the elements in the output stream is not guarantied
unless the FLWOR expression contains an order by clause. Example 4-39 shows
that the results produced by the FLWOR expression in Example 4-38 on
page 105 could be in different order.

Example 4-39 Possible results from FLWOR expression from Example 4-38 on page 105

result:
<name pos="2">
Maria
</name>
<name pos="1">
Elena
</name>
<name pos="3">
Emma
</name>

Let clause
Let clauses bind a variable to the entire result of an expression. The let clause
does not iterate through a sequence of input, binding each item to a variable as
the for clause does. Instead, let clause assigns the whole sequence (or just a
value if it is a sequence of one item) to a variable. Example 4-40 shows the
differences between for and let clauses.

Example 4-40 Differences between for and let clauses

XQUERY
for $i in (1 to 2)
return <value>{$i}</value>;

result:
<value>
1
</value>
<value>
2
</value>

XQUERY
let $i := (1 to 2)
return <value>{$i}</value>;
106 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
result:
<value>
1 2
</value>

When the let clause in Example 4-40 on page 106 is executed, a single binding is
created for the entire sequence that results from (1 to 2). The return clause
executes once.

If the binding expression is an empty sequence, a let binding is created and it
contains an empty sequence.

Using for and let clauses in the same expression
When for and let clauses are used in same FLWOR expression, the variable
bindings that are generated by let clause are added to the variable bindings that
are generated by the for clause. In Example 4-41, the for and let clauses in result
in the following two tuples of bindings:

$i = 1, $j = (2, 3)
$i = 2, $j = (2, 3)

Example 4-41 Using for and let clauses in same FLWOR expression

XQUERY
for $i in (1 to 2)
let $j := (2 to 3)
return <value>{$i, $j}</value>;

result:
<value>
1 2 3
</value>
<value>
2 2 3
</value>

A variable that is bound in a for or let clause is in scope and can be used in all of
the sub-expressions that appear after the variable binding in the FLWOR
expression. In Example 4-42 we use $i to set a value for $j. Note how the results
differ from Example 4-41.

Example 4-42 Variable scope in for or let clause

XQUERY
for $i in (1 to 2)
let $j := ($i to 3)
 Chapter 4. Working with XML 107

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
return <value>{$i, $j}</value>;

result:
<value>
1 1 2 3
</value>
<value>
2 2 3
</value>

Where clause
A where clause filters the tuples of variable bindings that are generated by for
and let clauses in a FLWOR expression. The where clause specifies a condition
that is applied to each tuple of variable bindings. If the condition is not true, the
tuple is discarded. The return clause is executed only for the remaining tuples so
the where clause effectively filters the results.

Example 4-43 shows the usage of where clause. We keep only the tuples for
which $j is equal to $j and returning only the values that are in both input
sequences.

Example 4-43 Using where clause

XQUERY
for $i in (1 to 3)
for $j in (2 to 4)
where ($i eq $j)
return $i;

result:
2
3

Order by clause
An order by clause in a FLWOR expression determines the order in which the
tuples of variable binding are evaluated by return clause. If no order by clause is
specified, the results of a FLWOR expression are returned in a non-deterministic
order. An order by clause contains one or more ordering specifications. Each
ordering specifications consists of an expression and an order modifier, which
specifies the sort order (ascending or descending).
108 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
In Example 4-44, order by clause is used to sort the names.

Example 4-44 Using order by clause

XQUERY
for $name in ("Elena", "Maria", "Emma", "Antoaneta")
order by $name ascending
return $name;

result:
Antoaneta
Elena
Emma
Maria

Using FLWOR to retrieve XML data
We use the XPS table from Example 4-2 on page 81 to demonstrate how to use
FLWOR to retrieve XML data. We already inserted one record in the table (see
Example 4-3 on page 81). We use code in Example 4-45 to insert two more
rows.

Example 4-45 Inserting two rows with XML data in XPS table

INSERT INTO xps (id, doc) VALUES (2, XMLPARSE (DOCUMENT
'<Customer>

<Name>
<FirstName>Brad</FirstName>
<LastName>Hunn</LastName>

</Name>
<Address country="US">

<Street>24 Palm Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>
<Phone type="work">123-678-9012</Phone>
<Phone type="home">123-789-0123</Phone>
<Phone type="cell">123-890-1234</Phone>

</Customer>'));

INSERT INTO xps (id, doc) VALUES (3, XMLPARSE (DOCUMENT
'<Customer>

<Name>
<FirstName>Domenico</FirstName>
<LastName>Blefari</LastName>
 Chapter 4. Working with XML 109

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
</Name>
<Address country="US">

<Street>68 Cherry Street</Street>
<City>San Jose</City>
<State>CA</State>
<Zip>95134</Zip>

</Address>
<Phone type="work">234-901-2345</Phone>
<Phone type="home">234-012-3456</Phone>
<Email>dom.blefari@yahoo.com</Email>

</Customer>'));

We create one more table CPL to store the complaints received from customers.
SQL statements for creation of this table are shown in Example 4-46.

Example 4-46 Creation of CPL table

CONNECT TO xmlrb;
CREATE TABLE cpl(case_id INTEGER NOT NULL,

cust_id INTEGER NOT NULL,
complain XML);

In the CASE_ID field, we store an unique ID for each complaint. In CUST_ID we
store the ID of the complaining customer. In the COMPLAIN field we store an
XML document containing the complaint. A sample complaint is shown in
Example 4-47.

Example 4-47 Sample complaint XML document

<Complain status=”closed”>
<Received>2007-07-01</Received>
<ReplyTo>sfer@yahoo.com</ReplyTo>
<Problem>Have not received yet my last order.</Problem>

</Complain>

The structure of the XML document is:

� <Complain> is the root element of the XML document. It has an attribute
status with possible values “open” and “closed”. The value of the attribute
indicates if the complaint is open or closed. Each other element is a child of
this element.

� <Received> contains a date on which the complaint was received.

� <ReplyTo> is an E-mail address of the customer as contact information.

� <Problem> contains a description of the problem submitted by a customer.
110 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
We use the code shown in Example 4-48 to insert five records in a CPL table.

Example 4-48 Inserting data into CPL table

INSERT INTO cpl (case_id, cust_id, complain) VALUES (1, 1, XMLPARSE
(DOCUMENT
'<Complain status="closed">

<Received>2006-07-01</Received>
<ReplyTo>sfer@yahoo.com</ReplyTo>
<Problem>Have not received yet my last order.</Problem>

</Complain>'));

INSERT INTO cpl (case_id, cust_id, complain) VALUES (2, 1, XMLPARSE
(DOCUMENT
'<Complain status="open">

<Received>2006-07-06</Received>
<ReplyTo>stevef@gmail.com</ReplyTo>
<Problem>One of the items received is broken.</Problem>

</Complain>'));

INSERT INTO cpl (case_id, cust_id, complain) VALUES (3, 1, XMLPARSE
(DOCUMENT
'<Complain status="open">

<Received>2006-07-11</Received>
<ReplyTo>sfer@yahoo.com</ReplyTo>
<Problem>The replacement I received does not work.</Problem>

</Complain>'));

INSERT INTO cpl (case_id, cust_id, complain) VALUES (4, 3, XMLPARSE
(DOCUMENT
'<Complain status="open">

<Received>2006-07-3</Received>
<ReplyTo>dom.blefari@yahoo.com</ReplyTo>
<Problem>Yesterday was put on hold for 4 hours.</Problem>

</Complain>'));

INSERT INTO cpl (case_id, cust_id, complain) VALUES (5, 3, XMLPARSE
(DOCUMENT
'<Complain status="closed">

<Received>2006-07-12</Received>
<ReplyTo>sarahb@yahoo.com</ReplyTo>
<Problem>Have not received my refund.</Problem>

</Complain>'));
 Chapter 4. Working with XML 111

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Selecting all XML documents
We start with a very simple XQuery that selects all XML documents stored in the
DOC column of XPS table. The code of the XQuery using a FLWOR expression
is shown in Example 4-49.

Example 4-49 Retrieving all XML documents

XQUERY
for $doc in db2-fn:xmlcolumn('XPS.DOC')
return $doc;

Note that this XQuery returns the whole XML document. Example 4-50 shows a
fragment of the query output. In our example, the comment line of our first XML
document is included.

Example 4-50 XML document returned from XQuery

<!-- sample xml file -->
<Customer>

<Name>
<FirstName>

Steve
</FirstName>
<LastName>

Ferrington
</LastName>

</Name>
<Address country="US">

<Street>
46 Oak Street

</Street>
<City>

Los Gatos
</City>
<State>

CA
</State>
<Zip>

95030
</Zip>

</Address>
<Phone type="work">

123-456-7890
</Phone>
<Phone type="home">

234-567-8901
112 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
</Phone>
<Email>

sfer@yahoo.com
</Email>
<Email>

stevef@gmail.com
</Email>

</Customer>
...
</Customer>
<Customer>
....
</Customer>

 3 record(s) selected.

If you need only the document’s root element without other nodes such as
processing instructions, you can use the code shown in Example 4-51.

Note that the document comment is not included in the result because we
retrieve the root element. The root element is the child of the document node, not
of the root element.

Example 4-51 Retrieve element only

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
return $cust;

Result:
<Customer>
<Name>

<FirstName>
Steve

</FirstName>
<LastName>

Ferrington
</LastName>

</Name>
<Address country="US">

<Street>
46 Oak Street

</Street>
<City>

Los Gatos
 Chapter 4. Working with XML 113

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
</City>
<State>

CA
</State>
<Zip>

95030
</Zip>

</Address>
<Phone type="work">

123-456-7890
</Phone>
<Phone type="home">

234-567-8901
</Phone>
<Email>

sfer@yahoo.com
</Email>
<Email>

stevef@gmail.com
</Email>
</Customer>
<Customer>
...
</Customer>
<Customer>
...
</Customer>

 3 record(s) selected.

If you do not know the name of the root element you can use /* instead of
/Customer as shown here:

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/*
return $cust

Selecting parts of XML documents
In this example, we show how to select only part of XML documents. Suppose
that we need only the e-mail addresses. The code in Example 4-52 on page 115
does the job.
114 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-52 Retrieving e-mail addresses

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
return $cust/Email

result:
<Email>
sfer@yahoo.com
</Email>
<Email>
stevef@gmail.com
</Email>
<Email>
dom.blefari@yahoo.com
</Email>

If we do not need the entire Email element, but only the e-mail address itself, we
can use the text() function, as shown in Example 4-53.

Example 4-53 Retrieving the text in element

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
return $cust/Email/text()

result:
sfer@yahoo.com
stevef@gmail.com
dom.blefari@yahoo.com

Selecting specific XML documents
Suppose that we need only the names of the customers whose zip code is
95030. We can put this restriction using the where clause in our FLWOR
expression, as shown in Example 4-54. Note that it is very similar to the SQL
WHERE clause. We also use the concatenation function to form a string
containing both first and last names.

Example 4-54 Using where clause

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
where $cust/Address/Zip/text()="95030"
return concat($cust/Name/FirstName, " ", $cust/Name/LastName)
 Chapter 4. Working with XML 115

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
results:
Steve Ferrington
Brad Hunn

Very often we can filter data in the path expression instead of in where clause.
Example 4-55 produces the same results as the code in Example 4-54 on
page 115. It is your choice of how and where to specify the filter. The rule of
thumb is to use the one that will make your code more readable and easier to
understand.

Example 4-55 Using predicate instead of where clause

XQUERY
for $cust in
db2-fn:xmlcolumn('XPS.DOC')/Customer[Address/Zip/text()="95030"]
return concat($cust/Name/FirstName, " ", $cust/Name/LastName)

results:
Steve Ferrington
Brad Hunn

Another criteria for filtering is the existence or number of occurrences of a
specific element in an XML document. In Example 4-56, we show how to select
only the customers that do not have an e-mail address.

Example 4-56 Retrieving customers without e-mail address

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
where not(exists($cust/Email))
return concat($cust/Name/FirstName, " ", $cust/Name/LastName);

result:
Brad Hunn

We use the exists and not functions. Note that not($cust/Email) returns the same
result as not(exists($cust/Email)).

In Example 4-57 we select only the customers with more than one e-mail
address.

Example 4-57 Retrieving customers with more than one e-mail address

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
where count($cust/Email) > 1
116 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
return concat($cust/Name/FirstName, " ", $cust/Name/LastName);

result:
Steve Ferrington

Some differences between XQuery and SQL
When storing data in relational table, NULL is used to represent a column without
a value. For each column, an SQL query will receive one value (possible NULL)
from each row. Since XML document omit missing or unknown data, XQuery
does not have null value. The result of an XQuery does not have the this
row/column relationship. Examine further the XQuery output in Example 4-53 on
page 115. The three E-mail address are not corresponding to the three
customers (three rows) in the table. One of our documents (customer Brad
Hunn) does not contain an Email element and XQuery simply does not return
any entry in the output. Another document (customer Steve Ferrington) contains
two Email elements and XQuery returns two entries in the output. Based on the
results, we cannot determine from which document the E-mail addresses come.

In Example 4-58 we show how to group E-mail addresses by customer. This
query also returns the number of E-mail addresses for each customer.

Example 4-58 Grouping the e-mail addresses by customer

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
let $name := concat($cust/Name/FirstName, " ", $cust/Name/LastName)
let $n := count($cust/Email)
return (concat($name, " : ", $n), $cust/Email/text());

result:
Steve Ferrington : 2
sfer@yahoo.com
stevef@gmail.com
Brad Hunn : 0
Domenico Blefari : 1
dom.blefari@yahoo.com

In Example 4-59, the query outputs only the first E-mail address per customer.

Example 4-59 Selecting the first e-mail address

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
let $name := concat($cust/Name/FirstName, " ", $cust/Name/LastName)
return (concat($name, " : ", $cust/Email[1]/text());
 Chapter 4. Working with XML 117

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
result:
Steve Ferrington : sfer@yahoo.com
Brad Hunn :
Domenico Blefari : dom.blefari@yahoo.com

Assume that we need a list for customer contact information. We prefer e-mail
addresses. For customers without e-mail, we would like to have their phone
number. XQuery in Example 4-60 generates this information using conditional
expressions. Here we select the last e-mail and phone (assuming that it is most
recent).

Example 4-60 Using conditional expression

XQUERY
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
let $name := concat($cust/Name/FirstName, " ", $cust/Name/LastName)
let $info := if (exists($cust/Email))

then($cust/Email[last()]/text())
else($cust/Phone[last()]/text())

return (concat($name, " : ", $info))

result:
Steve Ferrington : sfer@yahoo.com
Brad Hunn : 123-678-9012
Domenico Blefari : dom.blefari@yahoo.com

You can try to modify the code so if there is no e-mail address first to look for
home phone, than for cell phone, and finally for work phone.

Transforming XML data
We also can produce an XML document using XQuery. See the output in
Example 4-60. For each customer, we have one line containing the full name and
e-mail address or phone number. Rewrite the code so the output is an XML
document with the structure shown in Example 4-61.

Example 4-61 Desired transformed XML document

<CustomerContacts>
<Customer>

<Name>name</Name>
<Contact type="phone"|"email">contact info</Contact>

</Customer>
<Customer>

...
118 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
</Customer>
...

</CustomerContacts>

The code in Example 4-62 does the transformation. Note that we include the
whole FLWOR body between two <CustomerContacts> tags. We also use the
curly bracket to instruct DB2 to evaluate enclosed expression rather than treats it
as a literal string.

Example 4-62 Transforming XML document

XQUERY
<CustomerContacts>{
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
let $name := concat($cust/Name/FirstName, " ", $cust/Name/LastName)
let $info := if (exists($cust/Email))

then($cust/Email[last()]/text())
else($cust/Phone[last()]/text())

let $type := if (exists($cust/Email)) then("email") else("phone")
return
<Customer>
<Name>{$name}</Name>
<Contact type="{$type}">{$info}</Contact>
</Customer>
}</CustomerContacts>

result:
<CustomerContacts>
<Customer>

<Name>
Steve Ferrington

</Name>
<Contact type="email">

stevef@gmail.com
</Contact>

</Customer>
<Customer>

<Name>
Brad Hunn

</Name>
<Contact type="phone">

123-890-1234
</Contact>

</Customer>
<Customer>
 Chapter 4. Working with XML 119

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
<Name>
Domenico Blefari

</Name>
<Contact type="email">

dom.blefari@yahoo.com
</Contact>

</Customer>
</CustomerContacts>

Joining two or more XML documents in an XQuery
In Example 4-63 we demonstrate how to join XML data from two tables. We want
to list all the customers whose e-mail matches the E-mail in the CPL table
ReplyTo element. First we extract to $e all the e-mail addresses that are in
complains. Then we eliminate duplicates and store the distinct values in $de. For
every customer, we then check if the E-mail address matches an E-mail address
in $de. Note that the check is done by using general comparison
($cust/Email/text() = $de). The result of general comparison is true if some of the
elements in first sequence are equal to some of the elements in the second
sequence.

Example 4-63 Joining XML data

XQUERY
let $e := db2-fn:xmlcolumn('CPL.COMPLAIN')/Complain/ReplyTo/text()
let $de := distinct-values($e)
for $cust in db2-fn:xmlcolumn('XPS.DOC')/Customer
where $cust/Email/text() = $de
return $cust/Name/LastName/text()

results:
Ferrington
Blefari

4.2.3 Updating XML data

You can update an entire or part of XML document stored in DB2 table.

Updating the whole XML document
We use the SQL UPDATE command to update a whole XML document stored in
an XML column. We specify the rows that need to be updated using the SQL
WHERE clause. We continue use the table XPS created in Example 4-2 on
page 81 to show how to change an XML document.
120 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-64 shows the SQL SELECT command you can use to display the
content of the XML document before and after update.

Example 4-64 Content of the XML that will be updated

SELECT doc FROM xps WHERE id = 1;

Example 4-65 shows the SQL UPDATE command that updates the whole XML
document.

Example 4-65 Updating an XML document

UPDATE xps SET doc = XMLPARSE (DOCUMENT (
‘<!-- sample xml file -->
<Customer>

<Name>
<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>
<Address country="US">

<Street>46 Oak Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>
<Phone type="work">987-654-3210</Phone>
<Phone type="home">234-567-8901</Phone>
<Email>sfer@yahoo.com</Email>
<Email>stevef@gmail.com</Email>

</Customer>'))
WHERE id = 1

Updating only a part of an XML document
In Example 4-65 we demonstrated how to update a whole XML document. What
if we need to make changes only in a part of an XML document? For example,
we just want to add a new e-mail address, to update a phone number, or to
change the address. To accomplish partial update on an XML document using
SQL or XQUERY command, you need to retrieve the entire document, modify it,
then use the SQL UPDATE command to replace the document with the modified
version.

Another approach is to create an update stored procedure that is capable of
updating XML documents stored in the database. In the section, we introduce an
as-is XML update stored procedure XMLUPDATE provided by IBM employee
Hardeep Singh. We show how to use this stored procedure to update a part of an
 Chapter 4. Working with XML 121

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
XML documents. For full details and more examples about this stored procedure,
refer to the following Web site:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605singh/

XMLUPDATE stored procedure supports the following partial update functions in
an XML document:

� Change the value of any text or attribute node.
� Insert a new element.
� Replace an element node (along with all its children) with another element.
� Delete a node.

Note that when updating a portion of an XML document with a stored procedure,
DB2 writes the entire XML document back to the database under the cover.

Setup the stored procedure
XMLUPDATE is a Java stored procedure. To install the stored procedure, follow
these steps:

1. Make sure the JCC driver is setup for DB2. Run the following command when
DB2 is up:

db2set DB2_USE_DB2JCCT2_JROUTINE=on

2. Increase the default JAVA heap size to allow serializing XML documents in
memory. It is done with the following command:

db2 update dbm cfg using JAVA_HEAP_SZ 1024

3. Download XMLUPDATE stored procedure jar file from the following Web site:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605sin
gh/

4. Install the stored procedure jar file into DB2 using the following commands:

connect to xmlrb
call SQLJ.INSTALL_JAR('file:///d:/work/db2/db2xmlfunctions.jar',
db2xmlfunctions, 0)

Replace XMLRB with the name of your database, and d:/work/db2 with your
jar file location.

5. Register the stored procedure, as in Example 4-66.

Example 4-66 Registering the stored jar file

CREATE PROCEDURE db2xmlfunctions.XMLUPDATE(
IN COMMANDSQL VARCHAR(32000),
IN QUERYSQL VARCHAR(32000),
IN UPDATESQL VARCHAR(32000),
122 DB2 9 pureXML Guide

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605singh/

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
OUT errorCode INTEGER, OUT errorMsg VARCHAR(32000))
DYNAMIC RESULT SETS 0
LANGUAGE JAVA
PARAMETER STYLE JAVA
NO DBINFO
FENCED
NULL CALL MODIFIES SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME
'db2xmlfunctions:com.ibm.db2.xml.functions.XMLUpdate.Update'

XMLUPDATE procedure parameters
The XMLUPDATE stored procedure has several parameter options. Here we
describe some of the frequently used parameters.

We call the stored procedure using the following command in Example 4-67.

Example 4-67 Calling the stored procedure

DB2XMLFUNCTIONS.XMLUPDATE (commandXML,
querySQL,
updateSQL,
errorCode,
errorMsg)

� commandXML

This is an XML document that describes the update commands. These
commands are applied to the XML document specified by querySQL. The
structure of the commandXML document is:

<update namespaces="name=prefix:namespace">
<update using="SQL" col="column_number" path="XPathExpression">
update value </update>
</updates>

The essential arguments in this XML documents are:

– @col: This is the number of the column being modified in the querySQL

– @path: This is the XPath location of the node in the target XML document

– @action: This is the action to be performed

• replace: replace the target node with update node
• append: append the update value as child to the target node
• delete: delete the target node

– update value: should be a text node or element
 Chapter 4. Working with XML 123

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
� querySQ

This is a valid SQL statement for retrieving XML document to be updated.

� updateSQ

This is a parametrized update SQL statement.

Using XMLUPDATE stored procedure
Suppose that we need to add a new E-mail address for a customer (keeping the
existing ones). Example 4-68 shows how to add a new element in an XML
document using the XMLUPDATE stored procedure.

Look closer at the arguments we submit:

� action=”append”: We add new element.
� col=”1”: We work with the first XML column returned by querySQL.
� path=”/Customer”: The element we add will be child to this element.
� <Email>newEmail@yahoo.com: The new element.
� ‘select doc from xps where id = 1’: Our querySQL.
� ‘update xps set doc = ? where id = 1’: Our updateSQL.

Example 4-68 Adding a new Email element

CALL DB2XMLFUNCTIONS.XMLUPDATE(
'<updates>
<update action="append" col="1" path="/Customer">
<Email>newEmail@yahoo.com</Email>
</update>
</updates>',
'select doc from xps where id=1',
'update xps set doc=? where id=1', ?, ?);

Now change the customer address. Example 4-70 on page 125 shows how to
replace an element in a XML document. Here are the arguments we submit:

� action=”replace”: We replace an element.
� path=”/Customer/Address”: This is the element we are replacing.
� The new element is listed in Example 4-69.

Example 4-69 Modified Address element

<Address>
 <Street>123 Woodstone Road</Street>
 <City>Clinton</City>
 <State>MS</>
 <Zip>39056</Zip>
</Address>
124 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-70 Replacing the Address element

CALL DB2XMLFUNCTIONS.XMLUPDATE(
'<updates>
<update action="replace" col="1" path="/Customer/Address">
<Address>

<Street>123 Woodstone Road</Street>
<City>Clinton</City>
<State>MS</State>
<Zip>39056</Zip>

</Address>
</update>
</updates>',
'select doc from xps where id=1',
'update xps set doc=? where id=1', ?, ?)

In Example 4-71 we demonstrate how to update a text element using the
XMLUPDATE stored procedure. We replace the work phone with a new number.
Here are the parameters we submit:

� action=”replace”: We replace a text.

� path=”/Customer/Phone[@type="work"]/text(): The text we
replace. Please note that we replaced double quote “ with "e; because
we need nested quotes.

� The new phone number: 601-925-1234

Example 4-71 Changing the work phone number

CALL DB2XMLFUNCTIONS.XMLUPDATE(
'<updates>
<update action="replace" col="1"
path="/Customer/Phone[@type="work"]/text()">
601-925-1234
</update>
</updates>',
'select doc from xps where id=1',
'update xps set doc=? where id=1', ?, ?)

4.3 XQuery and SQL/XML

In the previous section we discussed how to work with XML documents (stored in
DB2 XML columns using XQuery. But what to do if we need to access both XML
 Chapter 4. Working with XML 125

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
and relational data? DB2 supports both embedding SQL in XQuery and
embedding XQuery in SQL statements.

4.3.1 XQuery with embedded SQL

DB2 function db2-fn:sqlquery allow us to embed SQL statements in XQuery. It
accepts as an argument an SQL full select statement that must return XML data.
Return to Example 4-60 on page 118, where we display E-mail address or phone
number for each customer. We can replace db2-fn:xmlcolumn function with
db2-fn:sqlquery. The resulting code is shown in Example 4-72.

Example 4-72 Using db2-fn:xmlquery function

XQUERY
for $cust in db2-fn:sqlquery('SELECT DOC FROM XPS')/Customer
let $name := concat($cust/Name/FirstName, " ", $cust/Name/LastName)
let $info := if (exists($cust/Email))

then($cust/Email[last()]/text())
else($cust/Phone[last()]/text())

return (concat($name, " : ", $info));

result:
Steve Ferrington : sfer@yahoo.com
Brad Hunn : 123-678-9012
Domenico Blefari : dom.blefari@yahoo.com

As you can see the results are the same. This is because the SQL select
statement that we use in db2-fn:sqlquery function returns the same data as the
db2-fn:xmlcolumn function used in Example 4-60 on page 118. The power of
db2-fn:sqlquery function is that we can utilize all of the features of SQL SELECT
statement.

Let us suppose that instead of contact information for every customer, we only
need contact information of a customer with specific ID number. The ID field is
not stored in the XML document, we can access the data using SQL statement
instead of from the FLWOR expression. Using db2-fn:sqlfunction allows us to put
this restriction in the WHERE clause of the SQL SELECT statement. In
Example 4-73, by embedding SQL in XQuery, we combine XML and relational
predicates.

Example 4-73 Combining XML and rational predicates

XQUERY
for $cust in db2-fn:sqlquery('SELECT doc FROM xps WHERE id=1')/Customer
let $name := concat($cust/Name/FirstName, " ", $cust/Name/LastName)
let $info := if (exists($cust/Email))
126 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
then($cust/Email[last()]/text())
else($cust/Phone[last()]/text())

return (concat($name, " : ", $info));

result:
Steve Ferrington : stevef@gmail.com

Note that in the embedded SQL statement, we are not limited only to the table
containing the XML column we are retrieving. In Example 4-74 we retrieve the
names of all customers that have complaints.

Example 4-74 Retrieving customers with complaints

XQUERY
for $cust in db2-fn:sqlquery('SELECT doc FROM xps
WHERE EXISTS (SELECT case_id FROM cpl WHERE cust_id = id)')/Customer
return $cust/Name/LastName/text();

results:
Ferington
Blefari

4.3.2 SQL/XML

SQL/XML is part of XML language. It defines XML data type and a set of
functions for querying, constructing, validating, and transforming XML data.
Some of the most often used SQL/XML functions supported in DB2 are
XMLQUERY, XMLTABLE, and XMLEXISTS. These functions allow us to embed
XQuery expressions in SQL. For a complete list of SQL/XML functions, refer to
DB2 manual SQL Reference, Volume 1, SC10-4249 and SQL Reference,
Volume 2, SC10-4250.

XMLEXISTS predicate
The XMLEXISTS predicate determines whether an XQuery expression returns a
sequence of one or more elements. If the specified XQuery expression returns
an empty sequence, XMLEXISTS returns false, otherwise it returns true.

In Example 4-75, we demonstrate the XMLEXISTS predicate. It is commonly
used in the WHERE clause to express predicates over XML data. Here we
display IDs of all customers that have an e-mail address.

Example 4-75 Using XMLEXISTS function

SELECT id
FROM xps
 Chapter 4. Working with XML 127

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
WHERE XMLEXISTS('$d/Customer/Email' passing xps.doc as "d");

results:
1
3

In the XPS table, If you want to see the customer ID of an customer whose first
name is "Brad", the query in Example 4-76 returns what you want.

Example 4-76 Selecting customer ID of a specific customer

SELECT XPS.ID FROM XPS
WHERE xmlexists('$i/Customer/Name[FirstName = "Brad"]' passing XPS.DOC
as "i");

Result:
ID

2

1 record(s) selected.

Example 4-77 shows an intuitive way of coding query to get customer ID of
customer Brad. This query returns all the customer ID in the table and is not what
is expected.

Example 4-77 Query returns more values

SELECT XPS.ID FROM XPS
WHERE XMLEXISTS('$i/Customer/Name/FirstName = "Brad"' PASSING XPS.DOC
AS "i");

Result:
ID

1
2
3

3 record(s) selected.

XMLEXISTS function tests the existence of XML values and returns TRUE and
FALSE. The function returns FALSE only if an the XQuery in XMLEXISTS
returns empty sequence. Otherwise, it always returns TRUE. As shown in
Example 4-78, the expression Customer/Name/FirstName="Brad" returns TRUE
128 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
or FALSE, not sequences. When this expression is used in XMLEXITS function,
the function returns TRUE. The condition meets and DB2 returns all customer
IDs in the table.

Example 4-78 XQuery returns TRUE

XQUERY for $i in db2-fn:xmlcolumn('XPS.DOC')
/Customer/Name/FirstName = "Brad"
return $i;

Results:
1

true

1 record(s) selected.

XMLQUERY function
XMLQUERY is an SQL function that allows you to execute XQuery expressions
within SQL statement. XMLQUERY function returns a sequence.

In Example 4-79 we introduce XMLQUERY function. It is typically used in
SELECT clause to extract data from XML column. Here we look for all customers
having zip code equal to 95030. In addition to the ID we also display the last
name, extracting it from the XML data.

Example 4-79 Using XMLQUERY function

SELECT id, XMLQUERY('for $ln in $d/Customer/Name/LastName/text()
return $ln'
passing xps.doc as "d")

FROM xps
WHERE XMLEXISTS('$d/Customer/Address/Zip[text()="95030"]'

passing xps.doc as "d");

results:
1 <LastName>Ferrington</LastName>
2 <LastName>Hunn</LastName>

Please note that the type of the column containing the last name is XML. In
Example 4-80 we use XMLCAST to cast the XML value to VARCHAR(20).

Example 4-80 Using XMLCAST to convert results from XMLQUERY

SELECT id, XMLCAST(
XMLQUERY('for $ln in $d/Customer/Name/LastName/text()
 Chapter 4. Working with XML 129

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
return $ln'
passing xps.doc as "d") AS VARCHAR(20))

FROM xps
WHERE XMLEXISTS('$d/Customer/Address/Zip[text()="95030"]'

passing xps.doc as "d");

results:
1 Ferrington
2 Hunn

XMLTABLE function
XMLTABLE is an SQL/XQL function that returns a table from XQuery
expression. XQuery expressions return sequence of values. However,
XMLTABLE function allows you to execute an XQuery expression and to have
the return values as a table. The table that is returned can contain columns of
any SQL type, including XML.

In Example 4-81 we use XMLTABLE function to retrieve multiple XML element
values: customer first name, last name, and zip code.

Example 4-81 Using XMLTABLE function

SELECT id, firstname, lastname, zipcode
FROM xps, XMLTABLE(

'for $cust in $d/Customer
return $cust' passing xps.doc as "d"

COLUMNS firstname VARCHAR(20) path 'Name/FirstName/text()',
 lastname VARCHAR(20) path 'Name/LastName/text()',
 zipcode VARCHAR(10) path 'Address/Zip/text()')

as nameszip

results:
1 Steve Ferrington95030
2 Brad Hunn 95030
3 DomenicoBlefari95134

XMLTABLE generates tabular output from XML data. It is very useful for
providing us with a relational view of XML data.

Suppose that we need to filter the results from Example 4-81 on page 130 in
order to display data only for customers with the zip code 95030. We can put the
restriction in two different places:

� In the WHERE clause of the SQL statement
� in the XQUERY used in the XMLTABLE function call
130 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
In Example 4-82 we show how to filter results using the WHERE clause.

Example 4-82 Filtering results using WHERE clause

SELECT id, firstname, lastname, zipcode
FROM xps, XMLTABLE(

'for $cust in $d/Customer
return $cust' passing xps.doc as "d"

COLUMNS firstname VARCHAR(20) path 'Name/FirstName/text()',
lastname VARCHAR(20) path 'Name/LastName/text()',
zipcode VARCHAR(10) path 'Address/Zip/text()')

as nameszip
WHERE zipcode = '95030'

results:
1 Steve Ferrington 95030
2 Brad Hunn 95030

In Example 4-83 we show how to filter results inside XQUERY code.

Example 4-83 Filtering XQUERY

SELECT id, firstname, lastname, zipcode
FROM xps, XMLTABLE(

'for $cust in $d/Customer[Address/Zip/text()="95030"]
return $cust' passing xps.doc as "d"

COLUMNS firstname VARCHAR(20) path 'Name/FirstName/text()',
lastname VARCHAR(20) path 'Name/LastName/text()',
zipcode VARCHAR(10) path 'Address/Zip/text()')

as nameszip

results:
1 Steve Ferrington 95030
2 Brad Hunn 95030

Joining XML with relational data
SQL/XML is very suitable when you need to join XML data with relational data. In
Example 4-84 we create a simple TRTIME with no XML data type column. The
TRTIME table stores the delivery days needed for a zip code. Three records are
inserted into the this table.

Example 4-84 Creation of TRTIME table

CONNECT TO xmlrb;
CREATE TABLE trtime (zip_code CHAR(10),

duration INTEGER);
 Chapter 4. Working with XML 131

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
INSERT INTO trtime (zip_code, duration) VALUES
('95030', 5), ('95035', 4), ('95134', 3);

To produce a list of all the customers and the delivery days required, we use the
zip code to join these two tables. In TRTIME, the zip code is in a relational
column and in XPS, the zip code is in an XML document.

Example 4-85 Joining relational and XML data

SELECT fname, lname, duration
FROM trtime, xps, XMLTABLE ('for $c in $a/Customer return $c'

passing xps.doc as "a"
COLUMNS

fname varchar (20) path 'Name/FirstName',
lname varchar (20) path 'Name/LastName',
zip varchar(10) path 'Address/Zip') as T

WHERE trtime.zip_code = zip

result:
Steve Ferrington 5
Brad Hunn 5
Domenico Blefari 3

Aggregating and grouping XML data
SQL/XML can be used for grouping and aggregating XML data. There is no
explicit group-by construction in XQuery and usually it is easier to use SQL/XML
for grouping. Topically we use the XMLTABLE function and GROUP BY clause.

If we want to display the number of customers by zip code, we can use the
XMLTABLE function to extract the zip code and then use GROUP BY to count
the number of customers, as shown in Example 4-86.

Example 4-86 Using SQL/XML for grouping XML data

SELECT zip, sum(1)
FROM xps, XMLTABLE ('$a/Customer/Address/Zip' passing doc as "a"

COLUMNS zip varchar(10) PATH 'text()') as T
GROUP BY zip

result:
95030 2
95134 1
132 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
4.3.3 When to use what

With the full support for both SQL an XQuery, DB2 9 gives you several options for
querying XML data. Very often you will have to choose which one of them to use.
In this section we describe available options and try to highlight their pros and
cons.

In DB2, you can query XML data in four different ways using:

� Plain SQL
� SQL/XML
� XQuery
� XQuery with embedded SQL

Please note that whatever combination of SQL and XQuery is used DB2 uses a
single hybrid compiler to generate and optimize an execution plan for the whole
query.

Plain SQL
Using plain SQL you can only work with full XML documents. It can be used to
insert, update, or delete XML documents. When you retrieve a full XML
document using plain SQL, your selection of the document has to be based only
on relational (non-XML) data.

SQL/XML
SQL with embedded XQuery provides more functionality than all other methods
of querying XML data. It allows you to use predicates on both relational and XML
data, to access and extract fragments of XML data, to use aggregation and
grouping of XML data on SQL level, to join relational and XML data, to pass
parameters to XQuery expressions.

XQuery
XQuery is a language specifically designed for querying XML data. It is very
suitable if you need to work with XML data only. You can easily extract, transform
and join XML data using XQuery.

XQuery with embedded SQL
Embedding SQL to XQuery allows you to use predicates based on non XML
data. This way you can filter documents from an XML column that are processed
by XQuery. Additional functionality that you receive is to call external functions on
the XML columns. You can also execute full text search on XML data.

Because SQL/XML is the extension of pure SQL, every thing you can do with
SQL can also be done with SQL/XML. The same way XQuery with embedded
 Chapter 4. Working with XML 133

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
SQL is the extension of XQuery so everything you can do with XQuery can also
be done using XQuery with embedded SQL.

Features supported by different languages
In Table 4-23 we list several important features that you might need to use while
working with XML data. We also show the level of support that different options
provide for these features.

Table 4-23 Features supported by different languages

Feature SQL SQL/XML XPath XPath w/ SQL

Insert, update, delete XML
documents

++ ++ -- --

Retrieve full XML documents ++ ++ ++ ++

Retrieve parts of XML
documents

-- ++ ++ ++

Transform XML data -- +/- ++ ++

Use relational predicates ++ ++ -- +

Use XML predicates -- ++ ++ ++

Join XML data -- + ++ ++

Join XML with relational data -- ++ -- ++

Aggregate and group XML data -- ++ +/- +/-
134 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Legends used in the table are:

� ++ Indicates that the feature is fully supported by the language.

� + Indicates that the feature is supported. However, using another language
might be easier and more efficient.

� +/- Indicates that feature could be expressed but it is difficult and inefficient.

� -- Indicates that the feature is not supported.

Following are some guidelines for choosing languages to perform the required
activities:

� Insert, update, and delete XML documents

INSERT, UPDATE, and DELETE statements can be used to insert, update,
or delete XML documents. If we can identify needed documents without
accessing XML data, SQL is enough. Otherwise, we need to use SQL/XML.

� Retrieve full XML documents

All four languages support retrieval of full XML documents. If the identifying
the needed document is based only on relational data, we can use SQL. If it is
based only on XML data, we can use XQuery. If we need to use both
relational and XML data to identify needed documents, we have to use
SQL/XML or XQuery with embedded XQL.

� Retrieve parts of XML documents

Both SQL/XML and XQuery can be used for retrieving parts of XML
document.

� Transform XML data

The easiest way is to use XQuery. It can be done also with SQL/XML but is
usually more difficult to code.

� Use relational predicates

Plain XQuery does not support relational predicates. You need to embed SQL
in XQuery or just use SQL or SQL/XML.

� Use XML predicates

Plain SQL does not support them. You need to use SQL/XML or XQuery.

Call external functions ++ ++ -- ++

Pass parameter markers + ++ -- --

Execute full text search + ++ -- ++

Feature SQL SQL/XML XPath XPath w/ SQL
 Chapter 4. Working with XML 135

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
� Join XML data

The easiest way is to use XQuery. It can be done with SQL/XML but usually is
more difficult to code.

� Join XML with relational data

Both SQL/XML and XQuery with embedded SQL can be used.

� Aggregate and group XML data

The easiest way is to use SQL/XML and integrated SQL functions.
Aggregating and grouping XML data can be done with XQuery with
embedded SQL but is more difficult to code.

� Call external functions

XQuery is the only one not support external function call.

� Pass parameter markers

XQuery is the only one not support parsing parameter markers.

4.4 When and how to use namespaces

In this section, we discuss how to work with namespaces in XQuery. We also
describe some of the DB2 XQuery built-in functions related to namespaces.

Namespaces in XML
XML namespaces are defined to avoid naming conflicts. Elements from different
documents can have the same name, but completely different content. In this
section, the example we use is an Address element for storing customer address
information. The structure of the Address element with some sample data is
shown in Example 4-87.

Example 4-87 Address element containing customer address

<Address country="US">
<Street>46 Oak Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>

It is possible that in another XML document an element named Address is used
to store an IP address of a system. In Example 4-88 on page 137 we show such
an element.
136 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-88 Address element containing IP address

<Address>123.123.123.123</Address>

There will be a naming conflict if we want to use both Address elements in a
single document. This conflict can be avoided by using namespaces.

Namespace declaration
A namespace is defined by associating a prefix to a unique Uniform Resource
Identifier (URI). Then this prefix can be used to define elements names. The full
prefixed name is known as a qualified name or QName. It consists of two parts:
prefix, known as the namespace prefix; and the element name, known as local
name.

In Example 4-89, we define two namespaces. The URI for the first one is
http://first.sample.address.space.com and the URI for the second one is
http://second.sample.address.space.com. Note that XML interprets URIs as
strings and the URLs do not need to point to real locations.

Example 4-89 Definition of namespaces

<sample xmlns:fns="http://first.sample.name.space.com"
xmlns:sns="http://second.sample.name.space.com">

<fns:Address fns:country="US">
<fns:Street>46 Oak Street</fns:Street>
<fns:City>Los Gatos</fns:City>
<fns:State>CA</fns:State>
<fns:Zip>95030</fns:Zip>

</fns:Address>
<sns:Address>

123.123.123.123
</sns:Address>

</sample>

We use the xmlns attribute to define a namespace and to bind its prefix to a URI.
Then we indicate that an element belong to that namespace by prefixing it.

We can define a default namespace. It will be applied to all elements that are
without a prefix and appear within the element containing the declaration of the
default namespace. Example 4-90 shows the use of a default namespace.

Example 4-90 Using default namespace

<sample xmlns="http://first.sample.name.space.com"
xmlns:sns="http://second.sample.name.space.com">

<Address fns:country="US">
 Chapter 4. Working with XML 137

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
<Street>46 Oak Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95030</Zip>

</Address>
<sns:Address>

123.123.123.123
</sns:Address>

</sample>

Here we define http://first.sample.name.space.com to be the default namespace.
Note that we do this by not specifying any prefix. It is the default namespace for
the sample element and all of its descendant elements. If any element is defined
without a prefix, it belongs to the default namespace. In our example these
elements are: sample, Address (first occurrence), Street, City, State, Zip. The
second Address element is prefixed by sns and it belongs to the other
namespace we defined, http://second.sample.name.space.com.

We can use namespaces not only with element names, but also with attribute
and function names. Note that default namespace does not apply to attribute
names. If an attribute name has no prefix, it does not belong to any namespace.
In Example 4-90 on page 137, if we omit the fns prefix of country attribute of
Address element, it will not belong to any namespace.

Predeclared namespaces
There is a set of predeclared namespaces in DB2. You can use their prefixes
directly in your code without any explicit declaration. Table 4-24 lists these
namespaces. Note that the URI associated with the xml prefix cannot be
redefined.

Table 4-24 Predeclared namespaces

Prefix URI Description

xml http://www.w3.org/XML/1998/namespace XML reserved namespace

xs http://www.w3.org/2001/XMLShema XML schema namespace

xsi http://www.w3.org/XMLShema-instance XML schema instance
namespace

fn http://www.w3.org/2005/xpath-functions Default function namespace

xdt http://www.w3.org/2005/xpath-datatypes XQuery type namespace

db2-fn http://www.ibm.com/xmlns/prod/db2/functions DB2 functions namespace
138 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Using namespaces with XQuery
In addition to the DB2 predeclared namespaces, we can define namespaces in
the query prolog. Both namespace declaration and default namespace
declaration are supported. The namespaces defined in the XQuery prolog can be
used anywhere in the XQuery body. In Example 4-91 we show an XQuery
containing namespace declaration in its prolog.

Example 4-91 Declaration of an XML namespace in XQuery prolog

declare namespace fns = "http://first.sample.name.space.com";

During the query processing, XQuery expands the QNames and replaces the
namespace prefix with the URI that is bound to it. Two QNames are equal if both
their local names and namespace URLs are equal.

XQuery built-in QName and namespace functions
DB2 supports several built-in functions for working with QNames and
namespaces. We demonstrate some of these functions using the sample XML
document shown in Example 4-92. We create a table and store this document so
we are able to use it in all our examples.

Example 4-92 ns-sample.xml document

CONNECT TO xmlrb;
CREATE TABLE nss(id INTEGER NOT NULL, doc XML);
INSERT INTO nss (id, doc) VALUES (1, XMLPARSE (DOCUMENT
'<sample xmlns="http://namespace.sample.com/one"

xmlns:two="http://namespace.sample.com/two">
<eone>

this is in default namespace
</eone>
<two:eone anoone="nons" two:atwo="nstwo">

this is in namespace two
</two:eone>

</sample>'));

Local-name, name, and namespace-uri functions
The fn:local-name function returns the local name of a node. The name function
returns the prefix and local part of a node name. The namespace-uri function
returns the namespace URI of the node QName. In Example 4-93 on page 140,
we use these functions to display the local names, QNames, and namespace
URIs of all element and attribute nodes from the ns-sample.xml document.
 Chapter 4. Working with XML 139

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Example 4-93 Using Local-name, name, and namespace-uri functions

XQUERY
let $d := db2-fn:sqlquery('SELECT doc FROM nss WHERE id = 1')
for $e in $d//element()
return
<element>

{fn:local-name($e), fn:name($e), fn:namespace-uri($e)}
</element>;

result:
<element>
sample sample http://namespace.sample.com/one
</element>
<element>
eone eone http://namespace.sample.com/one
</element>
<element>
eone two:eone http://namespace.sample.com/two
</element>

XQUERY
let $d := db2-fn:sqlquery('SELECT doc FROM nss WHERE id = 1')
for $e in $d//attribute()
return
<attribute>

{fn:local-name($e), fn:name($e), fn:namespace-uri($e)}
</attribute>;

result:
<attribute>
anoone anoone
</attribute>
<attribute>
atwo two:atwo http://namespace.sample.com/two
</attribute>

Note that there is no namespace URI for the anoone attribute because the
default namespace is not applied for the attributes.

The in-scope-prefixes function
This function returns a list of all prefixes that are in scope for a given element. In
Example 4-94 on page 141 we use the in-scope-prefixes function to display all
prefixes that are in scope for the sample element from ns-sample.xml document.
140 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-94 Using in-scope-prefixes function

XQUERY
declare default element namespace "http://namespace.sample.com/one";let
$d := db2-fn:sqlquery('SELECT doc FROM nss WHERE id = 1')
return fn:in-scope-prefixes ($d/sample);

result:

xml
two

The result includes three prefixes. The xml prefix is always in-scope. If there is a
default namespace, it is presented with a string with length zero. In the result, it is
the first record.

QName and node-name functions
The QName function returns an expanded name (of xs:QName type) that is
constructed from a namespace URI and a string that contains a lexical QName.
In Example 4-95 we show how to use QName function. The returned value is an
xs:QName value with namespace URI of "http://sample.name.space.com", a
prefix of "sampleprefix", and local name "localname".

Example 4-95 Using QName function

XQUERY
fn:QName ("http://sample.name.space.com", "sampleprefix.localname");

result:
sampleprefix.localname

The node-name function returns the expanded name (of xs:QName type) for the
given node of an XML document.

local-name-from-QName and namespace-uri-from-QName functions
The local-name-from-QName function returns the local part of an xs:QName
value. The namespace-uri-from-QName function returns the namespace URI
part of an xs:QName value. In Example 4-96, we demonstrate the use of these
two functions. We display the local names and the namespace URIs for all
elements in the ns-sample.xml document.

Example 4-96 Using local-name-from-QName and namespace-uri-from-QName

XQUERY
let $d := db2-fn:sqlquery('SELECT doc FROM nss WHERE id = 1')
for $e in $d//element()
 Chapter 4. Working with XML 141

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
return
<element>

{fn:local-name-from-QName(fn:node-name($e)),
 fn:namespace-uri-from-QName(fn:node-name($e))}

</element>;

result:
<element>
sample http://namespace.sample.com/one
</element>
<element>
eone http://namespace.sample.com/one
</element>
<element>
eone http://namespace.sample.com/two
</element>

4.5 Getting XML data in and out of database

DB2 supports XML as an internal data type. You can define a column as XML
data type when creating a table. XML document stored in the column can be
accessed like data defined as other data type such as integer using INSERT,
UPDATE, DELETE, and SELECT statements.

Inserting XML data
Using SQL INSERT statement to insert data into an XML column is as simple as
insert other data type into a relational table column. The value to be inserted can
be retrieved from an exiting XML data in another table or created using XML
constructor or publishing functions. In Example 4-97, we retrieve an XML
document from an XML column and insert it into another XML column.

Example 4-97 Inserting XML data from another table

INSERT INTO nss (id, doc)
VALUES (101, (SELECT doc FROM xps WHERE id = 1));

In Example 4-98, we use XML publishing functions to construct the XML value
then insert it into an XML column.
142 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-98 Inserting XML data using constructed data

INSERT INTO nss (id, doc)
VALUES (102, XMLDOCUMENT(XMLELEMENT(name "Test", 'Test Element')));

Another option of preparing XML data to be inserted into an XML column is using
a string representation of an XML document. In any case, DB2 ensures that
provided value is a well-formed XML document.

XML parsing
XML parsing is the process of transforming XML data from the string
representation to a hierarchical (tree-like) format. Parsing can be implicit or
explicit. XMLPARSE function is used to explicitly check the correctness of an
XML value in an SQL statement. If an XMLPARSE function is not specified in an
INSERT statement, it will be used implicitly to make sure that the provided value
is a well-formed XML document. In Example 4-99, we show the INSERT
statement with and without explicit call to XMLPARSE function.

Example 4-99 Implicit and explicit parsing

INSERT INTO nss (id, doc) VALUES (103,
'<sample>with no explicit parsing</sample>');

INSERT INTO nss (id, doc) VALUES (104, XMLPARSE (DOCUMENT
'<sample>with explicit parsing</sample>'));

The syntax of the XMLPARSE function is:

XMLPARSE (DOCUMENT <string value> [PRESERVE|STRIP WHITESPACE])

XMLPARSE provides two options to control whitespace processing:

� STRIP WHITESPACE: Removes the extra whitespace. This is the default
option.

� PRESERVE WHITESPACE: Preserves the whitespace in the string value.

In Example 4-100, we illustrate the use of PRESERVE WHITESPACE and
STRIP WHITESPACE. The XML document we insert with each of these options
contain several spaces that are kept or deleted depending of the option for
WHITESPACE we provide.

Example 4-100 PRESERVE and STRIP WHITESPACE options

INSERT INTO nss (id, doc) VALUES (105, XMLPARSE (DOCUMENT
'<sample> </sample>' PRESERVE WHITESPACE));
INSERT INTO nss (id, doc) VALUES (106, XMLPARSE (DOCUMENT
'<sample> </sample>' STRIP WHITESPACE));
 Chapter 4. Working with XML 143

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
XQUERY db2fn-sqlquery('SELECT doc FROM nss WHERE id = 105');
XQUERY db2fn-sqlquery('SELECT doc FROM nss WHERE id = 106');

results:
<sample>
</sample>

<sample/>

XML validation
XML validation is the process of checking whether the structure, data types, and
content of an XML document are valid. XML validation also adds type
annotations to XML elements, attributes, and values. It also strips off ignorable
whitespace in an XML document. The ignorable whitespace is whitespace that
can be eliminated from an XML document. The XML schema document
determines which whitespace is ignorable whitespace.

XMLVALIDATE function is used to validate an XML document against a schema
document. The schema defines the structure of the XML document including
node types, default values, multiple occurrences, and so on. Before using a
schema document, it has to be registered (see 5.2, “Schema management” on
page 198 for more details). Example 4-101 shows the use of the XMLVALIDATE
function.

Example 4-101 Validating XML document using XMLVALIDATE function

INSERT INTO nss (id, doc) VALUES (105, XMLVALIDATE (XMLPARSE (DOCUMENT
'<sample>with explicit parsing</sample>')
ACCORDING TO XMLSCHEMA ID schemaid))

Here we suppose that schema ID is a registered XML schema. If we pass as an
argument a value of character data type, it will be implicitly parsed before
validation.

XML encoding
The encoding of XML data can be determined in two ways:

� It can be derived from the data itself, which is known as internally encoded
data.

� It can be derived from external sources, which is known as externally
encoded data.
144 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
The application data type that is used to exchange the XML data between the
application and an XML column determine how the encoding is derived.

� XML data that is in character or graphic application data types is considered
to be externally encoded. XML data that is in these data types is considered
to be encoded in the application code page.

� XML data that is in binary application data type or binary data that is in a
character data type is considered to be internally encoded. With internal
encoding, the content of the data determines the encoding.

DB2 derives the internal encoding from the document content according to the
XML standard. It can be derived from three components:

� Unicode Byte Order Mark (BOM)

BOM is a byte sequence of Unicode character codes. It is in the beginning of
XML data. The BOM indicates the byte order of data followed. DB2
recognizes BOM only for XML data type. For XML data that is stored in a
column of a non XML data type, it is treated as an ordinary data.

� XML declaration

An XML document could contain processing instruction that provides specific
information about the XML data.

� Encoding declaration

It is an optional part of XML declaration that specifies the encoding used in
the document.

Here, we list some encoding considerations for placing XML data to database.

� If you have externally encoded XML data (data sent to the DB2 server using
character data types):

– If its internal and external encoding is not Unicode, be sure that any
internally encoded declaration match the external encoding. Otherwise
DB2 rejects the XML document.

– If both internal and external encoding are Unicode but the encoding
schema does not match, DB2 ignores the internal encoding.

� If you have internally encoded XML data (data sent to the DB2 server using
binary data types):

– The sending application must ensure that data contains correct encoding
information.
 Chapter 4. Working with XML 145

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Shredding XML data into relational tables
DB2 provides a functionallity to decompose or shred XML documents into
columns of relational tables. This feature is very useful when we have or receive
XML data that we need to store in relational tables.

DB2 uses annotated XML schema document to describe decomposition rules.
An XML schema document describes the structure of an XML document. In
annotated schema decomposition the process of decomposition (or shredding) is
controlled by annotations added to the schema. This annotations provide
information such as the name of the target tables and columns the XML data has
to be stored.

In this section, we use a very simple example of annotated schema
decomposition to show all the steps that have to be completed in order to use
this functionallity.

Suppose that we have an XML documents containing data about the time
needed to deliver an order to a given zip code. To shred that XML data into a
relational table, follow these steps.

1. XML data

We need to know what content from the XML document are to be stored store
in relational tables. Example 4-102 shows simple XML file that we want to
shred. We want to decompose and store the information contained in both Zip
and Duration elements.

Example 4-102 XML document to be shredded t.xml

<DeliveryTimes>
<Entry>

<Zip>12345</Zip>
<Duration>2</Duration>

</Entry>
<Entry>

<Zip>23456</Zip>
<Duration>4</Duration>

</Entry>
<Entry>

<Zip>34567</Zip>
<Duration>6</Duration>

</Entry>
</DeliveryTimes>
146 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
2. Tables and columns

Decide the relational tables in which we will shred the XML data. In our
example, we use the TRTIME table defined in Example 4-84 on page 131.
This table has two columns: ZIPCODE and DURATION and we will use them
to store the information from Zip and Duration elements from our XML
document.

3. Schema

We need a schema document that describes the structure of the XML data. In
Example 4-103 shows a schema for the XML file in Example 4-102 on
page 146. This schema describes that the root element of the document is
DeliveryTimes that can contain several Entry elements. Every Entry element
contain a Zip element and Duration element.

Example 4-103 Schema document s.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="DeliveryTimes">
<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">
<xsd:element name="Entry">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Zip" type="xsd:string"/>
<xsd:element name="Duration"

type="xsd:integer"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xs:dsequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

4. Adding annotations to our schema

This step is to describe in which column to store which XML data. It is done by
adding annotations to our schema. In our example, the annotations are very
simple. We describe that Zip element will be stored in ZIP_CODE column of
TRTIME table and that the Duration element will be stored in DURATION
column of TRTIME table. Annotations can be used for describing much more
complex shredding rules. For more information, refer to DB2 XML Guide,
SC10-4254.
 Chapter 4. Working with XML 147

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
In Example 4-104 we show our schema with the added annotations. Please
note that you have to replace the value of <db2-xdb:defaultSQLSchema> with
the DB2 schema you are using.

Example 4-104 Schema document with annotations sa.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">
<xsd:annotation>

<xsd:appinfo>
<db2-xdb:defaultSQLSchema>ADMIN</db2-xdb:defaultSQLSchema>

</xsd:appinfo>
</xsd:annotation>
<xsd:element name="DeliveryTimes">

<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">

<xsd:element name="Entry">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Zip" type="xsd:string"

db2-xdb:rowSet="TRTIME"
db2-xdb:column="ZIP_CODE"/>

<xsd:element name="Duration" type="xsd:integer"
db2-xdb:rowSet="TRTIME"
db2-xdb:column="DURATION"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

5. Registering the schema to DB2 XML Schema Repository (XSR)

DB2 XML Schema Repository is described in more detail in 5.2, “Schema
management” on page 198. We use the command shown in Example 4-105
to register our annotated XML schema and to specify that it will be used for
decomposition.

Example 4-105 Registering sa.xsd schema

REGISTER XMLSCHEMA 'd:/work/db2/sa.xsd'
FROM D:\work\db2\sa.xsd
AS ADMIN.TEST_SHR COMPLETE ENABLE DECOMPOSITION;
148 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
6. Shredding XML data

Now we are ready for shredding. We use DECOMPOSE command as shown
in Example 4-106.

Example 4-106 Shredding s.xml file

DECOMPOSE XML DOCUMENT d:/work/db2/s.xml XMLSCHEMA admin.test_shr

Issuing the command shown in Example 4-107 could check that data from
s.xml file are inserted into TRTIME table.

Example 4-107 Verifying results of decomposition

SELECT * FROM TRTIME

results:
ZIP_CODE DURATION
95030 5
95035 4
95134 3
12345 2
23456 4
34567 6

XML data serialization
XML serialization is the process of converting XML data from its hierarchal
representation in the XQuery and XPath data model to the serialized string
format.

DB2 can perform serialization implicitly or it can be explicitly invoked using the
XMLSERIALIZE function. The most common use of XML serialization is when
transferring XML data from a DB2 server to a DB2 client. Implicit serialization is
often preferred because it is simpler and it is more efficient to send data to the
client as XML data. However under some circumstances, it is better to use
explicit serialization:

� If the XML documents are very large. You may use XMLSERIALIZE to
convert XML data to LOB type. The reason is that there are no XML locators.
After converting to LOB you can use LOB locators.

� If the client does not support XML data type. DB2 server implicit serialization
converts XML data to BLOB (by default) or CLOB. If you need the retrieved
data to be converted to some other data type, you should use explicit
serialization.
 Chapter 4. Working with XML 149

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
The most suitable data type for converting XML data is BLOB because retrieval
of binary data minimizes encoding problems.

XML publishing functions
XML publishing functions are used to construct XML nodes and documents. Both
relational and XML data can be used. Publishing functions are also called
constructor functions.

XMLELEMENT function
This function creates an XML element node. The arguments include an element
name, optional namespace declarations, optional attributes, and zero or more
expressions that are the element’s content. In Example 4-108, we show how to
create an XML element using the XMLELEMENT function. Please note that the
XMLELEMENT function can be nested.

Example 4-108 Using XMLELEMENT function

VALUES (XMLELEMENT (name "Name",
XMLELEMENT (name "FirstName", 'Steve'),
XMLELEMENT (name "LastName", 'Ferrington')));

Result:
<Name>

<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>

XMLATTRIBUTES function
This function creates an attribute node. It can be called only as an argument of
the XMLELEMENT function. In Example 4-109 we demonstrate how to use
XMLATTRIBUTES function to add an attribute gender to Name element. You can
create several attributes using one call to XMLATTRIBUTES function.

Example 4-109 Using XMLATTRIBUTES function

VALUES (XMLELEMENT (name "Name", XMLATTRIBUTES ('MALE' as "gender"),
 XMLELEMENT (name "FirstName", 'Steve'),
 XMLELEMENT (name "LastName", 'Ferrington')))

results:
<Name gender="MALE">

<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>
150 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
XMLFOREST function
This function creates an sequence (forest) of XML element nodes. In
Example 4-110 we use XMLFOREST function to produce the same result as in
Example 4-109 on page 150.

Example 4-110 Using XMLFOREST function

VALUES (XMLELEMENT (name "Name",
XMLATTRIBUTES ('MALE' as "gender"),
XMLFOREST ('Steve' as "FirstName",

'Ferrington' as "LastName")))

results:
<Name gender="MALE">

<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>

XMLDOCUMENT function
This function creates an XML document node. Every XML document stored in an
XML column must have a document node. It contains the root XML element and
optional comments and processing instructions. A document node is not visible
in the serialized string representation of XML. In Example 4-111, we show the
usage of XMLDOCUMENT function. We insert an XML document into NSS table.
Please note that if we omit the XMLDOCUMENT function (and use only
XMLELEMENT function) there will be an error.

Example 4-111

INSERT INTO nss (id, doc) VALUES (999, XMLDOCUMENT(
 XMLELEMENT (name "Name",
 XMLATTRIBUTES ('MALE' as "gender"),
 XMLFOREST ('Steve' as "FirstName",
 'Ferrington' as "LastName"))));

XMLNAMESPACES function
This function creates namespace declarations. It can be called only as an
argument from the XMLELEMENT, XMLFOREST, and XMLTABLE functions. In
Example 4-112, we use the XMLNAMESPACES function to define default
namespace while creating the Name element.

Example 4-112 Using XMLNAMESPACES function

VALUES (XMLELEMENT (name "Name",
XMLNAMESPACES (DEFAULT 'http://sample.default.nspace.com'),
 Chapter 4. Working with XML 151

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
XMLATTRIBUTES ('MALE' as "gender"),
XMLFOREST ('Steve' as "FirstName",

'Ferrington' as "LastName")))))

results:
<Name xmlns="http://sample.default.nspace.com" gender="MALE">

<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>

XMLCONCAT function
This function creates a sequence of variable number of XML input arguments. In
Example 4-113, we use the XMLCONCAT function to produce the same result as
in Example 4-112 on page 151.

Example 4-113 Using XMLCONCAT function

VALUES (XMLELEMENT (name "Name",
XMLNAMESPACES (DEFAULT 'http://sample.default.nspace.com'),
XMLATTRIBUTES ('MALE' as "gender"),
XMLCONCAT(

 XMLELEMENT (name "FirstName", 'Steve'),
 XMLELEMENT (name "LastName", 'Ferrington'))))

Results:
<Name xmlns="http://sample.default.nspace.com" gender="MALE">

<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>

XMLCOMMENT function
This function creates a comment node. We show its usage in Example 4-114.

Example 4-114 Using XMLCOMMENT function

VALUE(XMLELEMENT (name "Name", XMLATTRIBUTES ('MALE' as "gender"),
XMLCOMMENT ('Comment line'),

 XMLELEMENT (name "FirstName", 'Steve'),
 XMLELEMENT (name "LastName", 'Ferrington')))

Result:
<Name gender="MALE">

<!--Comment line-->
152 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>

XMLPI function
This function creates a processing instruction node. We show the usage of
XMLPI function in Example 4-115.

Example 4-115 Using XMLPI function

VALUE(XMLELEMENT (name "Name", XMLATTRIBUTES ('MALE' as "gender"),
XMLPI (name "Instruction", 'Do nothing'),

 XMLELEMENT (name "FirstName", 'Steve'),
 XMLELEMENT (name "LastName", 'Ferrington')))

Results:
<Name gender="MALE">

<?Instruction Do nothing?>
<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>

XMLTEXT function
This function creates a text node. We illustrate its usage in Example 4-116.

Example 4-116 Using XMLTEXT function

VALUE(XMLELEMENT (name "Name",
 XMLELEMENT (name "FirstName", XMLTEXT ('Steve')),
 XMLELEMENT (name "LastName", XMLTEXT ('Ferrington'))))

Results;
<Name>

<FirstName>Steve</FirstName>
<LastName>Ferrington</LastName>

</Name>

4.6 XML full-text search1

DB2 9 hybrid database system provide the powerful feature to store the XML
document natively. The XQuery support allows users to search data with XML
document. However, in XQuery Data Model, text is a node and the XQuery
 Chapter 4. Working with XML 153

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
function offers only simple substring match. For the XML documents contains
significant portions of text, XQuery can’t search the content easily.

DB2 Net Search Extender (NSE) is a full-text search solution providing an
efficient way to search unstructured portions of documents. Using DB2 NSE, a
text search requirement like the following can be performed easily:

...find all XML document with the term ‘pureXML’ in ABSTRACT element, the
phrase ‘DB2 version 9.1’ in the TITLE element where the terms must be in the
same sentence.

4.6.1 DB2 Net Search Extender

DB2 Net Search Extender V9 is enhanced to support the new XML Data Type in
DB2. All existing text search functionality offered by NSE is also available for
natively stored XML documents with DB9. Figure 4-4 illustrates the Net Search
Extender architecture.

Figure 4-4 Net Search Extender architecture

DB2 NSE offers an efficient and intelligent method for searching full-text
document stored in DB2 database using SQL queries. Instead of sequentially
searching through the text data using string matching like the way search is done

1 Portions of this chapter are excerpted from article XML full-text search in DB2 by Holger Seubert and Sabine
Perathoner, originally published in IBM developerWorks , June 2006.
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606seubert/index.html

DB2 client

Application

DB2
server NSE Search

NSE Admin

Search
Engine

Client
Server

Database Text
Indexes

SQL integrated
Stored procedure

User tables

NSE meta data

End User

Internet/Intranet

Net Search Extender

Java, JDBC, C, C++

Admin.

Administration
db2text ...
DB2 Control Center

Table space

filesystem
154 DB2 9 pureXML Guide

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606seubert/index.html

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
with XQuery contain() function, DB2 NSE searches textual data that is stored in
the column of a DB2 database table using a text index which typically consists of
significant terms that are extracted from the text document. With XML data, the
significant terms and their locations in the XML document structure are
maintained in a text index.

DB2 NSE is a separate installed feature that is shipped with DB2 version 9. Its
text search capability is integrated into SQL and optimized by the DB2 optimizer
for run time. NSE administration function can be invoked from DB2 Control
Center to prepare administrative task such as create, update or delete text
indexes.

4.6.2 Preparing the instance for text search

Once the DB2 Net Search Extender is installed, you need to perform four steps
to prepare the DB2 environment for full-text searching on an XML document. You
can use NSE command or GUI interface in DB2 Control Center to perform these
four steps:

1. Starting DB2 Net Search Extender services
2. Enabling the database for full-text search
3. Creating a full-text index
4. Update the previously created full-text index

We walk you through these steps using a simple table defined in Example 4-117.
The COMMENT column stores the customer feedback in XML documents

Example 4-117 Defining FEEDBACK table

CREATE TABLE FEEDBACK ("APPL_ID" INTEGER primary key not null,
"COMMENT" XML);

Example 4-118 shows the five sample customer feedback XML documents.

Example 4-118 Sample data for comment column

---comment1.xml-----
<?xml version="1.0" encoding="UTF-8"?>
<feedback xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\Documents and
Settings\chng1me.T40-92U-V46\IBM\rationalsdp6.0\workspace\aaa\WebConten
t\WEB-INF\feedback.xsd">
 <entry>
 <dateOfEntry> 2005-07-07 </dateOfEntry>
 <rating>4</rating>
 <comment>Excellent on-line application.</comment>
 Chapter 4. Working with XML 155

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
 </entry>
 <entry>
 <dateOfEntry> 2005-09-12 </dateOfEntry>
 <rating>2</rating>
 <comment>I still have not heard from the bank. Not sure the satus
of my application. Slow response time.</comment>
 </entry>
</feedback>

--- comment2.xml -----
<?xml version="1.0" encoding="UTF-8"?>
<feedback xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <entry>
 <dateOfEntry> 2005-08-09 </dateOfEntry>
 <rating>5</rating>
 <comment lan=”en”>Quick approve time.</comment>
 </entry>
</feedback>

--- comment3.xml ---
<?xml version="1.0" encoding="UTF-8"?>
<feedback xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <entry>
 <dateOfEntry> 2005-08-09 </dateOfEntry>
 <rating>5</rating>
 <comment lan=”en”>Good service and quick Response time. I will
recommand to others.</comment>
 </entry>
</feedback>

--- comment4.xml ---
<?xml version="1.0" encoding="UTF-8"?>
<feedback xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <entry>
 <dateOfEntry> 2005-08-16 </dateOfEntry>
 <rating>3</rating>
 <comment lan=”en”>There should be more loan prodcuts.</comment>
 </entry>
</feedback>

--- comment5.xml ---
<?xml version="1.0" encoding="UTF-8"?>
<feedback xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <entry>
 <dateOfEntry> 2005-08-21 </dateOfEntry>
156 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
 <rating>2</rating>
 <comment lan=”en” >The interests rate is too high.</comment>
 </entry>
</feedback>

Example 4-119 shows INSERT statement used to insert five customer
feedbacks.

Example 4-119 SQL statement to insert data into the table FEEDBACK.

INSERT INTO feedback VALUES(100, xmlparse(document'<comment1.xml>'
Preserve whitespace));
INSERT INTO feedback VALUES(200, xmlparse(document'<comment2.xml>'
Preserve whitespace));
INSERT INTO feedback VALUES(300, xmlparse(document'<comment3.xml>'
Preserve whitespace));
INSERT INTO feedback VALUES(400, xmlparse(document'<comment4.xml>'
Preserve whitespace));
INSERT INTO feedback VALUES(500, xmlparse(document'<comment5.xml>'
Preserve whitespace));

Step 1: Starting DB2 Net Search Extender services
Before you can use DB2 NSE, you must start the DB2 NSE instance services.
You can start Net Search Extender instance services by entering the following
command in OS Command Prompt or DB2 Command Window:

DB2TEXT START

All text index administrative task command starts with db2text. If you need the
syntax for text index administrative tasks, you can display a list of db2text
command by issue:

DB2TEXT ?

For syntax of an individual command, you can execute following command:

DB2TEXT ? command

For example:

DB2 TEXT ? alter index

Step 2: Enabling the database for full-text search
After starting Net Search Extender, enable the DB2 database for text search
operations. This step creates necessary administration tables and various User
Defined Functions (UDFs) and Stored Procedures (STPs) that are needed for
 Chapter 4. Working with XML 157

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
full-text search on DB2 data and is executed only once per database. Following
command enables DB2 database XMLRB for text search.

DB2TEXT ENABLE DATABASE FOR TEXT CONNECT TO xmlrb

Step 3: Creating a full-text index
After the database is enabled for text, you can create text indexes on columns
storing textual data in various format. The create index command establishes the
text index infrastructure by defining and declaring the properties for the text
index. In our example, we use a basic text index creation. The create index
command creating a full-text index name ‘ind1’ on the XML documents that are
stored natively in XML column COMMENT within FEEDBACK table is:

DB2TEXT CREATE INDEX ind1 FOR TEXT ON feedback(comment) CONNECT TO xmlrb

Note that CONNECT TO databaseName is required clause in all DB2 NSE
administrative commands unless the database you are enabling for text search is
set in environment variable DB2DBDFT.

Step 4: Update the previously created full-text index
After creation, the text index does not contain any data. You must explicitly
update the index if no update frequency is specified at index creation time. Index
update is the process of adding data to the text index. The initial index update
adds all text documents from the text column to the index and it is typically
executes after you have created a text index. We use the following command to
update index:

DB2TEXT UPDATE INDEX ind1 FOR TEXT CONNECT TO xmlrb

The update text index process can be done automatically or manually. An
automatic index update can be specified as an index attribute during index
creation. It can also be specified after the index has been created using the alter
index command.

Now that we have prepared the DB2 database for full-text search, we are ready
to move on to full-text search with XML data.

4.6.3 Full-text searching using DB2 NSE

The following items are among the basic search criteria that DB2 NSE features:

� Boolean operations for conjunction (AND), disjunction (OR) and exclusion
(NOT) of search terms.

� Proximity search searches for words in the same sentence or paragraph
158 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
� Fuzzy search searches for words with the similar spelling as the search term.

� Wildcard search uses front, middle and end character masking.

Other advanced search features offered by DB2 NSE includes:

� Thesaurus search support for broader queries. It is not only searching for a
specific term, but also the additional terms that are related to it with
user-defined relations.

� Numeric attribute search searches on numeric ranges which could be in
structured document or within additional columns.

� Stemming search is used to reduce the search term to its word stem before
the search is carried out. This is supported for English only.

DB2 NSE also offers section based search with:

� limiting search to XML elements
� limiting search to XML attributes
� support mixed content type of XML element.

Next, we explore each of these in examples.

Search using Net Search Extender CONTAIN() function
The CONTAIN() scalar function searches for text in an XML document indexed
by DB2 NSE. Using the CONTAIN() function is the most commonly used method
for performing full-text search with DB2 NSE where standard SQL would be
used. You can combine it with other conditions in an SQL WHERE clause.

The syntax of CONTAIN() function is as follows:

CONTAIN(column- name, search-argument)

The CONTAIN() scalar function takes two parameters:

� The column-name is the name of a column that must have an associated text
index.

� The search-argument is a string of type VARCHAR containing the terms to be
searched.

CONTAIN() returns the INTEGER value 1 if the document contains the text, or
any relation indicated in the search argument. Otherwise, it returns 0 (zero).
 Chapter 4. Working with XML 159

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Example 4-120 shows how to use the scalar CONTAIN() function to perform
full-text search:

Example 4-120 The scalar CONTAINS() function

SELECT column
FROM table
WHERE CONTAINS(column-name, ‘search-argument’)=1

Text search using SQL and XQuery
Example 4-121 shows a basic text search query that performs a simple text
search on the FEEDBACK table that returns all application id with the term
“good” existing somewhere in the document structure of the comment
information.

Example 4-121 Text searching using SQL Use of NSE function in combination with
XMLQUERY()

SELECT appl_id
FROM feedback
WHERE CONTAINS(comment, ' "good" ')=1

Example 4-122 shows how to use XMLQUERY in a query. The query returns the
“comment” element of the feedback that contains the term “good”.

Example 4-122 Using NSE function in combination with XMLQUERY()

SELECT XMLQUERY('$com//comment' passing comment as "com")
FROM feedback
WHERE CONTAINS(comment, ' "good" ')=1

The query in Example 4-122 can be written in XQuery as shown in
Example 4-123.

Example 4-123 Using text search functionality in XQUERY

XQUERY for $com in db2-fn:sqlquery("select comment from feedback
WHERE CONTAINS(comment, ' "good" ')=1")
return $com//comment

Limiting the result to XML elements or attributes
In DB2 NSE, limiting text search to specific elements or sub-trees of the XML
document is expressed by a fully qualified XPath. This is one of the most
frequently used features for XML full-text search. The XPath indicates the part of
XML document that the search should be carried out.
160 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
DB2 NSE supports the abbreviated XPath location-step syntax, the use of the
child axis(/), and the attribute axis (@). No other XPath expression or functions
are supported.

Example 4-124 shows a query that search for term ‘good’ and ‘service’ that limits
to COMMENT element of the XML document.

Example 4-124 Limit search with XMLQUERY

SELECT XMLQUERY('$com//comment' passing comment as "com")
FROM feedback
WHERE CONTAINS(comment, ' section("/feedback/entry/comment")
("good","service") ')=1

The SECTION clause used as part of the search argument indicates the part
within the XML document where text search occurs. The query in Example 4-124
can be written in XQuery as shown in Example 4-125.

Example 4-125 Limit search with XQuery

XQUERY for $com in db2-fn:sqlquery("select comment from feedback
WHERE CONTAINS(comment, 'section("/feedback/entry/comment")
("good","service") ')=1")
return $com//comment

In addition, text search can be limited to specific XML attributes. Example 4-126
shows how to use the attribute axis in the query.

Example 4-126 Limit search on XML attributes

SELECT XMLQUERY('$com//rating' passing comment as "com")
FROM feedback
WHERE CONTAINS(comment, ' section("/feedback/entry/comment/@lan") "en"
')=1;

Example 4-127 shows searching in different sections can be combined using
AND Boolean operator (&).

Example 4-127 searching with AND Boolean operator

SELECT XMLQUERY('$com//rating' passing comment as "com")
FROM feedback
WHERE CONTAINS(comment, ' section("/feedback/entry/comment/@lan") "en"
& section("/feedback/entry/rating")"5"')=1;
 Chapter 4. Working with XML 161

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
4.6.4 Taking advantage of Net Search Extender text search features

DB2 Net Search Extender offers several other features to define text search
criteria. For instance, with proximity search, you can choose to limit text search
to terms that match only if they occur in the same sentence.

Proximity search
The query in Example 4-128 finds all the application ID of those feedbacks with
the terms “good” and “quick response” not only in the COMMENT element of the
XML document, but also in the same sentence.

Example 4-128 Search for the terms “good” and “quick response” in the same sentence

select appl_id from feedback where
CONTAINS(comment, ' section("/feedback/entry/comment") "good" in same
sentence as "quick response"')=1

There are two constraints in Example 4-128. The first one is “CONTAINS(comment,
' section("/feedback/entry/comment")”. It limits the search in COMMENT
element. The second one is ‘"good" in same sentence as "quick response"o
It searches for terms “good” and “quick response” in the same sentence.

Example 4-129 shows the how to search using tokens instead of phrase.

Example 4-129 Token search

select appl_id from feedback where
CONTAINS(comment, ' section("/feedback/entry/comment") "good" in same
sentence as ("quick", "response")')=1

Boolean operators
Using Boolean operators AND (&), OR (|) and NOT, you can combine different
search terms with other search terms. The Example 4-130 combines several
search terms by using the Boolean operators AND and OR.

Example 4-130 Using Boolean operators AND and OR

select appl_id from feedback where
CONTAINS(comment, ' section("/feedback/entry/comment") "good" & "quick"
| "response" ')=1

The query in Example 4-130 returns application ID of those feedback having
term “good” and “quick” or “response” in the element comment.
162 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Using the Boolean operator NOT, you can exclude particular terms from the
search result. For example, the following query in Example 4-131 searches for
document having the term “good” and “quick” and excluding the term “response”
in the COMMENT element.

Example 4-131 Using Boolean operator NOT

select appl_id from feedback where
CONTAINS(comment, ' section("/feedback/entry/comment") "good" & "quick"
& NOT "response" ')=1

Fuzzy search
This search finds documents that contains the search term spelled in a similar
way to the specified search term. The match level indicates the desired degree of
accuracy. Fuzzy search is normally used when misspellings are possible in the
document. You can specify values between 1 to 100 to show the degree of
accuracy, where 100 is an exact match.

Example 4-132 is a fuzzy search example. The term responce is misspelled
purposefully. In the fuzzy search, a document containing the term responce is
found. The degree of accuracy is 60 in this example.

Example 4-132 Query uses fuzzy search to find similar spelled terms

select appl_id from feedback where
CONTAINS(comment, ' section("/feedback/entry/comment") fuzzy form of 60
"responce" &
"good"')=1

Stemming search
The stemming search is used to search for the stemmed form of a term causes
the term to be reduced to its word stem before the search is carried out. This
form of search is not case-sensitive. Currently, only English stemming is
supported and the word must follow regular inflection endings.

Example 4-133 shows searching for the fuzzy form of the term responce or the
stemmed for of "goody". The stemmed search returns documents have terms
such as good and goods.

Example 4-133 Query uses stemmed search

select appl_id from feedback where
CONTAINS(comment, ' section("/feedback/entry/comment") fuzzy form of 60
"responce" | stemmed form of "goody"')=1
 Chapter 4. Working with XML 163

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
Wildcard search
Wildcard search is also known as character masking search. DB2 NSE uses two
masking characters:

� Percent (%) masks any number of arbitrary character.
� Underscore (_) masks any single character in a search term.

DB2 NSE uses these masking character for wildcard search the same way the
DB2 predicate LIKE uses them.

A sample query using wildcard search in shown in Example 4-134

Example 4-134 Query uses wildcard search

select appl_id from feedback where
CONTAINS(comment, ' section("/feedback/entry/comment") "respon_e" &
"qui%"')=1

4.6.5 Full-text search considerations

One very import aspect of full-text search that we want to emphasize when
performing search within XML documents is: a search result always returns a
complete XML document and not the specific document part or element where
the hit encounters. Considering the query searching for the term ‘Slow’ in
Example 4-135.

Example 4-135 Sample query searches for “Slow” in element comment

SELECT appl_id FROM feedback WHERE CONTAINS(comment, '
section("/feedback/entry/comment") "Slow"')=1

Example 4-135 returns the application ID of those feedbacks containing the term
Slow in the element COMMENT. Example 4-136 is the result of this query.

Example 4-136 Query result

APPL_ID

 100

 1 record(s) selected.
164 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Suppose we want to discern which date the customer of application ID 100
entered the comment with the term Slow in it. Example 4-137 shows the XML
query.

Example 4-137 Searching date that customer enters comment with the term “Slow”

SELECT XMLQUERY('$com//dateOfEntry' passing comment as "com")FROM
feedback WHERE CONTAINS(comment, ' "Slow" ')=1 and APPL_ID=100

Example 4-138 shows the result of the query in the Example 4-137. The result
shows two dates, 2005-07-07 and 2005-09-12. The customer of application ID
100 has multiple entries of comments. He only enters the term Slow” on date
2005-09-12, but both dates 2005-07-07 and 2005-09-12 show up because the
search always returns a complete XML document, as shown in Example 4-138.

Example 4-138 Query result

<dateOfEntry xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
2005-07-07 </dateOfEntry>
<dateOfEntry xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 2005-09-12 </dateOfEntry>

1 record(s) selected.

Example 4-139 shows another way where the query in Example 4-138 can be
written in XQuery. The XQuery also returns both dates 2005-07-07 and
2005-09-12.

Example 4-139 Sample XQuery

XQUERY for $com in db2-fn:sqlquery("select comment from
feedback WHERE APPL_ID=100 and CONTAINS(comment, '
section("/feedback/entry/comment")
stemmed form of "Slow" ')=1") return $com//dateOfEntry

You can use full-text search to filter the documents having the term Slow in the
COMMENT element as shown in Example 4-140. The search returns the
complete XML documents that satisfied the search condition.

Example 4-140 Filter documents

SELECT
XMLQUERY('$com/feedback/entry[contains(comment,"Slow")]/dateOfEntry'
passing comment as "com")FROM feedback WHERE CONTAINS(comment,
'section("/feedback/entry/comment") "Slow"')=1 and APPL_ID=100
 Chapter 4. Working with XML 165

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
The same query as in Example 4-140 on page 165 can be expressed in XQuery
context, as shown in Example 4-141:

Example 4-141 Same query expressed in XQuery

XQUERY for $com in db2-fn:sqlquery("select comment from feedback WHERE
APPL_ID=100 and CONTAINS(comment,
'section("/feedback/entry/comment") "Slow" ')=1")
return $com/feedback/entry[contains(comment,"Slow")]/dateOfEntry

Both queries return the same result, as shown in Example 4-142.

Example 4-142 Filtered result

<dateOfEntry xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 2005-09-12
</dateOfEntry>

XML namespace considerations
When searching XML data, you might encounter XML data that belongs to a
specific nondefault namespace. This is the case where you must use the fully
qualified name when searching in specific elements or sub-trees in the XML
document. A fully qualified name consists of the namespace prefix and element
name.

Example 4-143 shows the elements of the element feedback belongs to a
namespace with prefix itso.

Example 4-143 An XML document with namespace

<?xml version="1.0" encoding="UTF-8"?>
<itso:feedback xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:itso="http://www.itso.org">
 <itso:entry>
 <itso:dateOfEntry> 2005-08-16 </itso:dateOfEntry>
 <itso:rating>3</itso:rating>
 <itso:comment lan="en">There should be more loan
prodcuts.</itso:comment>
 </itso:entry>
</itso:feedback>

Example 4-144 on page 167 shows a query that returns no result because the
path in the query is not fully qualified.
166 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-144 Example of a query returns no result.

select appl_id from feedback where CONTAINS(comment, '
section("/feedback/entry/comment") "loan"')=1

Example 4-145 shows a query that returns application ID because the path in the
query is fully qualified.

Example 4-145 Example of a query that returns result.

select appl_id from feedback where CONTAINS(comment, '
section("/itso:feedback/itso:entry/itso:comment") "loan"')=1

4.6.6 The NSE document model

Net Search Extender uses a document model to configure the scope of search
within structured documents such as XML. The document model defines what
information is indexed, how that information is indexed and by what name you
can refer to that information. When creating a text index, you can either use the
default document model or supply a custom document model.

Characteristics of the default document model:

� All part of the document are indexed
� Search can be refined using XPath syntax
� Numeric values are not supported

Characteristics of a custom document model:

� Define which parts of the XML document are indexed and which parts are
excluded.

� Give custom names to parts of the XML document (sub-trees, elements or
attributes).

� Define an XML element or attribute to be a numeric value allowing for
parametric searching.

An NSE document model is itself an XML document. Example 4-146 is a custom
document model.

Example 4-146 model.xml

<XMLModel>
 <XMLFieldDefinition name="comment" locator="/feedback/entry/comment"
/>
 Chapter 4. Working with XML 167

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
 <XMLAttributeDefinition name="rating" type="NUMBER"
locator="/feedback/entry/rating"/>
</XMLModel>

XMLModel
XMLModel is the top-level element. Two XML child elements are allowed for
XML Model: XMLFieldDefinition and XMLAttributeDefinition.

XMLFieldDefinition
This element defines the custom name for the specific part, element or attribute
of the XML document that is identified by the ‘locator’ attribute.

XMLAttributeDefinition
This element defines an NSE attribute based on an XML element or attribute.
This attribute can be defined as being of type NUMBER, which allows for
numeric operations and ranges to be used during searches.

Locator attribute
The locator attribute is an XPath expression that defines the part of the
document that should be indexed. The following subset of XPath expressions are
supported for the locator attribute:

� Child axis (/)
� descendent-and-self axis(//)
� attribute axis (@)
� wildcards (*)
� comment node (comment())
� processing-instruction node (processing-instruction())
� union of elements (A | B)

Example 4-147 is an example of possible locator attribute values

locator=”/feedback/entry/@lan”
locator=”/feedback/entry/*”
locator=”//comment”
locator=”/feedback/entry/rating”

Name attribute
The name attribute defines the name that can be used to refer to the part of the
XML document identified by the locator attribute. There are three special values
that can be used to automatically generate a name value:.
168 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
� name=”$(NAME) “

Represents the qualified name of the XML element or attribute that is
identified by the locator attribute. this would include any namespace
associated with the data.

� name=”$(LOCALNAME)”

Represents the locale name (no namespace) of the XML element that is
identified by the locator attribute.

� name=”$(PATH)”

Represents the absolute path to the XML element or attribute identified by the
locator attribute. This is equivalent to the value returned from the locator
XPath expression.

Type attribute
The ‘type’ attribute can only be used with the XMLAttributeDefinition element.
The only value allowed is “NUMBER”. Using this attribute specifies that the
underlying data of the XML document can be considered numeric and allows for
parametric search of this data.

Default document model
Given the characteristics of the NSE document model format, the default
document model can be defined as:

<XMLModel>
<XMLFieldDefinition name=”$(PATH)” locator=”*” />
</XMLModel>

This document model single definition matches everything with its ‘locator’
attribute and uses a special value for the name attribute to index every match
returned by the locator attribute. The end result is that everything in the
document is indexed by its corresponding XPath value.

Using a custom document model
After you have created a custom document model, you can use it when creating
a new index. Example 4-148 shows creating a new index using a custom
document model file model.xml Example 4-146 on page 167.

Example 4-148 Create index with a custom document model

db2text create index ixd2 for text on feedback(comment) format xml
documentmodel XMLModel in C:\model.xml connect to databaseName;
 Chapter 4. Working with XML 169

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
You must update the index ixd2 before you can use it. Example 4-149 shows the
update command.

Example 4-149 Update index ixd2.

DB2TEXT UPDATE INDEX ixd2 FOR TEXT CONNECT TO databaseName

The document model parameter specifies the root element and the location of
the file. The document model file is only used during the creation of the index, so
any later changes to the file would have no affect on existing indexes.

Searching with a custom document model
When you have created an index with your custom document model and updated
it, you can begin searching the document using your custom rules.

The part of the document where searching can occur is specified by the name
attribute as defined in the document model. Any parts of the document not
specified by the document model are not indexed and thus cannot be searched.

Example 4-150, when using the document model described earlier, the following
query returns a result: The comment in the function section is defined in
Example 4-146 on page 167.

Example 4-150 query returns result

SELECT appl_id FROM feedback WHERE
CONTAINS(comment, ' section("comment") "bank"')=1

However, the next query will not return any results even though it references the
same part of the document. Example 4-151 shows the query by using path. This
is because the document model explicitly states only those names that are valid
for searching.

Example 4-151 query returns no result.

SELECT appl_id FROM feedback WHERE
CONTAINS(comment, ' section("/feedback/entry/comment") "bank"')=1

Parametric search
If you define elements using the XMLAttributeDefinition in the document model to
be numeric, parametric search is possible. Example 4-152 on page 171 shows a
query that searches by using values specified by the name attribute “rating” as
defined in the document model. The query searches for the application ids that
have rating between 0 and 6.
170 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch04.fm
Example 4-152 Sample parametric search query

SELECT appl_id FROM feedback WHERE
CONTAINS(comment, ' ATTRIBUTE "rating" BETWEEN 0 AND 6')=1
 Chapter 4. Working with XML 171

7315ch04.fm Draft Document for Review December 29, 2006 1:50 pm
172 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Chapter 5. Managing XML data

In this chapter, we discuss how to manage XML data stored in XML column. We
introduce the pureXML index features and how to use the XML indexes to gain
the performance of XQuery or SQL/XML. We cover schema management, then
we introduce how to move data, including XML documents, in and out tables
using DB2 9 IMPORT and EXPORT utilities. We also cover how RUNSTATS
work with pureXML features. Finally, we describe some security solutions
corresponding to pureXML features.

In this chapter, we discuss the following topics:

� XML Index
� Schema management
� IMPORT, EXPORT, and RUNSTATS
� Security

5

© Copyright IBM Corp. 2006. All rights reserved. 173

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
5.1 XML indexes

pureXML in DB2 9 provides intelligent and rich features for storing and working
natively with XML documents. One of them is the indexing feature that can index
over XML columns and return result sets from XQuery and SQL/XML. With this
index feature, retrieving XML node sets is much faster compared to retrieve node
from XML documents stored in CLOB.

Similar to a relational index, an XML index over XML data indexes an entire
column. However, there are some externally visible differences between
relational indexes and XML indexes as follows:

� Indexes are created on columns of type XML based on path expressions
(xmlpattern): a subset of XPath that does not contain predicates among other
things.

� When creating an index, it is possible to specify what paths to index and what
types. Use the type that you want to use in your queries.

� You can only index on a single XML column, composite indexes are not
allowed at this time. Elements and attributes inside the document frequently
used in predicates and cross-document joins can be indexed.

� If a node matches the xmlpattern but fails to cast to the specified index type,
then no index entry is created for the node without raising an error.

� A single document can contain zero, one, or multiple nodes that match the
xmlpattern. Thus there can be zero, one, or multiple index entries for a single
row in a table (significantly different to indexes on relational columns).

5.1.1 XML index types

DB2 9 pureXML introduces three XML indexes:

� XML regions index
� XML column path index
� Index on an XML column

XML regions index
XML regions index stores the locations of each XML document that is stored in
XML storage in DB2 9. If you create table T1 which has an integer column and an
XML column in it as shown in Figure 5-1 on page 175, the integer column is
stored in T1, but DB2 does not store the XML document in T1. Instead, the XML
column, XMLDOC, contains an XML data descriptor that has the document ID
and version ID for the XML document. The document is stored in the XML Data
Area (XDA), which is separate from the base table.
174 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
The nodes and subtrees in an XML data page form regions in a document. The
XML regions index provides a logical mapping of those regions so that the
document data can be retrieved from the XML data pages. The document ID and
version ID in the XML Data Descriptor are used to do an index look-up in the
regions index. The regions index key entry has the record ID of the root node of
the XML document in the XDA.

XML regions index is automatically created by DB2 9 when the first XML column
is created or added to a table. Even the table has multiple XML columns, just one
XML regions index is created. Accessing to XML documents stored in XML
storage always goes through XML regions index.

Figure 5-1 shows that how XML Regions Index works.

Figure 5-1 XML regions index

XML column path index
The XML column path index is system-generated for each XML column created
or added to the table. For example, if a table with two XML columns is created,
there is one XML regions index, but two XML column path indexes generated by
DB2 9.

page

XML
Regions
Index

page page

3

4

2

1

XMLDOCID

Table T1
 Chapter 5. Managing XML data 175

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
The XML column path index maps paths to path IDs for each XML column. It is a
subset of the paths stored in the global catalog path table and is used to improve
index access performance during queries. When an XML document is inserted,
every unique path in the XML document is extracted and stored in the XML
column path index with a unique path ID.

Index on an XML column
Index on an XML column is an index created over an XML column (hereinafter
called XML index). This index is used for users to enhance performance of
XQuery and SQL/XML. You can index every XML path in XML column using
XPath. Like other relational indexes, XML Index is created as B-Tree index and
stored in the same place as relational indexes are stored. You can also define
multiple XML Indexes in one XML Column.

Like indexes on relational data, using indexes on XML column to improve the
query performance may have some cost. The performance for INSERT,
UPDATE, and DELETE can decrease as the number of indexes defined on XML
column increases. Indexes also take spaces. We should only created indexes
that are really needed.

5.1.2 Creating XML indexes

In this section, we show you how to create XML indexes by examples. We use
one table, LOAN_APPLICATION, for our demonstration. The zip file,
ch5sampledata.zip, which includes sample data and script for creating the table
and importing data can be downloaded from the IBM Redbooks Web site. The
download instructions are in Appendix B, “Additional material” on page 373.

The LOAN_APPLICATION table stores the loan application XML document in
APPL_DOC column. Example 5-1 shows a sample XML document stored in
LOAN_APPLICATION table.

Example 5-1 sample XML document

<?xml version="1.0"?>
<Application>

<Customer>
<Name>

<FirstName>Ichiro</FirstName>
<LastName>Ohta</LastName>

</Name>
<DateOfBirth>2/11/1999</DateOfBirth>
<SSN>111-33-3627</SSN>
<Address country="JP">

<Street>33 AKEBONO</Street>
176 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
<City>Takatushi-shi</City>
<State>Osaka</State>
<Zip>33333</Zip>

</Address>
<Phone type="work">201-999-9646</Phone>
<Phone type="home">039-999-0251</Phone>
<Email>ichiro.ohta@awagat.com</Email>
<Employer>

<Company>My company3</Company>
<Position>Developer</Position>

</Employer>
<FinancialData>

<Income>76800.00</Income>
<Debt>44500.00</Debt>
<Expenses>40000.00</Expenses>
<Assets>1400.00</Assets>

</FinancialData>
</Customer>
<LoanType>0</LoanType>
<Campain>1</Campain>

</Application>

Creating XML indexes
The CREATE INDEX statement has been enhanced to support XML indexing.
XML indexes are created on columns of type XML based on path expressions
(xmlpattern). Figure 5-2 on page 178 shows the CREATE INDEX statement
structure for an XML Index.
 Chapter 5. Managing XML data 177

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 5-2 CREATE INDEX sentence structure for an XML index

When creating an XML index, the following fields are the required:

� Index name: Specify the name of XML Index.

� Table and column names: Specify which XML column is indexed.

� XMLPATTERN: Specify the node you want to index.

XMLPATTERN is similar to XPath expression. The difference between
XMLPATTERN and XPath is that XMLPATTERN cannot have any conditional
expressions. For example, the following expression is valid for XPath but not
valid for XMLPATTERN:

/Application/Customer/Address[@country="JP"]

� Data type: Specify SQL data type for XML index.

Here, we create an XML index for our example XML documents. If you need a
query for looking up zip codes in the XML column, the XQuery could be similar to
the following piece of code:

XQUERY
for $Application in
db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')/Application
return $Application/Customer/Address/Zip;

VARCHAR (integer)

CREATE INDEX

DOUBLE

DATE

TIMESTAMP

VARCHAR (HASHED)

index-name
UNIQUE

ON table-name (xml-column-name)

GENERATE KEY USING XMLPATTERN xmlpattern

AS SQL
178 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
The XML index you might create for this specific query would look similar to the
following code:

CREATE INDEX zipindex ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL VARCHAR;

Figure 5-3 shows a conceptual structure of this XML index. CREATE INDEX
ZIPINDEX statement creates a B-tree index ZIPINDEX which contains the paths
for the Zip node and the value of the Zip nodes.

Figure 5-3 Create XML Index statement and logical structure of XML Index.

Data Type
When you create an XML index, you must specify SQL data type for the node
value that you want to index so that DB2 9 can convert XML node values
specified in xmlpattern clause to SQL data type. The values then can be stores in
a B-tree index. There are five SQL data types we can use: DOUBLE,
VARCHAR(n), VARCHAR HASHED, DATE, and TIMESTAMP.

DOUBLE
The data type DOUBLE should be used to index numeric XML node values. Note
that unbounded decimal types and 64-bit integers might lose precision when they
are stored as a DOUBLE. Following is an example of using DOUBLE data type:

CREATE INDEX zipindexd ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL DOUBLE;

CREATE INDEX ZIPINDEX ON LOAN_APPLICATION(APPL_DOC) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL VARCHAR

CREATE INDEX ZIPINDEX ON LOAN_APPLICATION(APPL_DOC) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL VARCHAR

<Application>
<Customer>

<Name>
<Address country="JP">

<Zip>90540</Zip>

<Application>
<Customer>

<Name>
<Address country="JP">

<Zip>95030</Zip>

<Application>
<Customer>

<Name>
<Address country="JP">

<Zip>33333</Zip>

APPL_DOC

Loan_Application table

95030

90540

33333

Value

/Application/Customer/Address/Zip

/Application/Customer/Address/Zip

/Application/Customer/Address/Zip

Path

ZIPINDEX
 Chapter 5. Managing XML data 179

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
VARCHAR(n)
This data type is used to index varying-length string node values. The maximum
length "n" specified in bytes is a constraint. The index is guaranteed to store
complete string values. If you try to insert an XML document that would have an
indexed string node value that is longer than the specified maximum length, the
insertion will fail. If you try to create an XML index that would have an indexed
string node value that is longer than the specified maximum length, the CREATE
INDEX statement creation will fail.

CREATE INDEX zipindexv ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL
VARCHAR(5);

The maximum length that you can specify in “VARCAHR(n)” vary depending on
page sizes:

� 4K page: Maximum length is 817 bytes.
� 8K page: Maximum length is1841 bytes.
� 16K page: Maximum length is 3889 bytes.
� 32K page: Maximum length is 7985 bytes.

In the case of indexing on zip code node in LOAN_APPLICATION table, both
DOUBLE and VARCHAR data types can be used. Note that you can create two
XML Indexes on same xmlpatterns if they have different SQL data types.

VARCHAR HASHED
VARCHAR HASHED is used to handle indexing of character strings with
arbitrary lengths. VARCHAR HASHED data type can be used in the following
cases:

� If the length of character string values to be indexed is unknown.

� When you cannot use VARCHAR(n) because the character string to be
indexed exceeds the maximum length, n can specified for the page in which
the index is based.

In this case, the system generates an eight-byte hash code over the entire
string and there is no limit on the length of the indexed string.

Please note that range scans cannot be performed if you specify VARCHAR
HASHED data type, because the index contains hash codes instead of the actual
character data. Indexes using hashed character strings can be used only for
equality lookups. Following is an example using VARCHAR HASHED:

CREATE INDEX zipindexvh ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address' AS SQL VARCHAR
HASHED;
180 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
DATE
DATE data type values will be normalized to UTC (Coordinated Universal Time)
or Zulu time before being stored in the index. Note that the XML schema data
type for DATE allows greater precision than the SQL data type. If an out-of-range
value is encountered, an error is returned. Following is an example using DATE
data type:

CREATE INDEX birthdate ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/DateOfBirsth AS SQL DATE;

TIMESTAMP
TIMESTAMP data type values will be normalized to UTC (Coordinated Universal
Time) or Zulu time before being stored in the index. If XML documents have node
values as shown in the following example, you can use TIMESTAMP data type to
index the node.

<date>2006-08-23T07:21:00.000000Z</date>

Unique index
You can create an unique index over XML column. Note that values that you
specify for xmlpattern in your CREATE INDEX statement must be unique not
only in one XML document but also unique through the entire XML column. In our
example, you can create an unique index for SSN because SSN is supposed to
be unique. Following is the CREATE INDEX statement:

CREATE UNIQUE INDEX ssnindex ON loan_application(appl_doc) GENERATE
KEY USING XMLPATTERN '/Application/Customer/SSN' AS SQL VARCHAR(11);

The following statement will fail because zip code is not unique.

CREATE UNIQUE INDEX ZIPINDEXD ON LOAN_APPLICATION(APPL_DOC) GENERATE
KEY USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL
DOUBLE;

5.1.3 How to look up the information for XML index

In this section, we show how to look up information about XML indexes that are
stored in DB2 9 catalogue tables.

Logical and physical Indexes
When you create an index on an XML column, two indexes are actually created,
a logical index and a physical index. The logical index contains the XML pattern
information specified in the CREATE INDEX statement. The physical index has
DB2 generated key columns to support the logical index and contains the actual
index values. The user works with an index on an XML column at the logical level
 Chapter 5. Managing XML data 181

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
for the CREATE INDEX and DROP INDEX statements. Processing of the
underlying physical index by DB2 is transparent to the user.

The logical index has the index name specified in the CREATE INDEX statement
and has the indextype XVIL. The physical index has a system generated name
and has the indextype XVIP. The logical index is always created and assigned
an index ID first. The physical index is created immediately afterwards and is
assigned the next consecutive index ID.

SYSCAT.INDEXES
As with relational indexes, index information for the XML indexes are stored in
SYSCAT.INDEXES. Even though the XML column path Index and the XML
regions Index are system created indexes, they are still visible in
SYSCAT.INDEXES.

Four new index types have been added to SYSCAT.INDEXES:

� XVIL: Index on an XML column (logical)
� XVIP: Index on an XML column (physical)
� XPTH: XML paths index
� XRGN: XML regions index

Here, we create an XML Index APPLNAME and see what information DB2
stored in SYSCAT.INDEXES.

CREATE INDEX applname ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Name' AS SQL VARCHAR(32);

After creating that index, issue this SELECT statement to retrieve XML Index
Information.

SELECT indname, TABNAME, INDEXTYPE FROM SYSCAT.INDEXES
WHERE TABNAME='LOAN_APPLICATION';

The result would be similar to Example 5-2.

Example 5-2 SELECT statement output

INDNAME TABNAME INDEXTYPE
-------------------- ---------- ---------
SQL060821123323580 LOAN_APPLI XRGN
SQL060821123323700 LOAN_APPLI XPTH
APPLNAME LOAN_APPLI XVIL
SQL060821154539000 LOAN_APPLI XVIP
 4 record(s) selected.
182 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
The index type in INDEXTYPE column are as follows:

� XRGN: XML regions index
� XPTH: XML column path index
� XVIL: Logical index for APPLNAME
� XVIP: Physical index for APPLNAME

The regions index and XML column path index are created by DB2 9
automatically when the LOAN_APPLICATION table is created. The logical and
physical indexes are created when CREATE INDEX statement is executed
successfully. Actual index values are stored in physical index.

SYSCAT.INDEXXMLPATTERNS
In SYSCAT.INDEXXMLPATTERNS, you can find name, length, and xmlpattern
of XML index that you have created. For the following query:

SELECT indname, pindname, datatype, length, pattern FROM
syscat.indexxmlpatterns

The result might be similar to this example:

INDNAME PINDNAME DATATYPE LENGTH PATTERN
-------- ------------------ -------- ------ --------------------------
APPLNAME SQL060821154539000 VARCHAR 32 /Application/Customer/Name

db2dart
DB2 database analysis and reporting tool db2dart can be used to examine the
architectural correctness of databases and objects within it. You can use this tool
to see what values are stored in XML Indexes.

To check the XML index using db2dart, you need to provide the index object ID
and table space ID where the XML Index is stored. Example 5-3 shows the query
to find the table space ID:

Example 5-3 Get table space ID

SELECT tabname, tbspaceid FROM syscat.tables
 WHERE tabname = 'LOAN_APPLICATION'

TABNAME TBSPACEID
------------------- ---------
LOAN_APPLICATION 2

The index object ID can be obtained from syscat.indexes catalog table
INDEX_OBJECTID column using the query shown in Example 5-4 on page 184:
 Chapter 5. Managing XML data 183

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Example 5-4 Get index object ID

SELECT indname, index_objectid FROM syscat.indexes
 WHERE indname in ('APPLNAMEW')

INDNAME INDEX_OBJECTID
--------- --------------
APPLNAME 4

Now that you know the table space ID and index object ID, you are ready to issue
db2dart. Specify the database name XMLRB, table space ID 2 for /tsi option, and
index object ID 4 for /oi option as shown in following:

db2dart XMLRB /di /tsi 2 /oi 4 /ps 0 /np 10000 /v y

The options used are:

� /di: dump formatted index data
� /tsi: table space id
� /oi: object id
� /ps: page number to start dumping
� /np: number of pages
� /v: verbose option

Example 5-5 shows a clip of the output generated by db2dart. You can see the
structure of the XML Index APPLNAME and the value stored in APPLNAME.

Example 5-5 Output from db2dart

Key 1:
 Offset Location = 3546 (xDDA)
 Record Length = 39 (x27)
 Key Part 1:
 Long Integer
 Value = 105
 Key Part 2:
 Variable Length Character String
 Actual Length = 10
 49636869 726F4F68 7461 IchiroOhta
 Key Part 3:
 Big Integer
 Value = 22799473113613056
 Key Part 4:
 Variable Length Binary String
 Actual Length = 2
 2222 ""
 Key Part 5:
184 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
 Fixed Length Character String
 00 .
 Key Part 6:
 Fixed Length Character String
 31 1
 Table RID: x(0000 0083 000B) r(00000083;000B) d(131;11)
ridFlags=x2 Punc

db2cat
The system catalog analysis command db2cat can analyze the contents of
packed descriptors. Given a database name, schema name, and table name,
this command will query the system catalogs for table information and format the
results. The same index statistics are collected (nlevels, nleafs, and so on) for
XML indexes as relational indexes when using RUNSTATS. You can use db2cat
to check the statistical collection for XML Column. db2cat has following options:

-d : database name
-s : schema name
-n : table name
-o : output file

Example 5-6 shows the db2cat command and the output it generates with
information about the XML column statistics of APPL_LOAN table section.

Example 5-6 A part of output file from db2cat.

db2cat -d XMLRB -s db2admin -n loan_application -o db2catoutput.txt

++
XML column statistics
++
Column ID = 1
No. NULL XML docs = 0
No. non-NULL XML docs = 102
--
Catch All Pathid Bucket
--
Distinct Pathid count = 44
Sum Node Counts = 4794
Sum Doc Counts = 4488
--
Top-k Pathid node counts
--
Max no. of path counts = 44
Cur no. of path counts = 44
 Chapter 5. Managing XML data 185

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Cnt(/root()/Application/Customer/Phone) = 204
Cnt(/root()/Application/Customer/Phone/type) = 204
.......................................
--
PathID = /root()/Application/Customer/Address/Street/text()
Distinct Value Cnt = 3
2nd Highest Key = 19:46 East Main Street
2nd Lowest Key = 14:1-1-1 AINOKAWA
Sum Node Cnt = 102
Sum Doc Cnt = 102

5.1.4 Access plan

An access plan is a plan specifying an order of operations for accessing DB2
data. DB2 9 optimizer creates the best access plan whenever SQL or XQuery
statements are compiled. You can see statistics for tables, indexes, and columns
and so forth in access plan. DBAs can check access plan for a specific XQuery
or SQL/XML query to discern if XML indexes that are expected to be used are
actually used.

New operators: XSCAN, XISCAN, XANDOR
In DB2 9, new operators, XSCAN, XISCAN and XANDOR, are added to the
access plan for accessing XML columns.

XSCAN
DB2 uses the XSCAN operator to traverse XML document trees and if needed,
to evaluate predicates and extract document fragments and values. XSCAN can
appear in an execution plan after a base table scan to process each of the
documents retrieved from a table.

For example, if you want to search XML documents which has Ichiro in
FirstName element, XQuery can be similar to this:

db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')/Application/Customer/N
ame[FirstName="Ichiro"]

If there is no index on FirstName element, DB2 9 has to read all of XML
documents stored in APPL_DOC column to check each XML document which
satisfies that XPath conditions.

Figure 5-4 on page 187 shows how DB2 9 gets results for this XQuery. DB2 first
accesses LOAN_APPLICATION table to get the first XML column and then
accesses the XML regions index to get the address of the first node of the first
XML document. DB2 then traverses nodes from the first node to see if the
186 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
document satisfies the condition
/Application/Customer/Name[FirstName="Ichiro"]. This continues until DB2 finds
the XML document which has customer with last name Ichiro. This may be the
last document in the database as our example.

Figure 5-4 logical model for accessing XML column without an index

XISCAN
XISCAN scans an XML index. This operator is likely to be used if an adequate
XML Index for the XQuery has already been created.

Assuming an XML index APPLFIRSTNAME for FirstName element has been
created using the following command:

CREATE INDEX applfirstname ON loan_application(appl_doc)
GENERATE KEY USING XMLPATTERN '/Application/Customer/Name/FirstName'
AS SQL VARCHAR(32)

Now we have an XML index for FirstName element. DB2 no long needs to read
all XML documents to find the record. Instead, DB2 only accesses XML
documents that is needed.

db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')
/Application/Customer/Name[FirstName="Ichiro"]

1

……….

APPL_STATUS

102

101

APPL_DOCAPPL_ID

DOC1 Doc101 Doc102

LOAN_APPLICATION

XML Regions
Index

DOC2
 Chapter 5. Managing XML data 187

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 5-5 shows conceptually how DB2 accesses XML documents via an XML
indexes. When the same query is issued, since the FirstName element has
already been indexed, DB2 checks the values in the index APPLFIRSTNAME.
Once DB2 finds it, DB2 uses the RID to access the base table descriptor.
Through XML region index, DB2 accesses XML document to construct the result
sequence.

Figure 5-5 logical model for accessing XML column with an index.

XANDOR
XANDOR operator merges multiple results from XISCAN operators. In DB2 9,
XANDOR supports only ANDing.

You define such an XML index for Zip element described here:

CREATE INDEX applzip ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL
VARCHAR(5)

db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')
/Application/Customer/Name[FirstName="Ichiro"]

….…..………

100John000100/Application/Customer/Name[FirstName

102

101

DocID

Ichiro/Application/Customer/Name[FirstName

Ippei/Application/Customer/Name[FirstName

VALUEPATH

XML Value Index APPLFIRSTNAME

Doc100 Doc101 Doc102

The index can tell that
Doc102 has “Ichiro” as
FirstName node values Regions Index

LOAN_APPLICATION

1

……

APPL_STATUS

101

100

APPL_DOCAPPL_ID

102
188 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Now you have two XML indexes on LOAN_APPLICATION, one is
APPLFIRSTNAME for FirstName element, another is APPLZIP for Zip element.
DB2 probably uses XANDOR operator for an query similar to this one:

XQUERY for $i in
db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')/Application/Customer[N
ame/FirstName="Ichiro" and Address/Zip="33333"]/Name return $i

The index APPLFIRSTNAME is used for resolving condition
/Application/Customer/Name[FirstName=”Ichiro”] and the index APPLSIZP is
used for resolving condition /Application/Customer/Address[Zip=”33333”],
XANDOR is used to merge the input from both XML indexes.

How to get an access plan
We have discussed three operators for accessing XML columns in an access
plan. Here we show you how to acquire an access plan for XQuery and
SQL/XML statements. There are several ways to get an access plan. You can
use db2exfmt command, db2expln command, or Visual Explain. Visual Explain is
a graphical tool. db2exfmt and db2expln can be used in the environment without
graphical representation. In this section, we introduce db2exfmt and Visual
Explain.

db2exfmt
To get the access plan you need to create Explain tables. DB2 provide a script
EXPLAIN.DDL to create Explain tables. This script is in directory
%SQLLIB%\misc. To run the script, issue the following command from DB2 CLP:

db2 -tvf EXPLAIN.DDL

If you want to follow our example using the data we provide, drop XML indexes
created in the previous section and refresh the table statistics using the following
command:

DROP INDEX APPLFIRSTNAME;
DROP INDEX APPLZIP;
RUNSTATS ON TABLE DB2ADMIN.LOAN_APPLICATION;

The case of XSCAN is used
In this example, we show how XSCAN is used in an access plan. Follow the
following steps to get the access plan for the query we would like to examine:

1. Set explain mode to YES using following command:

db2 set current explain mode yes;
 Chapter 5. Managing XML data 189

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
2. Issue the XQuery which you want to get access plan.

XQUERY for $i in
db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')/Application/Customer/N
ame[FirstName="Ichiro"] return $i;

3. Set explain mode back to NO.

db2 set current explain mode no;

4. Issue db2exfmt command to format the output to a file.

db2exfmt -d XMLRB -o plan1.txt -1;

Example 5-7 shows the formatted output. After the XSCAN operator is chosen,
all XML documents in XML column are read for checking if an XPath specified in
XQuery or SQL/XML is matched or not.

Example 5-7 Access plan that XSCAN operator is used.

Access Plan:

Total Cost: 805.299
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 1
 NLJOIN
 (2)
 805.299
 106
 /--+--\
 102 0.00980392
 TBSCAN XSCAN
 (3) (4)
 30.8137 7.59299
 4 1
 |
 102
 TABLE: DB2ADMIN
 LOAN_APPLICATION
190 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
The case of XISCAN is used
Here we show an example where the XISCAN is used. We create an index on
the FirstName element using the following command and check the access plan
for the same query.

CREATE INDEX applfirstname ON loan_application(appl_doc) GENERATE
KEY USING XMLPATTERN '/Application/Customer/Name/FirstName' AS SQL
VARCHAR(32)

Repeat the steps in “The case of XSCAN is used” on page 189. Example 5-8
shows the formatted output. From the access plan, we can see that XISCAN is
used and the total cost of this access plan is much lower than the one without
index.

Example 5-8 Access plan that XISCAN operator is used

Access Plan:

Total Cost: 15.3607
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 1
 NLJOIN
 (2)
 15.3607
 2
 /-+-\
 1 1
 FETCH XSCAN
 (3) (7)
 7.76775 7.59299
 1 1
 /----+---\
 1 102
 RIDSCN TABLE: DB2ADMIN
 (4) LOAN_APPLICATION
 0.175903
 0
 |
 1
 Chapter 5. Managing XML data 191

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
 SORT
 (5)
 0.173137
 0
 |
 1
 XISCAN
 (6)
 0.166633
 0
 |
 102
 XMLIN: DB2ADMIN
 APPLFIRSTNAME

The case of XANDOR is used
In order to see if XANDOR is used, we can create another XML index on
APPL_DOC column Zip element using the following command:

CREATE INDEX applzip ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL
VARCHAR(5)

Issue the following commands in Example 5-9.

Example 5-9 Using the XANDOR operator

db2 set current explain mode yes;

db2 XQUERY for $i in db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')
/Application/Customer[Name/FirstName="Ichiro" and
Address/Zip="33333"]/Name
return $i;

db2 set current explain mode no;

db2exfmt -d xmlrb -o plan3.txt -1;

Example 5-10 on page 193 shows the access plan of this query. The access plan
shows that two defined indexes APPLFIRSTNAME and APPLZIP are used. The
XANDOR operator is used to merge multiple XISCAN output to produce the
result set.
192 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Example 5-10 Access plan that XANDOR operator is used.

Access Plan:

Total Cost: 8.0112
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 0.00970874
 NLJOIN
 (2)
 8.0112
 1.0098
 /--+--\
 0.00980392 0.990291
 FETCH XSCAN
 (3) (9)
 0.418209 7.59299
 0.00980392 1
 /----+----\
 0.00980392 102
 RIDSCN TABLE: DB2ADMIN
 (4) LOAN_APPLICATION
 0.341843
 0
 |
 0.00980392
 SORT
 (5)
 0.339077
 0
 |
 0.00980392
 XANDOR
 (6)
 0.333267
 0
 /-----+-----\
 1 1
 XISCAN XISCAN
 Chapter 5. Managing XML data 193

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
 (7) (8)
 0.166633 0.166633
 0 0
 | |
 102 102
 XMLIN: DB2ADMIN XMLIN: DB2ADMIN
 APPLFIRSTNAME APPLZIP

Visual Explain
Visual Explain allows you to view the access plan for the explained SQL or
XQuery statements as a graph. Using Visual Explain is probably the easiest way
to get an access plan. If the Explain tables do not exist, Visual Explain
automatically creates those tables for you. Visual Explain can be invoked from
Command Editor by entering the query you want to see an access plan and click
the access plan icon . See Figure 5-6.

Figure 5-6 Command Editor
194 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Figure 5-7 on page 195 shows an access plan graph on Visual Explain. If you
click any box on the pane, you can see further information.

Figure 5-7 Access plan graph from Visual Explain

5.1.5 Best practices

This section describes some best practices we have used or learned along the
way.

When XML Index is used or not.
In this section, we provide a few guidelines for you to consider when creating
XML indexes.

CASE 1: predicate
XML index can be used if XML index contains the query predicate, i.e. is equally
or less restrictive than the predicate.
 Chapter 5. Managing XML data 195

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Considering the following index and query on LOAN_APPLICATION table:

CREATE INDEX applname ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Name' AS SQL VARCHAR(32)

XQUERY for$i in db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')
/Application/Customer/Name[FirstName="Ichiro"]
return $i

In this example, the XML index is on Name element whose value is the
combining node values from FirstName element LastName element, for example
“IchiroOhta”. The XQuery will not be able to utilize the index APPLNAME
because the query predicate /Application/Customer/Name[FirstName=”Ichiro”]
does not match the string node values in the XML index.

To use an XML index, the XML index should include FirstName element.
Defining the XML indexes as either of the following ways allows DB2 to use the
index:

CREATE INDEX applname ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Name/FirstName' AS SQL
VARCHAR(32)

CREATE INDEX applname ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Name/*' AS SQL VARCHAR(32)

CASE 2: data type
Data type should be matched between a query predicate and an XML index.

If the LOAN_APPLICAITON table has one XML index APPLZIP which defines an
XML index for Zip element as VARCHAR type as shown in the following:

CREATE INDEX applzip ON loan_application(appl_doc) GENERATE KEY
USING XMLPATTERN '/Application/Customer/Address/Zip' AS SQL
VARCHAR(5)

The following query will be able to use the index APPLZIP because the query
predicate specifies a text string and the type matches.

XQUERY $i in db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')
/Application/Customer[Address/Zip="33333"]/Name
return $i

The following query has the value in the condition specified as a numeric value.
This query will not use the XML index APPLZIP.

XQUERY $i in db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')
/Application/Customer[Address/Zip=33333]/Name
196 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
return $i

CASE 3: multiple XMLEXISTS in one query
You can expect better performance if you use single XMLEXISTS function,
rather than multiple XMLEXISTS function in an SQL statement.

The following two SELECT statements in Example 5-11 return the same result.
However, the first query separates two conditions into two XPath expressions
with EMLEXISTS function. The second query combines two conditions into one
XPath expression. Each EMLEXISTS function is interpreted as an XQuery
Therefore, the cost of the first query will be higher than the second one.

Example 5-11 SELECT statements

SELECT l.appl_id FROM loan_application l
WHERE
XMLEXISTS('$i/Application/Customer/Name[FirstName = "Ippei"]'
PASSING l.appl_doc AS "i") AND
XMLEXISTS('$i/Application/Customer/Address[Zip = "22222"]'
passing l.appl_doc AS "i");

SELECT l.appl_id FROM loan_application l
WHERE
xmlexists('$i/Application/Customer[Name/FirstName="Ippei"]/Address[Z
ip="22222"]' PASSING l.appl_doc AS "i");

Note that following two XQueries cost almost the same.

Example 5-12

XQUERY
for $i in db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')/Application
where $i/Customer/Name/FirstName = "Ippei"
and $i/Customer/Address/Zip = "22222"
return $i/Customer/Name;

XQUERY
for $i in
db2-fn:xmlcolumn('LOAN_APPLICATION.APPL_DOC')/Application/Customer[N
ame/FirstName="Ippei" and Address/Zip="22222"]/Name
return $i
 Chapter 5. Managing XML data 197

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
CASE 4: wild cards on XML Index
Be careful when use wild cards (*) in xmlpattern. Figure 5-8 on page 198 shows
an XML index, APPLALL, which indexes every single nodes of each XML
document and should be avoided.

Figure 5-8 APPLALL indexes all XML nodes

5.2 Schema management

XML schemas are used to define the structures and data type constrains of the
elements of XML documents. XML schemas are also used to validate XML
documents. If an XML document satisfies the structures and data type constrains
of an XML schema, the XML document is valid to the XML schema. There are
other languages that can be used to define XML document, for instance, DTD
(Document Type Definition). Comparing DTD with XML schema, XML schemas
are richer and more powerful. XML schemas are written in XML and are
extensible to future additions. It also supports data types and namespace.

DB2 V9.1 supports DTDs and external entries for entity resolution, but not for
validation. DB2 V9.1 supports only XML schemas to validate XML documents.
All DTDs can be converted to XML schema without any information loss. You
can convert your existing DTDs to XML schemas. All XML schemas must be

<?xml version="1.0"?>
<Application>
<Customer>
<Name>
<FirstName>Ichiro</FirstName>
<LastName>Ohta</LastName>

</Name>
<DateOfBirth>2/11/1999</DateOfBirth>
<SSN>111-33-3627</SSN>
<Address country="JP">
<Street>33 AKEBONO</Street>
<City>Takatushi-shi</City>
<State>Osaka</State>
<Zip>33333</Zip>

</Address>
<Phone type="work">201-999-9646</Phone>
<Phone type="home">039-999-0251</Phone>
<Email>ichiro.ohta@awagat.com</Email>
<Employer>
<Company>My company3</Company>
<Position>Developer</Position>

</Employer>
<FinancialData>
<Income>76800.00</Income>
<Debt>44500.00</Debt>
<Expenses>40000.00</Expenses>
<Assets>1400.00</Assets>

</FinancialData>
</Customer>
<LoanType>0</LoanType>
<Campaign>1</Campaign>

</Application>

CREATE INDEX APPLALL
ON LOAN_APPLICATION(APPL_DOC)
GENERATE KEY USING XMLPATTERN '//*'
AS SQL VARCHAR HASHED

…….………………….………………………………..

…….………………….………………………………..

…….2…………….………………………………..

…….102…………….………………………………..

…….………………….………………………………..

…….102…………….………………………………..

1<Campaign>
0
</Campaign>

/Application/Campaign

1<LoanType>
0
</LoanType>

/Application/LoanType

1<Application>
…..
</Application>

/Application

1<Application>
<Customer>

……………
</Customer>

</Application>

/Application/Customer

1

DocID

……..…………………………

VALUEPATH

XML Index APPLALL
198 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
successfully registered in XML schema repository in DB2 V9.1 before you can
use them. The registered XML schema should be managed in the same way as
other database objects.

5.2.1 XML Schema Repository

DB2 V9.1 keeps registered XML schemas in the XML schema repository (XSR).
The registered XML schemas are used for validation. XML document stored in
XML columns usually has a reference of Uniform Resource Identifier (URI) that
contains the information of their XML schemas, DTDs, or other external enmities.
The URI is needed to validate XML documents. DB2 manages dependencies on
such externally referenced XML artifacts with the XSR without requiring changes
to the URI location reference. The XSR also removes the additional overhead
required to locate external documents, along with the possible performance
impact. An XML schema repository is located in the database catalog and
comprises catalog tables, catalog views and some system defined stored
procedures to enter data into these catalog tables.

An XML schema can contains one or more XML schema documents. For
instance, an XML schema document A.xsd imports and includes other schema
documents, B.xsd, C.xsd and D.xsd. A.xsd, B.xsd, C.xsd and D.xsd are a
collection of an XML schema. A.xsd is at the top of the hierarchy of the schema
documents. A.xsd is the primary schema document since it imports/includes all
of other schema documents, B.xsd, C.xsd and D.xsd.

All XML schemas, DTDs and external entities must be registered before you can
use them. A DB2 XSR object representing the XML schema is created once the
first schema document is registered.

5.2.2 XML schema registration/dropping

We use examples to demonstrate how to register XML schemas and to
manipulate XSR object.

pets.xsd in Example 5-13 is a primary schema document. It defines an XML
element “pets”. The element “pets” has a sequence of two elements. The first
element “CAT” has data type” ca:CAT" which is defined in cat.xsd. The second
element “DOG” has data type” do:DOG" which is defined in dog.xsd. pets.xsd
imports both dog.xsd and cat.xsd that are shown in Example 5-14 on page 200
and Example 5-15 on page 200 respectively.

Example 5-13 XML schema pets.xsd

<?xml version="1.0"?>
 Chapter 5. Managing XML data 199

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.itso.org/pets"
xmlns:pe="http://www.itso.org/pets" xmlns:ca="http://www.itso.org/cat"
xmlns:do="http://www.itso.org/dog">
<xs:import namespace="http://www.itso.org/cat" schemaLocation="cat.xsd"
/>
<xs:import namespace="http://www.itso.org/dog" schemaLocation="dog.xsd"
/>
 <xs:element name="PETS">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DOG" type="do:DOG"/>
 <xs:element name="CAT" type="ca:CAT"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Example 5-14 XML schema cat.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.itso.org/cat">
 <xsd:complexType name="CAT">
 <xsd:sequence>
 <xsd:element name="NAME" type="xsd:string" />
 <xsd:element name="AGE" type="xsd:integer" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 5-15 XML schema dog.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.itso.org/dog">
 <xsd:complexType name="DOG">
 <xsd:sequence>
 <xsd:element name="NAME" type="xsd:string" />
 <xsd:element name="AGE" type="xsd:integer" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>
200 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
pets.xsd by itself is incomplete to validate a document containing elemnets
"dogs" and "cats". In order to validate such a document, you also need to register
dogs.xsd and cats.xsd. Use the following steps to register schema:

1. Register the primary schema. The information needed to register a primary
schema document are:

– Fully-qualified file name for the primary XML schema document

The fully-qualified name means that the file name pluses the path to where
the XML schema document is located. The fully-qualified file name is used
in REGISTER XMLSCHEMA command.

– SQL identifier

You can choose any valid SQL two-part name to identify the XML schema.
You should choose a meaningful name. The SQL identifier will be used for
explicit validating XML instance documents. You also need the SQL
identifier when you drop the register XML schema document.

Some additional information such as schema location of the primary schema
document can also be used in registration. Just as its name suggests, a
schema location indicates where a schema document is located. The schema
location can be a URL, FTP address, or a fully-qualified file name on the local
machine. The schema location is stored in the catalog table after registration.
The information can be used for implicitly validate XML instance document.

Example 5-16 shows the command to register the primary schema document
pets.xsd.

Example 5-16 register a primary schema document

register xmlschema http://sample from c:\pets.xsd as sample.pets

In this example, c:\pets.xsd is the full-qualified name. pets.xsd is located
in root path of C drive in the local directory. The schema location using is the
URL http://sample. SQL identifier is sample.pets.

2. Add schema document.

You must add all the XML schema documents that the primary XML schema
document directly or indirectly imports/includes if the primary XML has any
imports/includes. You can skip the step if the primary XML has no
imports/includes. The schema location must match the schemaLocation
attribute from the import/include declaration in the importing/including schema
document. Example 5-17 on page 202 shows the command to add XML
schema documents cat.xsd and dog.xsd.
 Chapter 5. Managing XML data 201

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Example 5-17 add schema documents

add xmlschema document to sample.pets add cat.xsd from c:\cat.xsd
add xmlschema document to sample.pets add dog.xsd from c:\dog.xsd

In this example, sample.pets is the SQL identifier of the registered primary
XML schema. c:\cat.xsd and c:\dog.xsd are the schema location that match
the import tags for cat.xsd and dog.xsd in the primary XML schema
document pets.xsd. C:\cat.xsd and c:\dog.xsd are the full-quailed file
names on the local machine. No specific order is needed when you add XML
schema document. In the example, we could have added dog.xsd first then
cat.xsd.

3. Complete registration

After you register the primary schema document and add all the involved
schema documents, you can complete the registration process. This step
checks the schemaLocation values in import and include tag in XML schema
documents and the schema locations provide by add xmlschema document
commands. If there is any mismatch, the completing registration would fail
with error. This step also checks if XML schema documents are well-formed.
If one or more schema documents are well-form, the completing registration
would also fail with error. Example 5-18 shows the command to complete the
registration.

Example 5-18 complete schema with success

complete xmlschema sample.pets

In the example above, sample.pets is the SQL identifier we used to register
the primary XML schema document pets.xsd.

Example 5-19 is an example of completing Registration failed with error.

Example 5-19 complete schema fails with error

complete xmlschema sample.pets
SQL20329N The completion check for the XML schema failed because one
or more XML schema documents is missing. One missing XML schema
document is identified by "NAMESPACE" as "http://www.itso.org/cat".
SQLSTATE=428GI

In this example, we did not add cat.xsd. Registration failed with error code
SQL20329N.

After an XML schema is registered in XSR, it is a XSR object. You can
remove a XSR object by dropping it. The schema repository does not have a
notion for each XML schema document. When you drop an XML schema, all
XML schema documents that belong to the XML schema are dropped. If one
202 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
or more of XML schema documents need to be changed, you have to drop
the XML schema and to recreate the XSR object with the new XML schema
documents. You can drop an XML schema whether it is completed or not.
Example 5-20 is an example of dropping an XML schema.

Example 5-20 drop a schema

drop xsrobject sample.pets

In this example, sample.pets is the SQL identifier which we used to
previously to register the primary XML schema document.

5.2.3 Querying XSR

You can query the system catalog view SYSCAT.XSROBJECTS for the XSR
object information. Example 5-21 shows the table description of the view
SYSCAT.XSROBJECTS.

Example 5-21 table description of the view SYSCAT.XSROBJECTS

Column Type Type
name schema name Length Scale Nulls
--------------- ------ --------- -------- ----- ------
OBJECTID SYSIBM BIGINT 8 0 No
OBJECTSCHEMA SYSIBM VARCHAR 128 0 No
OBJECTNAME SYSIBM VARCHAR 128 0 No
TARGETNAMESPACE SYSIBM VARCHAR 1001 0 Yes
SCHEMALOCATION SYSIBM VARCHAR 1001 0 Yes
OBJECTINFO SYSIBM XML 0 0 Yes
OBJECTTYPE SYSIBM CHARACTER 1 0 No
OWNER SYSIBM VARCHAR 128 0 No
CREATE_TIME SYSIBM TIMESTAMP 10 0 No
ALTER_TIME SYSIBM TIMESTAMP 10 0 No
STATUS SYSIBM CHARACTER 1 0 No
DECOMPOSITION SYSIBM CHARACTER 1 0 No
REMARKS SYSIBM VARCHAR 254 0 Yes

Suppose we need information about target namespace, schema location, object
schema and object name. Example 5-22 is an example of the query and its
output. Each row in the view SYSCAT.XSROBJECTS represents an XML
schema.

Example 5-22 query view SYSCAT.XSROBJECTS

select SCHEMALOCATION, TARGETNAMESPACE, OBJECTSCHEMA, OBJECTNAME from
SYSCAT.XSROBJECTS
 Chapter 5. Managing XML data 203

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
SCHEMALOCATION TARGETNAMESPACE OBJECTSCHEMA OBJECTNAME
-------------- -------------------------- ------------ ----------
http://sample http://www.itso.org/sample SAMPLE ORDER
http://sample http://www.itso.org/pets SAMPLE PETS
http://person http://person JOHN PERSON

 3 record(s) selected.

If you need information about XML schema documents, you can query the
system catalog SYSCAT.XSROBJECTCOMPONENTS. Example 5-23 is an
example of the table description of the view
SYSCAT.XSROBJECTCOMPONENTS.

Example 5-23 Query view SYSCAT.XSROBJECTCOMPONENTS

Column Type Type
name schema name Length Scale Nulls
--------------- --------- --------- -------- ----- ------
OBJECTID SYSIBM BIGINT 8 0 No
OBJECTSCHEMA SYSIBM VARCHAR 128 0 No
OBJECTNAME SYSIBM VARCHAR 128 0 No
COMPONENTID SYSIBM BIGINT 8 0 No
TARGETNAMESPACE SYSIBM VARCHAR 1001 0 Yes
SCHEMALOCATION SYSIBM VARCHAR 1001 0 Yes
COMPONENT SYSIBM BLOB 31457280 0 No
CREATE_TIME SYSIBM TIMESTAMP 10 0 No
STATUS SYSIBM CHARACTER 1 0 No

Example 5-24 is an example of the query of SYSCAT.XSROBJECTCOMPONENTS and
its output. Unlike SYSCAT.XSROBJECTS, each row in the view
SYSCAT.XSROBJECTCOMPONENTS represents an XML schema document.

Example 5-24 Query view SYSCAT.XSROBJECTCOMPONENTS

select TARGETNAMESPACE, SCHEMALOCATION, OBJECTSCHEMA, OBJECTNAME FROM
SYSCAT.XSROBJECTCOMPONENTS

TARGETNAMESPACE SCHEMALOCATION OBJECTSCHEMA OBJECTNAME
-------------------------- -------------- ------------ ----------
http://www.itso.org/sample http://sample SAMPLE ORDER
http://person http://person JOHN PERSON
204 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
http://www.itso.org/dog dog.xsd SAMPLE PETS
http://www.itso.org/pets http://sample SAMPLE PETS

 4 record(s) selected.

5.2.4 XSR support on Control Center

You can also use Control Center to manage XSR object. DB2 V9.1 Control
Center support adding and dropping XML schemas.

To view XML schemas high-light folder XML Schema Repository (XSR) under
database in Object View. XML shows up at upper right window of the Control
Center.

Figure 5-9 shows three schemas with SQL identifiers SAMPLE.ORDER,
JOHN.PERSON and SAMPLE.PETS

Figure 5-9 XML Schema Repository (XSR) in control center
 Chapter 5. Managing XML data 205

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
You can create a filter to filter out the schema you do not want to see. Go to
Selected → Filter → Create. You can see a pop window as shown in
Figure 5-10. You can filter out schemas based on the predicates that you set on
XML Artifact Name, Schema Name, Target Namespace, Type, and Comment.

Figure 5-10 Creating a filter

5.2.5 Schema evolution

Sometimes, business rules change and an XML schema must change in order to
reflect the new rules. For example, a store chain has an XML schema order. The
order element has name, quantity and price as elements and weight and color as
attributes. Example 5-25 shows the XML schema order.sxd.

Example 5-25 order.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="item">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:integer"/>
 <xsd:element name="price" type="xsd:integer"/>
 </xsd:sequence>
 <xsd:attribute name="weight" type="xsd:integer"/>
 <xsd:attribute name="color" type="xsd:string"/>
 </xsd:complexType>
206 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
 <xsd:element name="order" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="order" type="item" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The store chain is expending and starting to offer free store memberships to the
customers. Store member customers get special discounts on some items but
not from every item. The store chain decides to let customers know how much
they are saving when buying as store members. The customer will see the
savings in the receipts. The receipts will show how much customers save from
each item. The schema order.xsd needs to change to reflect the new business
rule. The change is called schema evolution. Example 5-26 shows the
order_new.xsd. The order_new.xsd is compatible with Example 5-25 on
page 206 order.xsd. The change is the new element discount. The element
discount has attribute minOccurs set to 0 because not every item has a discount
price.

Example 5-26 order_new.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="item">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:integer"/>
 <xsd:element name="price" type="xsd:integer"/>
 <xsd:element name="discount" type="xsd:integer" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="weight" type="xsd:integer"/>
 <xsd:attribute name="color" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="order" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="order" type="item" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
 Chapter 5. Managing XML data 207

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
You should register the new schema file order_new.xsd. The application should
validate the new instance document with the new registered schema. If you do
not want to change the application and you use the explicit validation, you can
drop the old schema and register the new schema with information which is the
identical as the old schema.

5.3 IMPORT, EXPORT, and RUNSTATS

In this section we discuss DB2 9.1 utilities that were enhanced to support XML
data type. We cover IMPORT, EXPORT, and RUNSTATS.

5.3.1 IMPORT

The IMPORT utility can be used to move data into DB2 database tables. In DB2
9.1, IMPORT utility was enhanced to support XML data type. With this
enhancement, you can use the IMPORT utility to insert one or more XML data
files to DB2 relational tables with XML data type column.

You can only import well-formed XML document because the columns defined
as XML data type can only contain complete XML documents. If you are
importing a data file with a row that contains a document that is not well-formed,
it will be rejected by DB2. The IMPORT utility will treat an XML document as
Unicode unless the importing document contains a declaration tag specifying the
encoding attribute.

XML data can be imported into DB2 table with or without XML schema validation.
Without XML schema validation, IMPORT insert well-formed XML documents
into the database without checking if the data in your XML documents is valid. In
the following sections we explore how importing XML data into a DB2 9.1 table
can be achieved with and without XML schema validation.

In this section, we show you, by examples, how to import data into XML column
with or without validating the XML data. We discuss in detail the new IMPORT
utility options. In our examples, we use a CUSTOMER table for demonstration.
The CUSTOMER table can be created using the following command:

CREATE TABLE customer(id INT NOT NULL PRIMARY KEY, name VARCHAR(20),
customer_info XML);

Importing XML data
Importing XML data into a table with XML data type column without validation is
simple and straight forward. There is not much difference from importing data
208 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
into a relational table without the XML data column. This is a simple IMPORT
command example:

IMPORT FROM "C:\XmlRedbook\PROG\import\customer.del" OF DEL
XML FROM "C:\XmlRedbook\PROG\import"

INSERT INTO db2admin.customer;

Preparing data file
For XML data, DB2 supports ASC, DEL, and IXF input file formats. You can
create the delimited (DEL) ASCII file using the editor of your choice. Each line of
the data file represents a row for inserting into the target table. For XML data
stored in a file, You must specify an additional parameter, XML Data Specifier
(XDS), in the data file to instruct the IMPORT utility to read the XML documents
from file.

Example 5-27 shows an XML document to be imported into the XML column
CUSTOMER_INFO.

Example 5-27 XML file ContactInfo1.xml for CUSTOMER column

<?xml version="1.0"?>
<ContactInfo>

<Address>
<Street>22 Willow Street </Street>
<City>Los Gatos </City>
<State>CA </State>
<Zip>95030</Zip>

</Address>
<Phone>

<work>408-677-8888 </work>
<home>408-588-9999 </home>
<mobile>408-345-6666 </mobile>

</Phone>
</ContactInfo>

Example 5-28 shows the import data file customer.del we prepared. The XDS
specifies the document file name.

Example 5-28 Delimited ASCII file for input to DB2 IMPORT

10000,"Sarah Young","<XDS FIL='contactInfo1.xml'/>"
 Chapter 5. Managing XML data 209

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
XML Data Specifier (XDS)
XML data specifier (XDS) is used in IMPORT input file to describe the
information about the actual XML data in the column; such information includes
the name of the file that contains the actual XML data, and the offset and length
of the XML data within that file.

The XDS can have up to four attributes. One of the attributes is mandatory and
the rest of the attributes are optional. Where there is no XDS specified for an
XML column in the data file, a NULL value will be inserted into the corresponding
column, unless you specified otherwise. The IMPORT utility will treat a blank line
in your data file as a record. You must make sure that you have no blank line in
your data file or the IMPORT utility will insert a NULL row into your table.

The XDS attributes include the followings:

� FIL is the name of the system file in which the XML document is stored. This
attribute is required.

� OFF is the byte offset of the XML data in the file specified in the FIL attribute.
The offset starts from zero.

� LEN is the length of the XML data in the file specified in FIL attribute.

� SCH is the fully qualified XML schema name that is used for validating the
XML documents.

For each row in the delimited input data file, the number of XDS must be equal to
or less than number of XML columns in a table. For our sample table, we have
one XML column, so we can have zero to one XDS for each row. If we have a
row in data file with two or more XDS, that row will be rejected by DB2 IMPORT
utility. Example 5-29 shows an import data file with two XDS in a row for a table
with two XML columns.

Example 5-29 Input file with multiple XDS

10000,"Sarah Young","<XDS FIL='contactInfo1.xml'/>","<XDS FIL='file1.xml'/>"
10002,"Jadan Phillips","<XDS FIL='contactInfo2.xml'/>","<XDS FIL='file2.xml'/>"

Importing data
With the data file, XML source file, and the database table created, we can
import the data using the new XML FROM option as shown in the following
IMPORT command:

IMPORT FROM "C:\XmlRedbook\PROG\import\customer.del" OF DEL
XML FROM "C:\XmlRedbook\PROG\import"

INSERT INTO db2admin.customer;
210 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
If you have XML files reside in more than one locations, you can specifies the
IMPORT command to look into more than one path in as follow:

IMPORT FROM "C:\XmlRedbook\PROG\import\customer.del" OF DEL
XML FROM "C:\XmlRedbook\PROG\import", "C:\XmlRedbook\data\xml\"

INSERT INTO db2admin.customer;

The sample output of DB2 IMPORT command is shown in Example 5-30.

Example 5-30 IMPORT without validation sample output

IMPORT FROM "C:\XmlRedbook\PROG\import\customer.del" OF DEL
XML FROM "C:\XmlRedbook\PROG\import"

INSERT INTO db2admin.customer

SQL3109N The utility is beginning to load data from file
"C:\XmlRedbook\PROG\import\customer.del".

SQL3110N The utility has completed processing. "1" rows were read
from the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "1".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "1" rows were processed from the input file. "1" rows were
successfully inserted into the table. "0" rows were rejected.

Number of rows read = 1
Number of rows skipped = 0
Number of rows inserted = 1
Number of rows updated = 0
Number of rows rejected = 0
Number of rows committed = 1

SELECT * FROM DB2ADMIN.CUSTOMER WHERE ID=10000

ID NAME CONTACT_INFO
----------- -------------------- --------------------------------------
10000 Sarah Young <ContactInfo><Address><Street>22
Willow Street </Street><City>Los Gatos </City><State>CA
</State><Zip>95030</Zip></Address><Phone><work>408-677-8888
</work><home>408-588-9999 </home><mobile>408-345-6666
</mobile></Phone></ContactInfo>
 Chapter 5. Managing XML data 211

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
If you have XML files that reside in a different path than the one you specified in
the IMPORT command, DB2 IMPORT, will raise an error SQL3229N with reason
code ‘1’ that the file name cannot be found.

Import with XML schema validation
You can import XML data into a DB2 table with XML data type column with or
without validation. To validate your XML data when importing into DB2 relational
table, in addition to data file, you also need XML schema to be used for
validation. The XDS parameter in the main data file needs additional attributes.

We continue using the CUSTOMER table to show how to import XML data with
validation. Example 5-31 shows another XML document for our example.

Example 5-31 Content of contactinfor2.xml

<?xml version="1.0"?>
<ContactInfo>

<Address>
<Street>555 Lincoln Blvd</Street>
<City>San Jose</City>
<State>CA</State>
<Zip>95136</Zip>

</Address>
<Phone>
<work>408-677-8888</work>
<home>408-588-9900</home>
<mobile>408-345-7777</mobile>
</Phone>

</ContactInfo>

XML schema
To validate XML documents during import, you need to have an XML schema
that specifies the acceptable XML elements, the order of the elements, the
minimum and maximum occurrences of elements, data types, required or option
elements, and so forth. For our sample XML schema, we use IBM Rational®
Software Development to generate an XML schema, but you can use any text
editor or tool to create an XML schema. The IBM Rational Software Development
is previously known as WebSphere Application Development Studio.

The schema we create checks every imported XML document for the following:

� For every group of customer information, the order is ID, NAME, then
CONTACT_INFO.

� For every group of contact information, the order is ADDRESS and then
PHONE.
212 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
� For every group of address information, the order is Street, City, State and
Zip.

� For Address, we need at least one and may have up to two addresses.

� For Phone, there must be at least one phone number and may have up to
three Phone elements per group.

� The Zip information, the value must be at least a five-digit number or
nine-digit number in one of these formats: xxxxx or xxxxx-yyyy.

The XML schema contactInfo.xsd can be found in A.2, “contactInfo.xsd” on
page 366.

Before you can validate against a specific schema, you must register it with DB2.
The following command will register customerInfo.xsd with DB2:

REGISTER XMLSCHEMA 'C:/XmlRedbook/PROG/import/'
FROM C:\XmlRedbook\PROG\import\contactInfo.xsd
AS DB2ADMIN.CONTACTINFO;

The fully qualified SQL identifier of the XML schema will be used in the XSD file
to instruct DB2 to validate data using the schema during import. In our example,
it is DB2ADMIN.CONTACTINFO.

XDS attributes for importing data with validation
SCH attribute in the XDS specifies the schema used to perform schema
validation. Example 5-32 shows what the XDS parameter should looks like with
schema attribute SCH specified:

Example 5-32 Sample XDS with SCH attributes

<XDS FIL='contactInfo1.xml' SCH='DB2ADMIN.CONTACTINFO'/>
<XDS FIL='contactInfo2.xml' SCH='DB2ADMIN.CONTACTINFO'/>

Importing data with validation
The XDS information is included in the main data file to provide the information
about the XML files to be imported for each row. Our sample data file,
customer2.del, with XDS specified is shown in Example 5-33.

Example 5-33 Sample data file for import XML data with validation

10001,"Sarah Young","<XDS FIL='contactInfo1.xml'
SCH='DB2ADMIN.CONTACTINFO'/>",
10002,"Jadan Phillips","<XDS FIL='contactInfo2.xml'
SCH='DB2ADMIN.CONTACTINFO'/>"
 Chapter 5. Managing XML data 213

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Following is an IMPORT command example with the new option XMLVALIDATE
indicating that the data will be validated during importing:

IMPORT FROM "C:\Import\DATA\customer2.del" OF DEL
 XML FROM "C:\Import\DATA"
 XMLVALIDATE USING XSD
INSERT INTO db2admin.customer;

If we modified our contactInfo1.xml document and remove all three phone
elements. The modified file looks as Example 5-34:

Example 5-34 Modified contactInfo1.xml file

<?xml version="1.0"?>
<ContactInfo>

<Address>
<Street>22 Willow Street </Street>
<City>Los Gatos </City>
<State>CA </State>
<Zip>95030</Zip>

</Address>
<Phone>
</Phone>

</ContactInfo>

We also modified the zip code in the file contactInfo2.xml by adding a dash(-)
after the fifth digit. The modified file is shown in Example 5-35.

Example 5-35 Modified contactInfo2.xml

<?xml version="1.0"?>
<ContactInfo>

<Address>
<Street>555 Lincoln Blvd</Street>
<City>San Jose</City>
<State>CA</State>
<Zip>95136-</Zip>

</Address>
<Phone>

<work>408-677-8888</work>
<home>408-588-9900</home>
<mobile>408-345-7777</mobile>

</Phone>
</ContactInfo>
214 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Validation against the registered schema DB2ADMIN.CONTACTINFO will raise
error SQL16123N for contactinfo1.xml because our schema defined that at least
one contact phone is required in an input XML document. For the second file
contactInfo2.xml, we should see error SQL16210N because the input data
violates the defined format for zip code which was xxxxx or xxxxx-xxxx where x is
number from 0 to 9.

The output of the IMPORT command is shown in Example 5-36.

Example 5-36 IMPORT command output

------------------------------ Commands Entered -----------------------
IMPORT FROM "C:\Import\DATA\customer.del" OF DEL XMLVALIDATE USING XDS
INSERT INTO DB2ADMIN.CUSTOMER;
SELECT * FROM DB2ADMIN.CUSTOMER;

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XMLVALIDATE USING XDS

INSERT INTO DB2ADMIN.CUSTOMER

SQL3109N The utility is beginning to load data from file
"C:\Import\DATA\customer.del".

SQL3148W A row from the input file was not inserted into the table.
SQLCODE "-16123" was returned.

SQL16123N XML document contains an element "((work,home),mobile)" with
empty content where the content model requires content for this
element.
SQLSTATE=2200M

SQL3185W The previous error occurred while processing data from row
"1" of the input file.

SQL3148W A row from the input file was not inserted into the table.
SQLCODE "-16210" was returned.

SQL16210N XML document contained a value "95136-" that violates a
facet constraint. Reason code = "13". SQLSTATE=2200M

SQL3185W The previous error occurred while processing data from row
"2" of the input file.

SQL3110N The utility has completed processing. "2" rows were read
from the input file.
 Chapter 5. Managing XML data 215

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
SQL3221W ...Begin COMMIT WORK. Input Record Count = "2".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "2" rows were processed from the input file. "0" rows were
successfully inserted into the table. "2" rows were rejected.

Number of rows read = 2
Number of rows skipped = 0
Number of rows inserted = 0
Number of rows updated = 0
Number of rows rejected = 2
Number of rows committed = 2

SELECT * FROM DB2ADMIN.CUSTOMER

ID NAME CONTACT_INFO
----------- -------------------- --------------------------------------

 0 record(s) selected.

IMPORT command and options
DB2 9.1 IMPORT utility features the following new options to support XML data
type. In this section, we look at each of the option and examples of how to use
each of these options with DB2 9.1 IMPORT command.

New DB2 9.1 IMPORT options include:

� XML FROM pathname

This option indicates the path that contains the XML files you want to import.
If this option is not specified, the DB2 IMPORT utility will assume that the
imported XML file reside in the same path as the input relational data file.

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL XML FROM .
INSERT INTO db2admin.customer;

If you have XML file locates in more than one path, use a comma(,) to
separate the path. For example in following command:

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML", "C:\Import\DATA"

INSERT INTO db2admin.customer;
216 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
The IMPORT utility will look for the input XML files in C:\Import\XML and
C:\Import\Data paths.

� MODIFIED BY

Two new MODIFIED BY file-type mode options are added for XML data,
MODIFYED BY XMLCHAR and MODIFIED BY XMLGRAPHIC.

These two options specifies that the incoming XML data is encoded in the
character or graphic code page. Most commonly the code page is ASCII or
UTF-8. The MODIFIED BY XMLCHAR is valid for delimited and nondelimited
ASCII file types. Following is an IMPORT command with MODIFIED BY
XMLCHAR options:

IMPORT FROM "C:\XmlRedbook\PROG\sample_loan_app.del" OF DEL
XML FROM "C:\XmlRedbook\PROG"
MODIFIED BY XMLCHAR INSERT INTO db2admin.customer;

MODIFIED BY XMLGRAPHICs option is useful when incoming XML
documents are encoded in a specific graphic code page but have no
encoding declaration at beginning of the XML document. The MODIFIED BY
XML GRAPHIC is available to use with delimited and non-delimited ASCII
data file types

If you import an XML document that contains an encoding attribute, the
encoding must match the character or graphic code page value or the row is
rejected. The code page value is the value specified by the CODEPAGE file type
modifier or the graphic component of the application code page. If the
modifier is not specified for the IMPORT command, the application default
character code page is used. For more information about character code
pages, see DB2 9.1 document XML Guide for DB2 Version 9, SC10-4254:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US
/db2xge90.pdf

If the XML file is encoded with ASCII character code page, you can use the
CODEPAGE file type modifier as shown in following command:

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML"
MODIFIED BY CODEPAGE=367 XMLCHAR INSERT INTO

db2admin.customer;

If the XML file is encoded with UTF-16, you can specify the CODEPAGE file type
modifier with matching graphic code page for the encoding UTF-16 as shown
in the following example:

IMPORT FROM "C:\XmlRedbook\PROG\import\graphic.del" OF DEL
XML FROM "C:\XmlRedbook\PROG\import\"
MODIFIED BY CODEPAGE=1204 XMLGRAPHIC

INSERT INTO db2admin.customer;
 Chapter 5. Managing XML data 217

ftp://ftp.software.ibm.com/ps/products/db2/info/vr9/pdf/letter/en_US/db2xge90.pdf

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
� XMLPARSE STRIP/PRESERVE WHITESPACE

This option specifies to remove or not to remove white space when XML
documents are parsed. When the XMLPARSE option is omitted, the parser
behavior for XML documents will be determined by the value of the
CURRENT XMLPARSE OPTION special register.

The Example 5-37 shows the IMPORT command using XMLPARSE STRIP
WHITESPACE option and the data inserted.

Example 5-37 IMPORT with XMLPARSE STRIP WHITESPACE option

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML" XMLPARSE STRIP WHITESPACE
INSERT INTO db2admin.customer;

SELECT * FROM db2admin.customer WHERE id=10000;

ID NAME CONTACT_INFO
----------- -------------------- -----------------------------------
10000 Sarah Young <ContactInfo><Address><Street>22 Willow
Street </Street><City>Los Gatos </City><State>CA </State><Zip>95030
</Zip></Address><Phone><work>408-677-8888 </work><home>408-588-9999
</home><mobile>408-345-6666 </mobile></Phone></ContactInfo>

Example 5-38 shows the output of the CUSTOMER table where the XML file
imported with the whitespace preserved.

Example 5-38 IMPORT command using XMLPARSE PRESERVE WHITESPACE.

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\DATA\" XMLPARSE PRESERVE WHITESPACE
INSERT INTO db2admin.customer

SELECT * FROM db2admin.customer WHERE id=10001

ID NAME CONTACT_INFO
----------- -------------------- -----------------------------------
10001 Jay Martins <ContactInfo>

<Address>

Note: If you specify MODIFIED BY XMLGRAPHIC option with IMPORT
command, the XML document to be imported must be encoded in the
UTF-16 code page and the file type modifier CODEPAGE value must
match the UTF-16 code page or the row is rejected.
218 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
<Street>555 Lincoln Blvd</Street>
<City>San Jose</City>
<State>CA</State>
<Zip>95136</Zip>

</Address>
<Phone>

<work>408-677-8888</work>
<home>408-588-9900</home>
<mobile>408-345-7777</mobile>

</Phone>
</ContactInfo>

 1 record(s) selected.

� XMLVALIDATE USING XDS

This option indicates that XML documents are validated against a schema.
The schema used for validation is determined by the SCH attribute of the
XML Data Specifier (XDS) for each row within the main data file. The USING
XDS is a default option when XMLVALIDATE option is invoked.

In the case where the SCH attribute is omitted, no schema validation will
occur unless you specified default schema is to be used by the DEFAULT
schema_qualifier.schema_name clause. The following example shows an
example of XMLVALIDATE USING XDS option in IMPORT command.

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML"
XMLVALIDATE USING XDS

INSERT INTO db2admin.customer;

� XMLVALIDATE USING XDS DEFAULT schema_sqlid

This option can only be used when the USING XDS parameter is specified to
modify the schema determination behavior.

The schema specified through the DEFAULT clause indicates the schema to
be used for validation when an SCH attribute of the XDS is omitted. This
DEFAULT clause takes precedence over the IGNORE and MAP clause to be
address in the following paragraph. The DEFAULT, IGNORE and MAP
clauses apply to the specifications of the XDS and not to each other. In the
following example, the schema name to be used as default for validation in
the above IMPORT command is DB2ADMIN.CONTACTINFO.

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML"
XMLVALIDATE USING XDS DEFAULT DB2ADMIN.CONTACTINFO

INSERT INTO db2admin.customer;
 Chapter 5. Managing XML data 219

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
� XMLVALIDATE USING XDS IGNORE schema_sqlid

Similar to XMLVALIDATE USING XDS DEFAULT schema_sqlid, this option
can only be used when the USING XDS option is specified to modify the
schema determination behavior. You can use this option to indicate one or
more schemas to ignore if they are identified by an SCH attribute.

In the case where an SCH attribute exists in your XDS, and the schema
identified by your SCH attribute is included in the list of schemas to IGNORE,
no schema validation will take place for the imported XML documents. The
command in Example 5-39 tells IMPORT utility to ignore schema
DB2ADMIN.LOAN_APP.

Example 5-39 IMPORT: ignore XML validation

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML"
XMLPARSE PRESERVE WHITESPACE
XMLVALIDATE USING XDS DEFAULT DB2ADMIN.CONTACTINFO
IGNORE (DB2ADMIN.LOAN_APPL)

INSERT INTO db2admin.customer;

� XMLVALIDATE USING XDS MAP (schema_sqlid, schema_sqlid)

This option can be used when the USING XDS parameter is specified. You
can use the MAP clause to indicate alternate schemas to be used for
validation in place of the schemas identified by the SCH attribute of the XML
Data Specifier (XDS). The MAP clause indicates a list of one or more schema
pair where each pair represents a mapping of the original schema to a
substitute schema. The original schema is specified by SCH attribute in an
XDS, and the substitute schema is the one should be used for schema
validation.

The IMPORT command inExample 5-40 tells the IMPORT utility to use
DB2ADMIN.CUSTOMER for validation instead of the original schema
specified by SCH attribute in input data file which is
DB2ADMIN.CONTACTINFO.

Example 5-40 IMPORT validation using DB2ADMIN.CUSTOMER

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML"
XMLPARSE PRESERVE WHITESPACE
XMLVALIDATE USING XDS DEFAULT DB2ADMIN.CONTACTINFO
IGNORE (DB2ADMIN.LOAN_APPL)
MAP ((DB2ADMIN.CONTACTINFO, DB2ADMIN.CUSTOMER))

INSERT INTO db2admin.customer;
220 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
� XMLVALIDATE USING SCHEMA schema_sqlid

This option is used to indicate that all XML documents to be validated against
a specific XML schema. In this case, the SCH attribute of the XDS will be
ignored for all XML columns.

The following sample command in Example 5-41 tells DB2 IMPORT utility to
ignore whatever schema name specified in the input data file and just use the
schema DB2ADMIN.CUSTOMER for validation.

Example 5-41 Using DB2ADMIN.CUSTOMER for validation

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML"
XMLPARSE PRESERVE WHITESPACE
XMLVALIDATE USING SCHEMA DB2ADMIN.CUSTOMER

INSERT INTO db2admin.customer;

� XMLVALIDATE USING SCHEMALOCATION HINTS

This option indicates that documents are validated against the schemas
identified by XML schema location hints in the source XML documents. If a
schemaLocation (SCH) attribute in the source XML document is not found, no
validation will take place. When this option is specified, the SCH attribute of
the XDS within the main data file will be ignored for all XML columns.
Example 5-42 shows a sample command for XMLVALIDATE USING
SCHEMALOCATION HINTS.

Example 5-42 SCHEMALOCATION HINTS

IMPORT FROM "C:\Import\DATA\customer.del" OF DEL
XML FROM "C:\Import\XML"
XMLPARSE PRESERVE WHITESPACE
XMLVALIDATE USING SCHEMALOCATION HINTS

INSERT INTO db2admin.customer;

For detail information about these options, please refer to Data Movement
Utilities Guide and Reference, SC10-4227.

5.3.2 EXPORT

The EXPORT utility extracts data from DB2 tables to one or more files on your
system. The exported files can be used to import to tables in different database
on the same server or a different server. DB2 9.1 supports exporting XML data in
delimited (DEL) and integrated exchanged format (IXF).
 Chapter 5. Managing XML data 221

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Exporting XML data
EXPORT utility can generate a DEL and IXF data files that contains the
validation information in the XML Data Specifier (XDS). With DB2 9.1, XML
becomes a first-class data type, the EXPORT utility introduces several new
options to support exporting XML data.

Just like LOB, the exported XML data is always stored in a separated file from
the main data file containing your exported relational data. The main exported
data file contains one or more XML data specifier (XDS) for each row where XML
data is present. The XDS holds the information that points to the XML data and
information about XML schema that is already saved. One XDS is required for
every XML column with XML data in the table. XML data can be exported with or
without XML schema information.

EXPORT command and options
Before we use the new export options for XML data type, we take a look at each
of the options and examples to illustrate how to use them in EXPORT command.

� XML TO pathname

This option indicates one or more paths to the directory in which the exported
XML files are to be stored. If the option XML TO is omitted, the XML file will
be written to the same path to which the exported relational data is written.
The following sample command shows how XML TO option is used.

EXPORT TO <path/main_data_file_name> OF DEL
XML TO <path/output.xml>

SELECT * FROM db2admin.customer;

The main data file is written to C:\Export\DATA\customer.del and all XQuery
data model (QDM) instances are written to files
C:\Export\XML\customer.del.001.xml.

When more than one path is specified with XML TO option in the EXPORT
command, DB2 export utility will cycle between the paths to write each
successive XQuery Data Model (QDM) instance to the appropriate XML file.
Example 5-43 shows the EXPORT command with XML TO option to direct
XML file to be written to separated paths.

Example 5-43 Export with XML TO option specified output more than one path

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\Export\DATA", "C:\export\XML"

SELECT * FROM db2admin.customer;

This command generates the main data file customer.del in C:\export\DATA.
The QDM instances are written to two file locations as specified in the
222 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
EXPORT command. They are C:\Export\DATA\customer.del.001.xml and
C:\Export\XML\customer.del.002.xml.

� XMLFILE filename

This options indicates the base file names to be used for XML data. This
option works similarly to export LOB data. The following example shows this
option is used in the EXPORT command.

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\Export\DATA", "C:\export\XML"
XMLFILE "CUSTINFO"

SELECT * FROM db2admin.customer;

This command generates the main data file customer.del under
C:\Export\DATA directory. The QDM instances are written to two locations as
specified in EXPORT command. They are
C:\Export\DATA\CUSTINFO.001.xml and
C:\export\XML\CUSTINFO.002.xml.

As we have learned from DB2 8, the LOBINFILE option provides a means to
specify the base name of the LOB file generated by the EXPORT utility.
Similarly, in DB2 9.1, the XMLFILE option specify the name of the XML file
generated by the export utility.

By default, the XML file base name is the name of the exported data file with
.xml extension. The full name of the XML file consist of the base name,
followed by a number extension that is padded to three digits, and the .xml
extension. For LOB, the full name would consists of the base name, followed
by a number extension that is padded to three digits and .lob extension.

� MODIFIED BY XMLNODECLARATION

This option in Example 5-44 indicates that QDM are written without an XML
declaration tag. QDM instances are exported with an XML declaration tag that
includes an encoding attribute at the beginning of the XML file by default.

Example 5-44 Modifying by XMLNODECLARATION

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\Export\DATA", "C:\export\XML"
XMLFILE "CUSTINFO"
MODIFIED BY XMLNODECLARATION

SELECT * FROM db2admin.customer;

� MODIFIED BY XMLCHAR

This option in Example 5-45 on page 224 indicates that QDM instances are
written in the character code page. The character code page is the value that
can be controlled by specify the CODEPAGE file type modifier. If it is not
 Chapter 5. Managing XML data 223

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
specified, the application code is applied. QDM instances are written out in
Unicode (UTF-8) by default.

Example 5-45 Modifying BY XMLCHAR

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\Export\DATA", "C:\export\XML"
XMLFILE "CUSTINFO"
MODIFIED BY XMLCHAR

SELECT * FROM db2admin.customer;

� MODIFIED BY XMLGRAPHIC

This options indicates that the encoding to be used for the exported XML
document is XMLGraphic codepage. When this modifier is used in the
EXPORT command, your exported XML document will be encoded in UTF-16
regardless of the CODEPAGE file type modifier or the application code page.
See, Example 5-46.

Example 5-46 Modifying by XMLGRAPHIC

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\Export\DATA", "C:\export\XML"
XMLFILE "CUSTINFO"
MODIFIED BY XMLGRAPHIC

SELECT * FROM db2admin.customer;

� MODIFIED BY XMLINSEPFILES

When this option is specified, each QDM instance is written to a separate file.
By default all exported XML documents are concatenated together in the
same file. When you specify MODIFIED BY XMLINSEPFILES, each of the
exported XML document will be placed in a separate file. See Example 5-47.

Example 5-47 Modifying by XMLINSEPFILES

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\Export\DATA", "C:\export\XML"
XMLFILE "CUSTINFO"
MODIFIED BY XMLINSEPFILES

SELECT * FROM db2admin.customer;

� MODIFIED BY LOBINSEPFILES

Similarly to XMLINSEPFILES option, this option indicates each LOB value is
to be written into a separate file. By default, multiple values are concatenate
together in a same exported LOB file. Example 5-48 on page 225 and
Example 5-49 on page 225 show the EXPORT command with MODIFIED BY
LOBSINSEPFILE option.
224 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
In Example 5-48, all LOBs values are written to the file
C:\Export\LOB\CUST_INFO.001.lob and all XML data are written to the file
C:\Export\XML\CUST_INFO.001.xml.

Example 5-48 Using MODIFIED BY LOBSINSEPFILE option - all LOBs are in one file

EXPORT TO "a" OF DEL
LOBS TO "C:\Export\LOB" LOBFILE "CUST_INFO"
XML TO "C:\Export\XML"
XMLFILE "CUST_INFO"
MODIFIED BY LOBSINFILE

SELECT * FROM db2admin.customer;

In Example 5-49, each LOB value is written to a separate file under specified
directory C:\Export\LOB. The base name for the exported LOB file is
CUST_INFO.00X.lob where X increases with each LOB value to be exported.
Each QDM instance is written to C:\Export\XML\CUST_INFO.001.xml.

Example 5-49 Using MODIFIED BY LOBSINSEPFILE option - separated LOB files

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
LOBS TO "C:\Export\LOB"
LOBFILE "CUST_INFO"
XML TO "C:\Export\XML"
XMLFILE "CUST_INFO"
MODIFIED BY LOBSINFILE LOBSINSEPFILES

SELECT * FROM db2admin.customer;

� XMLSAVSCHEMA

This option indicates that XML schema information should be saved for all
XML columns. For each exported XML document that was validated against
an XML schema at the time it was inserted, this option specifies that the name
of the XML schema used to validate the XML document be written to the
corresponding XML Data Specifier (XDS) as an SCH attribute.

In the case where the exported document was not validated against an XML
schema or that XML schema no longer existed in the database, the SCH
attribute will be omitted in the XDS.

EXPORT command with XMLSAVESCHEMA option is shown in this
example:

EXPORT TO "C:\Export\DATA\customer.del" OF DEL XMLSAVESCHEMA
SELECT * FROM db2admin.customer;
 Chapter 5. Managing XML data 225

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
The main data file is written to file C:\Export\DATA\customer.del and the
QDM instance is written to XML file C:\Export\DATA\customer.del.001.xml.
The content of the main data file looks as follows:

10000,"Sarah Young","<XDS FIL='customer.del.001.xml' OFF='0'
LEN='273' SCH='DB2ADMIN.CONTACTINFO' />"
10001,"Jay Martins","<XDS FIL='customer.del.001.xml' OFF='273'
LEN='266' SCH='DB2ADMIN.CONTACTINFO' />"

Example 5-50 shows how to specify an XML file location and file name prefix.

Example 5-50 Specify XML file location and prefix

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\export\XML"
XMLFILE "CUSTINFO"
MODIFIED BY XMLINSEPFILES XMLSAVESCHEMA

SELECT * FROM db2admin.customer;

Each XML file is written to a separated file with default file name
C:\export\XML\CUSTINFO.001.xml and C:\export\XML\CUSTINFO.0002.xml.

Export command examples and outputs
Now that we have seen how all the new EXPORT options that support XML data
type, we can apply some of these options with our sample CUSTOMER table to
export the XML data.

Example 5-51 shows a sample EXPORT command with XML TO, XMLFILE, and
MODIFIED BY XMLINSEPFILES options and the output the command produces.

Example 5-51 EXPORT command and output

----------------------------- Commands Entered -----------------------
CONNECT TO DEMO;
SELECT * FROM DB2ADMIN.CUSTOMER;
EXPORT TO "C:\Export\DATA\customer.del" OF DEL

XML TO "C:\Export\XML"
XMLFILE "CUST_INFO"
MODIFIED BY XMLINSEPFILES XMLSAVESCHEMA

SELECT * FROM DB2ADMIN.CUSTOMER;

CONNECT TO DEMO;

 Database Connection Information

 Database server = DB2/NT 9.1.0
 SQL authorization ID = DB2ADMIN
226 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
 Local database alias = DEMO

SELECT * FROM DB2ADMIN.CUSTOMER

ID NAME CONTACT_INFO
----------- -------------------- --------------------------------------
10000 Sarah Young <ContactInfo><Address><Street>22
Willow Street </Street><City>Los Gatos </City><State>CA
</State><Zip>95030</Zip></Address><Phone><work>408-677-8888
</work><home>408-588-9999 </home><mobile>408-345-6666
</mobile></Phone></ContactInfo>

10001 Jay Martins <ContactInfo><Address><Street>555
Lincoln Blvd</Street><City>San
Jose</City><State>CA</State><Zip>95136</Zip></Address><Phone><work>408-
677-8888</work><home>408-588-9900</home><mobile>408-345-7777</mobile></
Phone></ContactInfo>

 2 record(s) selected.

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\Export\XML"
XMLFILE "CUST_INFO"
MODIFIED BY XMLINSEPFILES XMLSAVESCHEMA

SELECT * FROM DB2ADMIN.CUSTOMER

SQL3104N The Export utility is beginning to export data to file
"C:\Export\DATA\customer.del".

SQL3105N The Export utility has finished exporting "2" rows.

Number of rows exported: 2

Two XML files produced as the result of the EXPORT command are
C:\export\XML\CUSTINFO.001.xml and C:\export\XML\CUSTINFO.002.xml. The
main data file C:\Export\DATA\customer.del produced with content shows in
Example 5-52 on page 228.
 Chapter 5. Managing XML data 227

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Example 5-52 Main data file created by EXPORT

10000,"Sarah Young","<XDS FIL='CUST_INFO.001.xml'
SCH='DB2ADMIN.CONTACTINFO' />"
10001,"Jay Martins","<XDS FIL='CUST_INFO.002.xml'
SCH='DB2ADMIN.CONTACTINFO' />"

When you specify XML TO option for EXPORT command, be sure that the path
name is correct or the EXPORT command will fail. If you specify the EXPORT
command with the XMLTO option to a directory or path that does not exist, the
EXPORT command raises error SQL3235N that the EXPORT utility cannot use
the specified path. Example 5-53 illustrates the error received when you specify
the bad path name.

Example 5-53 EXPORT command with XMLTO option to non-existing path

------------------------------ Commands Entered -----------------------
EXPORT TO "C:\Export\DATA\customer.del" OF DEL

XML TO "C:\export\BADFOLERNAME\"
XMLFILE "CUSTINFO"
MODIFIED BY XMLINSEPFILES

SELECT * FROM DB2ADMIN.CUSTOMER;
SELECT * FROM DB2ADMIN.CUSTOMER;

EXPORT TO "C:\Export\DATA\customer.del" OF DEL
XML TO "C:\export\BADFOLERNAME\"
XMLFILE "CUSTINFO"
MODIFIED BY XMLINSEPFILES

SELECT * FROM DB2ADMIN.CUSTOMER

SQL3235N The utility cannot use the "XML" path
"C:\export\BADFOLERNAME\"
parameter as specified. Reason code: "3".

SQL3235N The utility cannot use the "XML" path
"C:\export\BADFOLERNAME\" parameter as specified. Reason code: "3".

Explanation:

 One of the following reason codes may apply:

 1 Either the path "<path-name>" is not a valid sqlu_media_list
or the values provided are not valid. The media_type must be
SQLU_LOCAL_MEDIA and all path names must be terminated with a
228 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
valid path separator.

 2 There is not enough space on the paths provided for the EXPORT
utility to hold all the data of type "<type>".

 3 The path "<path-name>" cannot be accessed.

User Response:

 Determine which reason code applies above, correct the problem,
and resubmit your command.

5.3.3 RUNSTATS

The RUNSTATS command updates statistics about physical characteristics of
table columns and associated indexes. These statistics include information such
as number of records, number of pages, and average record length. These
statistics are used by the DB2 optimizer to determine the optimal access paths to
the data.

As XML becomes a native data type in DB2 9.1, RUNSTATS utility has been
updated to collect XML column statistics. The statistic collected are at both XML
document and node level. This information is used for cost estimation when
selecting execution plans. This information is not available at catalog for user to
view or update in the first release of DB2 9.1.

XML column statistics
DB2 9.1 collects XML statistics by using sampling technique. DB2 RUNSTATS
command calls XML statistics collection routine which invokes the XML runtime
routine to traverse through the XML document in each row of an XML column to
gather statistics.

The statistics collected for XML columns are composed of path distribution data
and path-value distribution data at document and node level. This data is
collected by sampling every XML document in the table and determining all the
various XPath expressions contained in the documents. For every XPath
expression, DB2 collects path distribution data and path-value distribution data.

� Path distribution data contains the number of rows that contain the XPath and
the number of times the XPath is encountered within each XML document.
This data can be described in terms of <pathid, value, docCount, nodeCount>
where:

– pathid is the XPath expression.
 Chapter 5. Managing XML data 229

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
– value is result of the XPath expression.

– docCount is the number documents that contains a matching value for the
XPath.

– nodeCount is the number of XML element has the matching value for the
XPath.

� Path-Value distribution data contains the value of the XPath expression, the
number of rows that contain the same value for the XPath and the number of
times in each XML document the same value for the XPath was encountered.
This data can be represented as <pathid, value, docCount, nodeCount>.

Statistics collection on XML type columns is governed by two DB2 database
system registry values:

� DB2_XML_RUNSTATS_PATHID_K
� DB2_XML_RUNSTATS_PATHVALUE_K

These two parameters are similar to the NUM_FREQVALUES parameter in that
they specify the number of frequency values to collect. If not set, a default of 200
will be used for both parameters.

RUNSTATS considerations with XML columns and indexes
Keeping statistics up-to-date are required for the most efficient access to the
data. You should consider running the RUNSTATS utility to collect statistics on
XML columns in the following situations:

� When XML data has been imported into a table and indexes have been
created.

� When new XML indexes are created.

� When the XML documents in the table have been extensively updated.

� When the XML indexes have been updated extensively where extensively in
this case might mean 10 to 20 percent of the XML indexes.

� When a table has been reorganized with the REORG utility.

� When you want to compare current and previous XML statistics.

In DB2 8, RUNSTATS is a stateless command that wipes out previously
collected statistics when a new RUNSTATS command is issued. In DB2 9.1,
when RUNSTATS utility is used to collect statistics for XML columns only, all
existing statistics for non-XML columns previously collected are retained. For the
XML columns with previously collected statistics, they will be merged or updated
with the XML columns statistics collected by the current RUNSTATS command.

Automatic statistic collection by default will include all XML columns and indexes.
The Automatic statistic collection feature analyzes differences between statistics
230 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
over time to determine when it needs to execute RUNSTATS again. These
decisions are currently based solely on relational statistics. Therefore, any
changes on XML columns would not affect autoRunstats decision. In DB2 9.1,
the autoRunstats cannot be configured to exclude XML columns.

The performance of RUNSTATS is directly related to the size and the complexity
of your XML documents. One thing to keep in mind is the performance of
RUNSTATS on XML columns depends heavily on the traversal operation. If you
have a very large table that contains a significant number of complex XML
documents, it can take time for RUNSTATS to traverse through each document.

RUNSTATS command support
In DB2 9.1, the RUNSTATS utility has been updated to support the collection of
statistics on DB2 table that contains XML columns and indexes over XML data.

Other RUNSTATS options that are supported for non-XML columns in V8 are
kept unchanged for non-XML columns, but they are not applicable or not
supported for XML columns in DB2 9.1. When you supply these options for XML
columns in RUNSTATS command, they are simply ignored.

Since DB2 9.1 RUNSTATS utility collects very basic statistics for XML data,
there are no extra command line options for RUNSTATS over XML columns
introduced in DB2 91.

The following RUNSTATS command formats are supported in DB2 9.1:

� RUNSTATS ON TABLE schemaName.tableName

This command collects columns statistic on all columns of the table. For each
XML columns in the table, the basic XML statistic are collected.

Assuming that we have an EMPLOYEE table defined with following columns:

CREATE TABLE db2admin.employee (c1 int, c2 int, xcol1 XML, xcol2
XML);

The following RUNSTATS command will collects statistics for all columns
including XML statistics for both xcol1 and xcol2.

RUNSTATS ON TABLE db2admin.employee;

� RUNSTATS ON TABLE schemaName.tableName ON COLUMNS columnList

This command collects basic column statistics for all columns included in the
columnList. For each XML column in the columnList, the basic XML statistics
are collected.

Assuming we have the same EMPLOYEE table, the following command
collects XML statistics for xcol1 and xcol2.

RUNSTATS ON TABLE db2admin.customer ON COLUMNS(xcol1,xcol2);
 Chapter 5. Managing XML data 231

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
If you want to collect XML statistics for xcol1 only, for format for the command
is written this way:

RUNSTATS ON TABLE db2admin.employee ON COLUMN(xcol1);

� RUNSTATS ON TABLE schemaName.tableName ON COLUMNS columnList1
WITH DISTRIBUTION ON COLUMNS columnList2

This command collects basic column statistics on all columns included in
columnList1 plus distribution statistics for all columns included in columnList2.
For each XML column that included either columnList1 or columnList2, the
basic column statistics are collected because the basic XML column statistics
are the same as the distribution statistic for any XML column.

Using the EMPLOYEE table, the following two commands collect XML
statistics for both xcol1 and xcol2:

RUNSTATS ON TABLE db2admin.employee ON COLUMN(c1) WITH DISTRIBUTION;

RUNSTATS ON TABLE db2admin.employee ON COLUMNS(c1) WITH DISTRIBUTION
ON COLUMNS (xcol2, xcol2);

If you only want to collect XML statistics for column xcol1, the RUNSTATS
command would look similar to:

RUNSTATS ON TABLE DB2ADMIN.EMPLOYEE ON COLUMNS(xcol1) WITH
DISTRIBUTION(xcol1);

� RUNSTATS ON TABLE schemaName.tableName EXCLUDING XML
COLUMNS

For the convenience of users, DB2 9.1 supports a new clause for a
RUNSTATS utility called EXCLUDING XML COLUMNS. You can specify the
EXCLUDING XML COLUMNS clause in the RUNSTATS command to
exclude all XML columns from statistic collection if statistics for XML columns
are not required or if you want to have XML columns statistics to be collected
at another time.

The EXCLUDING XML COLUMNS clause takes precedence over all other
clauses that specify XML columns for RUNSTATS, so be aware that the
EXCLUDING XML COLUMNS can be ambiguous at times.

For example, in the following RUNSTAT command:

RUNSTATS ON TABLE db2admin.employee ON COLUMNS(c1, xcol2) WITH
DISTRIBUTION ON ALL COLUMN EXCLUDING XML COLUMN

No statistics for XML column xcol2 are collected even though you explicitly
specify the xcol2 in the column list because you have the EXCLUDING XML
COLUMNS clause specified. The RUNSTATS command simply omitted all of
XML columns from statistic collection in this case.
232 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
5.4 XML data security

In this section, we introduce two ways to achieve access control on data stored in
XML column:

� Access control at row-level and column-level
� Access control at XML nodes-level

Row-level access control means that you can control which users are allowed to
access which rows. Column-level access control means that you can control
user access at column-level. To achieve these controls, we can use the new DB2
9 feature label-based access control (LBAC).

An access control at XML nodes level means that you can control user access
level on the XML elements or attributes inside one XML documents. To achieve
this, we can use VIEW and XMLTABLES function.

5.4.1 LBAC

LBAC is a new DB2 9 security feature which provides a configurable capability to
control access on individual rows and columns. A security administrator who is
granted with SECADM authority performs the LBAC security setup. The security
administrator configures the LBAC system by creating security policies. A
security policy describes the criteria that are used to decide who has access to
specific data. Under the security policy, the security administrator creates
security labels and associates the label with the rows and columns to be
protected. The SECADM also associates labels with users. The LBAC policies
compare the data labels with the users label to determine if the user has access
to the specific row or column.

Security labels have new data type DB2SECURITYLABEL. New SECURED
WITH option is added to CREATE TABLE and ALTER TABLE statements for
associate the security label with the rows or columns.

SECADM
SECADM authority is a brand new authority in DB2 9. SECADM is aimed to
centralize security privileges. The abilities given by SECAMD are not give by any

Note: In DB2 9.1, RUNTSTATS does not support the KEY COLUMNS clause
for XML data type since an XML type column cannot be a key column.
 Chapter 5. Managing XML data 233

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
other authority, not even SYSADM. Functions that only SECADM is allowed are
following:

� Crete and drop security label components.
� Create and drop security policies.
� Create and drop security labels.
� Grant and revoke security labels.
� Grant and revoke LBAC rule exemptions.
� Grant and revoke SETSESSIONUSER privileges.
� Execute the SQL statement TRANSFER OWNERSHIP on objects that you do

not own.

5.4.2 Row and column-level access control

In this section we show you how to implement Label-based access control
(LBAC) to control the user access in row and column level. LBAC is a new DB2 9
security feature which provides the capability to control read and write access in
more granular level in the row, and column. As a result, data security is greatly
increased.

A tutorial for learning document-level security using DB2 9 pureXML and LBAC
can be found in the following Web site:

http://www.ibm.com/developerworks/edu/dm-dw-dm-0607williams-i.html

Employee records scenario
In this scenario we have a small company that stores all the employee
information in a database. The employee information is categorized into general
information and confidential information. Only the personnel in human resources
can access the confidential personal information. The general employee
information can be accessed by all employees. The data security policy further
prohibited the regular employee from viewing managers’ general information.

Figure 5-11 on page 235 illustrates the data security requirements. USERA in
human resources can access all the employee data, including both confidential
and general information. The regular employee, USERB, can only see the
general information of employees with nonmanagement roles, such as engineer
and architect.
234 DB2 9 pureXML Guide

http://www.ibm.com/developerworks/edu/dm-dw-dm-0607williams-i.html

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Figure 5-11 New security policy

In order to adopt this security policy, we separate the employee information into
two parts, general and confidential. Each of them is described as an XML
document and stored into two XM columns. Example 5-54 shows a sample of
general information in XML format.

Example 5-54 General information

<Employee>
 <Name>John Smith1</Name>
 <EmpNo>001</EmpNo>
 <Title>Manager</Title>
 <Phone type="work">312-964-0001</Phone>
 <Email>john.smith1@my.com</Email>
</Employee>

Example 5-55 is a sample of employee confidential information in XML format.

Example 5-55 Confidential information

<Employee>
 <Name>John Smith1</Name>
 <EmpNo>001</EmpNo>
 <DateOfBirth>2/21/1967</DateOfBirth>
 <SSN>892-76-0001</SSN>

HR

UserA

UserB

General Information For management

Employee Database

General Information for Regular Employees

Confidential Information for Regular Employees

Confidential Information management

CEO Director Manager

Engineer Architect
 Chapter 5. Managing XML data 235

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
 <Address country="US">
 <Street>1 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 <Phone type="home">678-181-0001</Phone>
 </Address>
 <Salary>10000</Salary>
</Employee>

The employee table has an ID column, two columns for XML documents, and a
column for LBAC. Figure 5-12 illustrates the data model for the employee table
EMP. The general information of each employee is stored in EMP1 column and
the confidential information is stored in EMP2 column. USERA from HR is
authorized to access all the data in the EMP table. The regular employee
USERB can only access column EMPID and EMP1 in row#2 and row#3 where
row#2 is a record of an engineer and row#3 is a record of an architect. The
columns USERB can access is highlighted in gray.

Figure 5-12 Data mode of EMP table and access scope of USERA and USERB

Employee Database

EMP1 (XML) EMP2 (XML)

004

005

003

002

001

SECEMPID

HR

UserA

UserB

EMP Table

<?xml version="1.0"?>
<Employee>
<Name>John Smith5</Name>
<EmpNo>005</EmpNo>
<DateOfBirth>2/25/1967</DateOfBirth>
<SSN>892-76-0005</SSN>
<Address country="US">

<Street>5 East Main Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95034</Zip>

<Phone type="home">678-181-0005</Phone>
</Address>
<Salary>50000</Salary>

</Employee>

Manager

Engineer

Architect

Director

CEOUserB can only
access gray
cells

<?xml version="1.0"?>
<Employee>
<Name>John Smith5</Name>
<EmpNo>005</EmpNo>
<Title>Manager</Title>
<Phone type="work">312-964-0005</Phone>
<Email>john.smith5@my.com</Email>

</Employee>'),

UserA can
access
everything.
236 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Implementing LBAC
In this section, we show the procedure of implementing data security using
LBAC. Following are the steps required to setup the LBAC:

1. Appointing a security administrator
2. Creating a security label component
3. Creating a security policy
4. Creating a security label
5. Adding security policy to table
6. Assigning security labels to users
7. Verifying the security setting

Appointing a security administrator for LBAC
To implement LBAC, the administrator ID needs to have security administration
authority SECADM. No other DB2 authorities, including SYSADM, can
implement LBAC. In our scenario, we create an user ID db2lbac to be used as
security administrator. Grant SECADM authority to db2lbac user using the
following commands:

CONNECT to XMLRB user db2admin using db2admin;
GRANT secadm on database to user db2lbac;

Creating a LBAC security label component
A LBAC security label component is used to model a security structure of an
organization. In this scenario, we use an array type of LBAC security label
component. Within the array, the sequence of element represents the level of
trust. The first element has the highest trust level and the last element has the
lowest trust level. In our example, SECRET element is higher than
NONCLASSFIED element.

Login to the database as db2lbac to create a LBAC security label component
using the following commands:

CONNECT TO XMLRB USER db2lbac USING db2lbac
CREATE SECURITY LABEL COMPONENT emp_comp ARRAY
['SECRET','NONCLASSIFIED']

Creating a LBAC security policy
An LBAC security policy defines the security label component to be used and the
rules. We create an LBAC security policy EMP_POLICY to attach to the EMP
table using the following command:

CREATE SECURITY POLICY emp_policy COMPONENTS emp_comp WITH
DB2LBACRULES RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
 Chapter 5. Managing XML data 237

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
The RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL clause indicates that
the insert or update operation will fail if the user is not authorized to write the
explicitly specified security label that is provided in the INSERT or UPDATE
statement.

Creating a LBAC security label
An LBAC security label describes a certain set of security criteria for protecting
data. Once defined, security label can be granted to allow users to access
protected data. When a user tries to access data protected by LBAC, DB2
checks the user’s authorized security label with the security label of the data and
determines if the user has the authority to access that data.

The syntax of security label is:

CREATE SECURITY LABEL [label] COMPONENT [security label component name]
[element name]

If you want to create two security labels for USERA and USERB with
EMP_COMP security label component, those should be similar to the following:

CREATE SECURITY LABEL emp_policy.hr_only COMPONENT emp_comp 'SECRET'
CREATE SECURITY LABEL emp_policy.public COMPONENT emp_comp
'NONCLASSIFIED'

Grant each LBAC security label to users use the following commands in
Example 5-56.

Example 5-56 Granting LBAC security labels

GRANT SECURITY LABEL emp_policy.hr_only TO USER usera FOR ALL ACCESS
GRANT SECURITY LABEL emp_policy.public TO USER userb FOR ALL ACCESS
GRANT SECURITY LABEL emp_policy.hr_only TO USER db2admin FOR ALL
ACCESS
GRANT SECURITY LABEL emp_policy.public TO USER db2admin FOR ALL
ACCESS
GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN FOR emp_policy
TO USER db2admin

The GRANT EXEMPTION statement gives DB2ADMIN an access rule exception
for the security policy. With this exception, DB2ADMIN can create a table and
insert data into tables that are associated with EMP_POLICY.

Adding security policy to the table
The security policy can be added to table during creating table or by altering
table. In this example, we show you how to add security policy in CREATE
TABLE statement. Following are the statements to create EMP table:
238 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Example 5-57 Adding the security policy

CONNECT TO XMLRB USER db2admin USING db2admin
CREATE TABLE "EMP" (
 ID char(3) NOT NULL PRIMARY KEY,
 EMP1 XML,
 EMP2 XML SECURED WITH HR_ONLY,
 SEC DB2SECURITYLABEL) SECURITY POLICY EMP_POLICY;

The EMP2 column must be protected and it is defined with SECURED WITH
clause with the security label HR_ONLY. We also need to protect those rows
store the managers information. For this, we have SEC column defined as
DB2SECURITYLABLE type for storing LBAC information. When a row is
inserted, the HR_ONLY label will be added. The SECURITY POLICY clause
associates the security policy with the table.

After the table is created, grant SELECT, INSERT, UPDATE, DELTE privilege to
USERA and USERB on EMP table using the following commands:

GRANT select, insert, update, delete ON db2admin.emp TO USER userb
GRANT select, insert, update, delete ON db2admin.emp TO USER usera

Verifying the LBAC security setting
Add some data into the table so we can verify the LBAC security setting we just
implemented. Example 5-58 shows an example insert statement for John Smith1
whose title is manager. Since his title is manager, this row should be protected by
HR_POLICY label. The SECLABEL_BY_NAME ('EMP_POLICY', 'HR_ONLY') puts
HR_ONLY label into SEC column so that this row is protected and only the
authorized user can access the data. The insert statements for John Smith2 to
John Smith5 are in Appendix A, “Sample data” on page 361.

Example 5-58 Insert protected data

INSERT INTO EMP VALUES (
 '001',
 XMLPARSE(DOCUMENT
 '<?xml version="1.0"?>
 <Employee>
 <Name>John Smith1</Name>
 <EmpNo>001</EmpNo>
 <Title>Manager</Title>
 <Phone type="work">312-964-0001</Phone>
 <Email>john.smith1@my.com</Email>
 </Employee>'),
 XMLPARSE(DOCUMENT
 '<?xml version="1.0"?>
 Chapter 5. Managing XML data 239

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
 <Employee>
 <Name>John Smith1</Name>
 <EmpNo>001</EmpNo>
 <DateOfBirth>2/21/1967</DateOfBirth>
 <SSN>892-76-0001</SSN>
 <Address country="US">
 <Street>1 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 <Phone type="home">678-181-0001</Phone>
 </Address>
 <Salary>10000</Salary>
 </Employee>'),
SECLABEL_BY_NAME('EMP_POLICY','HR_ONLY'));

The security setting can be verified by trying to access the data as USERA or
USERB using the following SELECT statement:

SELECT ID,
xmlquery('$c/Employee/Name' passing emp1 as "c") as NAME,
xmlquery('$c/Employee/Title' passing emp1 as "c") as TITLE
FROM DB2ADMIN.EMP

Example 5-59 shows the result set from USERA and USERB using the same
query. The result sets are different due to the security restriction. USERA who
has authorized to use HR_ONLY security label received all the records in the
EMP table. USERB can only get two rows which contain personnel records of
nonmanagement employees. The DB2 LBAC mechanism detects that USERB
has authority of PUBLIC label only and does not allow USERB to access data
labeled with HR_ONLY, confirming that row-level protection is successfully
implemented.

Example 5-59 Query result from USERA

-- Result set from USERA
NAME TITLE
----------------------------- ---------------------------------
001 <Name>John Smith1</Name> <Title>Manager</Title>
002 <Name>John Smith2</Name> <Title>Engineer</Title>
003 <Name>John Smith3</Name> <Title>Architect</Title>
004 <Name>John Smith4</Name> <Title>Director</Title>
005 <Name>John Smith5</Name> <Title>CEO</Title>

-- Result set from USERB
240 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
NAME TITLE
----------------------------- ---------------------------------
002 <Name>John Smith2</Name> <Title>Engineer</Title>
003 <Name>John Smith3</Name> <Title>Architect</Title>

To check the column-level protection, the following query is run by USERA and
USERB.

SELECT ID,
xmlquery('$c/Employee/Name' passing emp1 as "c") as NAME,
xmlquery('$c/Employee/Salary' passing emp2 as "c") as SALARY
FROM DB2ADMIN.EMP

Example 5-60 shows the result from USERA and USERB. The USERA can issue
the XQuery on EMP2 column because it is labeled as HR_ONLY and USERA is
authorized on this label. The USERB receives error message indicating that he is
not authorized to read data from EMP2 column. This confirms that the column-
level access control is also successfully implemented.

Example 5-60 Result of accessing protected data

-- Result from USERA --
001 <Name>John Smith1</Name> <Salary>10000</Salary>
002 <Name>John Smith2</Name> <Salary>20000</Salary>
003 <Name>John Smith3</Name> <Salary>30000</Salary>
004 <Name>John Smith4</Name> <Salary>40000</Salary>
005 <Name>John Smith5</Name> <Salary>50000</Salary>

-- Result from USERB --
SQL20264N For table "EMP", authorization ID "USERB" does not have
"READ"
access to the column "EMP2". SQLSTATE=42512

5.4.3 Node-level access control

VIEW is a virtual table which can present data from several tables or from a
subset of a table. Since DB2 provides access control on a view like a table, we
can utilize this DB2 feature to achieve the node level access control on XML
data.

Employee table scenario
In this scenario we continue use the employee table. The employee information
is still categorized into general information and confidential information.
However, the security requirements are less strict. The general employee
 Chapter 5. Managing XML data 241

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
information can be accessed by all employees. The personnel in the human
resources department can access the confidential personal information.

Figure 5-13 is a conceptual diagram of this scenario. USERA is a member of
human resources who can access everything in the employee database. USERB
is a regular employee and is only allowed to access general information such as
employee number, e-mail address, work telephone, and so forth.

Figure 5-13 Logical diagram of security model

In this scenario. a table, EMPLOYEE, is created to store employees’ information in
XML format. There are five employees, John Smith1~ JohnSmith5, in this
database. We want to define the range that USERA and USERB can access.

Figure 5-14 on page 243 illustrates the logical model and access control required
for the EMPLOYEE table. There are five XML documents stored in EMP column in
the EMPLOYEE table. USERA can access all information in XML documents, on the
other hand, USERB can only access the following general information:

� /Employee/Name
� /Employee/EmpNo
� /Employee/Title
� /Employee/Email

HR

USERA

USERB

General Employee Information:
Name
Employee No
Work Phone
etc.

Employee Database

Confidential Employee Information:
Address
SSN
Home Phone
Salary
etc.
242 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Figure 5-14 data model of EMPLOYEE table and access range for USERA and USERB

What do we do to construct a security model to meet these requirements? If you
simply give USERA and USERB select authority for the EMPLOYEE table, USERB
would be able to issue XQuery to the EMPLOYEE table and select the confidential
data. The simplest way to achieve this data-access security requirement is using
the view in DB2. You can map element and attribute values in XML documents
into relational column and then define views for USERA and USERB. There are
several ways to map XML elements and attribute into relational columns. We use
XMLTABLE functions in this scenario.

Figure 5-15 on page 244 illustrates how data access can be restricted using
views. Two views are defined for USERA and USERB. Both are based on
EMPLOYEE table. These two views reflect the result sets of XMLTALBES function
from DB2ADMIN.EMPLOYEE table. We show the scenario setup and creating view
commands in next section.

Employee Database

004

005

003

002

001

EMP (XML)EMPID

HR

UserA

UserB

<?xml version="1.0"?>
<Employee>

<Name>John Smith1</Name>
<EmpNo>001</EmpNo>
<Title>Manager<Title>
<DateOfBirth>2/21/1967</DateOfBirth>
<SSN>892-76-0001</SSN>
<Address country="US">

<Street>1 East Main Street</Street>
<City>Los Gatos</City>
<State>CA</State>
<Zip>95034</Zip>

<Phone type="home">678-181-0001</Phone>
<Phone type="work">312-964-0001</Phone>
<Phone type="home">678-181-0001</Phone>
<Email>john.smith1@my.com</Email>
<Salary>10000</Salary>

</Employee>

EMPLOYEE Table

JohnSmith1

JohnSmith2

JohnSmith3

JohnSmith4

JohnSmith5

can access
every information.

can access

only general

inform
atio

n.
 Chapter 5. Managing XML data 243

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 5-15 Restricting access via views

Establishing access control
In this section, we provide a step-by-step process of setting up node-level access
control through the view. We provide database setup procedures and commands
for creating views.

Creating user IDs
In this scenario, we use two user IDs, USERA and USERB. The IDs should be
created in the operating system.

Creating the EMPLOYEE table
The EMPLOYEE table has two columns: ID and EMP columns. The EMP column
stores employee information as XML documents. Use the following command to
create EMPLOYEE table:

connect to XMLRB user db2admin using db2admin;
CREATE TABLE "EMPLOYEE" (
 ID char(3) NOT NULL PRIMARY KEY,
 EMP XML)

Employee Database

<Employee/>004

<Employee/>005

<Employee/>003

<Employee/>002

<Employee/>001

EMP (XML)EMPID

HR

UserA

UserB

DB2ADMIN.EMPLOYEE Table

DATEOF
BIRTH

SSN ADDRESS WORKPH
ONE

HOMEPH
ONE

EMPNAME EMAIL SALARY

004

005

003

002

001

EMPNO

WORKPHONEEMPNAME EMAIL

004

005

003

002

001

EMPNO

VIEW : CONFIDENTIAL_EMP_DATA (ALIAS EMPLOYEE)

VIEW : GENERAL_EMP_DATA (ALIAS EMPLOYEE)

CREATE VIEW CONFIDENTIAL_EMP_DATA as (
SELECT X.* from
XMLTABLE ('db2-

fn:xmlcolumn("EMPLOYEE.EMP")/Employee'
COLUMNS
"NAME" VARCHAR(32) PATH 'Name',
………………………………………..

) AS "X")

CREATE VIEW GENERAL_EMP_DATA as (
SELECT X.* from
XMLTABLE ('db2-

fn:xmlcolumn("EMPLOYEE.EMP")/Employee'
COLUMNS
"NAME" VARCHAR(32) PATH 'Name',
……………………………….

) AS "X")
244 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Importing XML document from files
Example 5-61 is one of the employee XML file that needs to be inserted. All the
sample XML data are in Appendix A, “Sample data” on page 361.

Example 5-61 employee001.xml

<?xml version="1.0"?>
<Employee>
 <Name>John Smith1</Name>
 <EmpNo>001</EmpNo>
 <DateOfBirth>2/21/1967</DateOfBirth>
 <SSN>892-76-0001</SSN>
 <Address country="US">
 <Street>1 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 </Address>
 <Phone type="work">312-964-0001</Phone>
 <Phone type="home">678-181-0001</Phone>
 <Email>john.smith1@my.com</Email>
 <Salary>10000</Salary>
</Employee>

The IMPORT command we used to move data into the table is:

IMPORT FROM impfile.txt OF DEL XML FROM . MODIFIED BY XMLCHAR
REPLACE INTO db2admin.employee

The XDS describing the XML data files is as shown in Example 5-62.

Example 5-62 impfile.txt

"001","<XDS FIL='employee001.xml' />"
"002","<XDS FIL='employee002.xml' />"
"003","<XDS FIL='employee003.xml' />"
"004","<XDS FIL='employee004.xml' />"
"005","<XDS FIL='employee005.xml' />"

Creating a view for USERA
USERA from human resources needs to access all elements and attributes in
XML documents in EMPLOYEE.EMP column. You need to include all XML nodes
to XMLTABLE function. The CREAT VIEW command is displayed in
Example 5-63 on page 246.
 Chapter 5. Managing XML data 245

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
Example 5-63 CREATE VIEW command

CREATE VIEW Db2admin.employee_a AS (
 SELECT x.* FROM
 XMLTABLE ('db2-fn:xmlcolumn("DB2ADMIN.EMPLOYEE.EMP")/Employee'
 COLUMNS
 "NAME" VARCHAR(32) PATH 'Name',
 "EMPNO" VARCHAR(3) PATH 'EmpNo',
 "TITLE" VARCHAR(12) PATH 'Title',
 "DATEOFBIRTH" VARCHAR(10) PATH 'DateOfBirth',
 "SSN" VARCHAR(11) PATH 'SSN',
 "STREET" VARCHAR(64) PATH 'Address/Street',
 "CITY" VARCHAR(12) PATH 'Address/City',
 "STATE" VARCHAR(2) PATH 'Address/State',
 "ZIP" VARCHAR(5) PATH 'Address/Zip',
 "WORKPHONE" VARCHAR(12) PATH 'Phone[@type="work"]',
 "HOMEPHONE" VARCHAR(12) PATH 'Phone[@type="home"]',
 "EMAIL" VARCHAR(32) PATH 'Email',
 "SALARY" INTEGER PATH 'Salary'
) AS "X"
)

After creating the view, grant access privilege for EMPLOYEE_A view to USERA
with the following command:

GRANT SELECT ON db2admin.employee_a TO USER usera

Create a view for USERB
Because USERB is allowed to access only five elements, the CREATE VIEW
statement is shorter and displayed in Example 5-64.

Example 5-64 CREATE VIEW for USERB

CREATE VIEW db2admin.employee_b AS (
 SELECT X.* from
 XMLTABLE ('db2-fn:xmlcolumn("DB2ADMIN.EMPLOYEE.EMP")/Employee'
 COLUMNS
 "NAME" VARCHAR(32) PATH 'Name',
 "EMPNO" VARCHAR(3) PATH 'EmpNo',
 "TITLE" VARCHAR(12)PATH 'Title',
 "WORKPHONE" VARCHAR(12) PATH 'Phone[@type="work"]',
 "EMAIL" VARCHAR(32) PATH 'Email'
) AS "X"
)

246 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch05.fm
Grant the access privilege for EMPLOYEE_B to USERB using the following
command:

GRANT SELECT ON DB2ADMIN.EMPLOYEE_b TO USER userb

To have a unified name for all the views based on the EMPLOYEE table, USERA
and USERB can create an alias for the views using the following commands:

CONNECT TO xmlrb USER usera USING usera;
CREATE ALIAS employee FOR db2admin.employee_a;

CONNECT TO XMLRB USER USERB USING USERB;
CREATE ALIAS employee FOR db2admin.employee_b;

Verifying security setup
After the views and aliases are created successfully, you are ready to test the
access control by querying the data.

Connect to the database as USERA and issue an SELECT statement.

connecting xmlrb user usera using usera;
SELECT * FROM employee;

Example 5-65 is the result set from the SELECT statement submitted by USERA.
You can tell that all node values in XML column are shredded into relational
column.

Example 5-65 Result set of selecting all the data from EMPLOYEE view by USERA

NAME EMPNO TITLE DATEOFBIRTH SSN
------------- ----- ------------ ----------- -----------
John Smith1 001 Manager 2/21/1967 892-76-0001
John Smith2 002 Engineer 2/22/1967 892-76-0002
John Smith3 003 Architect 2/23/1967 892-76-0003
John Smith4 004 Director 2/24/1967 892-76-0004
John Smith5 005 CEO 2/25/1967 892-76-0005

STREET CITY STATE ZIP
------------------ ------------ ----- -----
1 East Main Street Los Gatos CA 95034
2 East Main Street Los Gatos CA 95034
3 East Main Street Los Gatos CA 95034
4 East Main Street Los Gatos CA 95034
5 East Main Street Los Gatos CA 95034
 Chapter 5. Managing XML data 247

7315ch05.fm Draft Document for Review December 29, 2006 1:50 pm
WORKPHONE HOMEPHONE EMAIL SALARY
------------ ------------ ------------------- ------
312-964-0001 678-181-0001 john.smith1@my.com 10000
312-964-0002 678-181-0002 john.smith2@my.com 20000
312-964-0003 678-181-0003 john.smith3@my.com 30000
312-964-0004 678-181-0004 john.smith4@my.com 40000
312-964-0005 678-181-0005 john.smith5@my.com 50000

Connect to the database as USERB and issue the same query.

connect to xmlrb user userb using userb
SELECT * FROM EMPLOYEE

Example 5-66 is the result set. You can see that the identical query issued by
USERA and USERB have returned different result sets.

Example 5-66 Result set of selecting all the data from EMPLOYEE view by USERB

NAME TITLE EMPNO WORKPHONE EMAIL
----------- --------- ----- ------------ -----------------
John Smith1 Manager 001 312-964-0001 john.smith1@my.com
John Smith2 Engineer 002 312-964-0002 john.smith2@my.com
John Smith3 Architect 003 312-964-0003 john.smith3@my.com
John Smith4 Director 004 312-964-0004 john.smith4@my.com
John Smith5 CEO 005 312-964-0005 john.smith5@my.com

From the test result, we verify that we have successfully setup the XML node
level access control by view and XMLTABLE function. USERA can see all
elements in XML documents and USERB can only select what he is allowed to
see. By using both features provided in DB2 9, you can easily control the XML
data access scope for each user.
248 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Chapter 6. Application development

This chapter covers various aspects of application development using DB2. The
information contained here feature topics and examples that are specific to
application development involving XML. The subjects covered are:

� The database application development environment
� Application development tools
� Accessing pureXML from application overview
� XML and stored procedures
� Web services

The manuals listed here are suggested references for the DB2 application
development topics that are covered in this chapter:

� Call Level Interface Guide and Reference, Volume 1, SC10-4224
� Call Level Interface Guide and Reference, Volume 2, SC10-4225
� Command Reference, SC10-4226
� Developing ADO.NET and OLE DB Applications, SC10-4230
� Developing Embedded SQL Applications, SC10-4232
� Developing Java Applications, SC10-4233
� Developing Perl and PHP Applications, SC10-4234
� Developing SQL and External Routines, SC10-4373
� Getting Started with Database Application Development, SC 10-4252
� XML Guide, SC10-4254

6

© Copyright IBM Corp. 2006. All rights reserved. 249

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
6.1 The database application development environment

The DB2 database application development environment is composed of several
software elements:

� Operating system
� DB2 Client
� Database application programming interface (API)
� Programming language
� Transaction manager
� Development tools

Each of these elements requires some configuration for DB2 database
application development.

To enable the DB2 database application development, the following
prerequisites must be installed and configured:

� A supported operating system
� The DB2 Client
� The API driver(s) and, if required, driver manager(s)
� compilers or interpreters required for the programming languages you will be

using installed
� A transaction manager
� Application development tools

6.2 Application development tools

This section describes and demonstrates some tools for developing applications
with XML. The following tools are discussed:

� Developer Workbench
� DB2 Control Center
� DB2 Command Line processor
� IBM DB2 Visual Studio Add-In

Note: For complete information regarding prerequisites, installation, and
configuration for your application development environment, refer to the
manual Getting Started with Database Application Development, SC 10-4252.
250 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Developer Workbench
Support for XML in the Developer Workbench (DWB) includes the following:

� Stored procedure support:

Create and run stored procedures that contain XML data types as input or
output parameters.

� Data output support

View documents contained in XML columns as a tree or text.

� SQL builder support

Build SQL expressions with XML functions and run SQL statements that
contain XML host variables.

� XML schema support

Manage schema documents in the XML schema repository (XSR), including
registering and dropping schemas, as well as editing schema documents.

� XML document validation support

Perform validation of XML documents against schemas registered in the
XSR.

� XQuery builder features

– Build the XQuery statements visually by dragging and dropping nodes that
represent elements in an XML schema or document.

– Specify predicates, expressions, clauses, and sorting preferences for
each node. XQuery builder then generates the query for you.
(Alternatively, you can write your own statements or modify the generated
statements directly in the provided editing environment).

– After the query is created, it can be tested by running it directly from the
Developer Workbench.

DB2 Control Center
The DB2 Control Center supports the native XML data type for many of its
administrative functions. This allows database administrators to work with XML
data alongside relational data from within a single GUI tool. Examples of
supported administrative tasks are:

� Creating tables with XML columns

Figure 6-1 on page 252 shows the Control Center Add Column panel to add
an XML column to a table.
 Chapter 6. Application development 251

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-1 Using the Control Center to create a table with an XML column

� Create database with XML support

� Creating indexes over XML columns using the new Create Index wizard

� Viewing the contents of XML documents stored in XML columns

� Working with the XML schemas, DTDs, and external entities required to
validate and process XML documents.

� Collecting statistics on tables containing XML columns

� Visual Explain

Command line processor
Several DB2 commands support the native storage of XML data. You can work
with XML data alongside relational data from the DB2 command line processor
(CLP). Examples of tasks that you can perform from the CLP include:

� Issuing XQuery statements by prefixing them with the XQUERY keyword.

� Importing and export XML data.

� Collecting statistics on XML columns.

� Calling stored procedures with IN, OUT, or INOUT parameters of XML data
type.
252 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� Working with the XML schemas, DTDs, and external entities required to
validate and process XML documents.

� Reorganizing indexes over XML data and tables containing XML columns.

� Decomposing XML documents.

Figure 6-2 is an example of an XQuery issued from the Command Line
processor.

Figure 6-2 An XQuery issued from the Command Line Processor.

DB2 Development add-in for Microsoft Visual Studio .NET
Some general features of the DB2 development Add-In for Visual Studio include:

� IBM designers for working with database objects (such as tables, views,
scripts, procedures, and result sets)

� Ability to generate and deploy DB2-based Web services without writing a
single line of code

� Integration into Microsoft Server Explorer to perform database activity (such
as manage connections and explore database objects)

� Ability to create and debug SQL procedures (including common language
runtime [CLR] stored procedures)

� Ability to clone DB2 database objects

� Schema cache for rapid access to schema information

� Advanced object filtering capabilities

� Import and export capabilities from the data grid

� Integration with Microsoft Query Builder

� Parameter persistence support for rerun of routines

� Support for IBM family of data servers including Informix® Dynamic Server
(IDS), DB2 for z/OS®, and DB2 for iSeries™ in addition to DB2 for Linux,
UNIX, and Windows

� Comprehensive support for new DB2 pureXML data type and features
 Chapter 6. Application development 253

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Details of the DB2 Development Add-in for Visual Studio can be found in 6.8,
“The DB2 .NET environment” on page 321.

6.2.1 Developer Workbench

The Developer Workbench (DWB) is available as a free download in DB2 9. It is
a visual tool that aids in the rapid development of DB2 business objects. This
newly designed tool is based on the Eclipse framework and replaces the
Development Center from previous versions of DB2.

The following tasks can be executed with DWB:

� Create, view, and edit database objects (such as tables and schemas).

� Explore and edit data in tables and rows.

� Visually build SQL and XQuery statements.

� Develop and deploy stored procedures, user defined functions (UDFs),
routines, and scripts.

� Debug SQL and Java stored procedures.

� Develop SQLJ applications.

� Develop queries and routines for XML data.

� Perform data movement (such as load and extract).

� Collaborate and share projects with team members.

� Migrate projects from the DB2 version 8 DB2 Development Center.

Thorough examination of the capabilities of DWB is beyond the scope of this IBM
Redbook. Detailed information about this tool can be found in the tutorial DB2
Developer Workbench, Part 1: DW Concepts and Basic Tasks. This tutorial is
available from developerWorks at the following URL:

http://www.ibm.com/developerworks/edu/dm-dw-dm-0608eaton-i.html?S_TA
CT=105AGX54&ca=dnw-729

XML support in Developer Workbench
The Developer Workbench contains support for XML including:

� Support for the XML data type

DWB allows the XML data type to be used in queries and routines. The
XQuery contents of XML documents in the database can also be viewed,
edited, and updated.
254 DB2 9 pureXML Guide

http://www.ibm.com/developerworks/edu/dm-dw-dm-0608eaton-i.html?S_TACT=105AGX54&ca=dnw-729
http://www-128.ibm.com/developerworks/edu/dm-dw-dm-0608eaton-i.html?S_TACT=105AGX54&ca=dnw-729

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� Stored procedure support

Stored procedures that contain XML data type (input or output) parameters or
return XML data can be created and run.

� Data output view

XML data type columns can be viewed on the results page, and the content of
XML columns can be visualized as a tree or document text.

� XML Editor

With the XML Editor, you can perform the following tasks:

– Create and edit XML documents
– Generate XML documents from an XML schema
– Annotated schema mapping tool

� Support for XML schema

Existing XML schemas and XML schema documents can be loaded from the
XML schema repository in the database and properties, such as target
namespace or schema location, can be viewed. New XML schemas (and
corresponding XML schema documents) can be registered or dropped.

� XML document validation

XML value validation for XML documents against a registered XML schema
can be performed.

� XQuery builder

With the XQuery builder, complete queries can be created without needing to
understand XQuery semantics. An XML query can be built visually by
selecting sample resultant nodes from a tree representation of a schema or
XML document and dragging the nodes onto a return grid.

– After a node is listed on the return grid, you can drill down into the query to
add predicates and sorting preferences.

– You can drill down multiple levels in a query to specify nested predicates,
clauses, and expressions.

– After building the query, it can be run and tested directly from Developer
Workbench.

6.2.2 Developer Workbench: Visual Query Builder overview

The XQuery Builder is a component of Developer Workbench. Its task is to
create queries through a graphical user interface (GUI). As with other GUIs, one
of the advantages of this tool is that it is not necessary for the user to be
acquainted with the semantics of the XQuery language. The builder
accomplishes its goal by creating a tree view of an instance of the XML
 Chapter 6. Application development 255

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
documents that need to be queried, it then allows the user to drag and drop
nodes from this tree to the design grids.

The design grids are context-sensitive and each grid represents different
functions of the XQuery language. Users build the query by adding resources to
these grids and then drilling into these resources. Different resources represent
different functionalities in the XQuery language and thus present different sets of
grids. This process of using context-sensitive grid sets (acting in unison) allows
the tool to employ nuances of the language without the need for the user to
necessarily understand the semantics of the language. The query is internally
represented as an XML model and each resource that is added into the grid is
added to the XML model.

Starting the XQuery Builder
The XQuery builder uses an XQuery builder file that has an .XQM extension.
After this file is created, the query can be edited with the builder, saved, and
edited again at a later time. The query can also be saved as a plain XQuery file,
a flat text file. This allows the query to be used outside of the Developer
Workbench.

To use XQuery Builder, the xquery must reside in a new or an existing project.
The example here outlines the steps to follow when creating a new project that
will contain XQuery files.

1. Open the Developer Workbench and ensure that the data perspective is
open.

2. Choose the XML query wizard:

Select File → New → Other. The Select a Wizard window opens. See
Figure 6-3 on page 257. Choose XML Query and then select NEXT.

Tip: If the data perspective is not opened, you can open the data
perspective, from the Menu by selecting:

Window → Open Perspective → Other ... → Data (default)
256 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-3 The Select a wizard dialog box showing XML Query selected.

3. Create a new, or specify an already existing, project:

In the Specify a Project window, you can create a new, or specify an already
existing, project. Choose New to create a new project or choose an existing
project from the Project drop-down box. Click NEXT.

The New Data Development Project window opens. Specify a name for the
new project. In our example a new project named xmlLUW is created. See
Figure 6-4 on page 258.
 Chapter 6. Application development 257

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-4 Creating a new data development project

4. Select a database connection:

After creating a new project (or choosing an existing project), the wizard
proceeds to the Select Connection window. At this point, a new database
connection can be created or an existing database connection can be
chosen. See Figure 6-5 on page 259. Click Next.
258 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-5 Select database connection

5. Specify the JDK™ home directory:

The Specify Routine Parameters window requests that the JDK home
directory be specified (see Figure 6-6 on page 260). Either accept the
location displayed or browse to another location. Click Finish.
 Chapter 6. Application development 259

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-6 Specify the JDK home directory.

6. Specify a query name:

The New XML Query window opens, as shown in Figure 6-7. Specify a name
for the query. In this example, the query is named xmlQuery1. Click Next.

Figure 6-7 The New XML Query window; specifying a name for the query.

7. Add representative XML documents:

As shown in Figure 6-8 on page 261, the New XML Query window will reopen
to the Add representative XML documents window.
260 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-8 The Add representative XML documents window

To add a representative document from your local workspace, or from the
database to be queried, select ADD. The following example, Figure 6-9,
shows the Specify document location window after ADD has been selected.
In our example, Database has been chosen as the location of the
representative XML document.

Click Next.

Figure 6-9 Selecting Database as the location of the representative XML document
 Chapter 6. Application development 261

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
8. Choose the XML document source:

The XML column or schema window opens (Figure 6-10) and the INFO
column of the CUSTOMER table is chosen as the source containing the XML
document to be queried. Click Next.

Figure 6-10 Choosing XML document source

In Figure 6-11 on page 263, the New XML Query window reopens and
displays the representative document that has been chosen in the previous
step. Select the document then click Next.
262 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-11 CUSTOMER.INFO column selected as the XML source

9. Associate the document with XML columns:

The Associate documents with XML columns window opens (Figure 6-12).
Click Finish.

Figure 6-12 The document is associated with an XML column

A new query, xmlQuery1.xqm, is added to the Queries node and DWB opens to
the XQuery Builder in Design View. This is the main view from which the query
will be built. See Figure 6-13 on page 264.
 Chapter 6. Application development 263

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-13 Developer Workbench with XQuery Builder open to Design view

Building and running a query in XQuery Builder
When the steps outlined in the previous section have been completed, the task
of building a query through the XQuery builder can begin.

In the examples in this section, in the interest of clarity, only the portions of the
DWB screen that are referenced by the examples are displayed.

Building an XQuery
Drag and drop the customerinfo node from the sample XML document tree to a
row in the design grid.

The node name will appear in the grid and a drill in button (arrow highlighted by
the red circle here), will be displayed at the end of the row (Figure 6-14 on
page 265).
264 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-14 Drag and drop the customerinfo node to the design grid.

The source code generated by the GUI can be viewed by selecting the Source
tab in the Design view, see Figure 6-15.

Figure 6-15 View generated source code from Source tab
 Chapter 6. Application development 265

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
FLWOR expression
You can create a more elaborate query by adding predicates to the search and
ordering the returned elements.

To accomplish this, while in Design view, click the Step into button at the
end of the first row in the design grid. When you step into a query, the existing
grid is replaced with five new grids representing the FOR, LET, WHERE,
ORDERBY and RETURN parts of the FLWOR expression.

Add predicates to the search
To refine our query, we included some predicates. To achieve this, in our
example, Figure 6-16, we have added or executed the following:

� Drag and drop the Cid attribute from the XML document tree onto the
Operand1 column in the Where grid.

� Selected the = operator in the Operator column.

� Type 1000 into the Operand2 column.

� Drag and drop the name, addr, and phone elements to the Return grid.

Figure 6-16 Adding predicates to the XQuery.
266 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
When these changes are made in the GUI, the results can be viewed by
selecting the Source tab. Example 6-1 shows the code from the Source tab that
was generated by the GUI in the previous steps:

Example 6-1 Source code for the query created by XQuery Builder.

values(XMLQUERY('
 declare boundary-space strip;
 declare namespace def0="http://posample.org";
 for $customerinfo0 in
db2-fn:xmlcolumn("CUSTOMER.INFO")/def0:customerinfo
 where $customerinfo0/@Cid = 1000
 return
 (
 $customerinfo0/def0:name,
 $customerinfo0/def0:addr,
 $customerinfo0/def0:phone

)

' RETURNING SEQUENCE))

In order to execute the query, select the Run... option in the XQuery menu, as
shown in Figure 6-17.

Figure 6-17 Executing the query by selecting the Run.

Figure 6-18 on page 268 shows the result of the query execution.
 Chapter 6. Application development 267

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-18 Results of the query execution

6.3 Accessing pureXML from application overview

This section provides an overview of accessing pureXML from CLI, C/C++, PHP,
Java, and .NET. We discuss issues and concerns that are relevant to inserting,
updating, and retrieving XML data using various application programming
interfaces.

6.3.1 Application programming language support for XML

Any of the following languages can be used to write applications that involve
XML data:

� CLI
� C or C++
� COBOL
� Java(TM) (JDBC or SQLJ)
� C# and Visual Basic (DB2 .NET Data Provider)
� PHP

Applications written in any of these languages can store or retrieve XML data
from DB2 database tables, or call stored procedures or user-defined functions
with XML parameters. XML data can only be stored in a Unicode database. To
create a Unicode database in DB2, the database must be created with the
parameter CODESET set to UTF-8.

There are many options available when creating a DB2 database. Example 6-2
on page 269 shows a simple DB2 command (showing only a minimum of
options) to create a DB2 database with CODESET UTF-8:
268 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Example 6-2 DB2 command to create a DB2 database with CODESET UTF-8

CREATE DATABASE MYDB USING CODESET UTF-8 TERRITORY US

6.3.2 Considerations when updating and inserting XML data

When updating or inserting data into an XML column the input to the XML
column must be a well-formed XML document, as defined in the XML 1.0
specification1. The application data types can be:

� XML
� Character
� Binary

When inserting data, it is recommended that XML data be inserted from host
variables, rather than literals. This is so that the DB2 database server can use
the host variable data type to determine some of the encoding information.

XML data in an application is in its serialized string format. When you insert or
update data into an XML column, it must be converted to its XML hierarchical
format. This process is known as XML parsing.

XML parsing
XML parsing is the process of converting XML data from its serialized string
format to its hierarchical format. Simply stated, XML parsing converts character
or binary data and produces an XML value.

You can let the DB2 database manager perform parsing implicitly, or you can
perform XML parsing explicitly.

Implicit XML parsing occurs:

� When you pass data to the database server using a host variable of type
XML, or use a parameter marker of type XML The database server does the
parsing when it binds the value for the host variable or parameter marker for
use in statement processing. You must use implicit parsing in this case.

� When you assign a host variable, parameter marker, or SQL expression with
a string data type (character, graphic or binary) to an XML column in an
INSERT, UPDATE, DELETE, or MERGE statement. The parsing occurs

Note: Refer to the manual Command Reference, SC10-4226 for the complete
syntax and options available for creating a DB2 database.

1 See www.w3.org/TR for information about the XML 1.0 specification. The Extensible Markup
Language (XML) fourth Edition (1.0) is the latest recommendation as of the date of this book.
 Chapter 6. Application development 269

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
when the SQL compiler implicitly adds an XMLPARSE function to the
statement.

Example 6-3 demonstrates a case of implicit parsing. In this example, the source
is a XML document from a column of type VARCHAR.

Example 6-3 An example of implicit parsing

/* 1) Assume table TABLE1 has been created with the following
definition: */
/* CREATE TABLE table1 (id INT, description VARCHAR(200)) */

/* 2) Assume TABLE1 has been populated as follows:*/
/* INSERT INTO table1 VALUES (22222, '<product xmlns =
\"http://posample.org\" pid=\"80\"> <description><name> Plastic Casing
</name> <details> Green Color </details> <price> 7.89 </price> <weight>
6.23 </weight> </description></product>', 'Last Product')"

/* 3) Assume table po has been created with the following definition:
*/
/* CREATE TABLE po (poid BIGINT, porder XML) */

char stmt[500];
SQLRETURN cliRC = SQL_SUCCESS;

strcpy(stmt, "INSERT INTO po (poid, porder) "
"(SELECT id, description FROM table1 WHERE id = 22222)");

/* execute the statement */
 cliRC = SQLExecDirect(hstmt, (SQLCHAR *)stmt, SQL_NTS);
 STMT_HANDLE_CHECK(hstmt, hdbc,
cliRC);

Explicit parsing occurs:

� When the XMLPARSE function is invoked when inputting XML data. The
XMLPARSE function takes a non-XML, character or binary data type as input.

The result of the XMLPARSE function can be utilized in any context that
accepts an XML data type, e.g., it can be assigned to an XML column or used
as a stored procedure parameter of type XML.

For embedded dynamic SQL applications, you must cast the parameter marker
that represents the input document for XMLPARSE to the appropriate data type.
270 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Example 6-4 illustrates casting the parameter marker to BLOB(1K) for the input
Document parameter of the XMLPARSE function in a dynamic CLI application.

Example 6-4 Casting the parameter marker to BLOB using XMLPARSE function

char blobdata[500];
SQLRETURN cliRC = SQL_SUCCESS;
length = strlen(blobdata);

/* Assume table po has been created with the following definition:
*/
/* CREATE TABLE po (poid BIGINT, porder XML) */

strcpy(blobdata, "<product xmlns = \"http://posample.org\"
pid=\"10\"><description><name> Plastic Casing </name>"
"<details> Blue Color </details><price> 2.89 </price>"
"<weight> 0.23 </weight></description></product>");

strcpy(stmt, "INSERT INTO po (poid, porder) "
"VALUES (323, XMLPARSE(DOCUMENT CAST(? as BLOB(1K))))");

 /* prepare the statement */
 cliRC = SQLPrepare(hstmt, (SQLCHAR *)stmt, SQL_NTS);

 /* bind Paramenter to the Insert statement */
 cliRC = SQLBindParameter(hstmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_BINARY,
 SQL_BLOB,
 length,
 0,
 &blobdata,
 length,
 NULL);

 /* execute the statement */

cliRC=SQLExecute(hstmt);

For embedded static SQL applications, a host variable argument of the
XMLPARSE function cannot be declared as an XML type (XML AS BLOB, XML
AS CLOB, or XML AS DBCLOB type).
 Chapter 6. Application development 271

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Example 6-5 illustrates a static embedded SQL application; in this example the
host variable argument of the XMLPARSE function is declared as BLOB.

Example 6-5 A static embedded SQL statement calling XMLPARSE

EXEC SQL DECLARE SECTION;
 char xmldata[2000];
 char parse_option[30];
 short nullind = 0;

static SQL TYPE IS BLOB(1k) hv_blob2 = SQL_BLOB_INIT("<init> a
</init>");
EXEC SQL END DECLARE SECTION;

/* Assume table PO has been created with the following definition: */
/* CREATE table PO (poid BIGINT, porder XML) */

strcpy(xmldata, "<product xmlns = \"http://posample.org\"
pid=\"10\"><description><name> Plastic Casing </name>"
"<details> Blue Color </details><price> 2.89 </price>"
"<weight> 0.23 </weight></description></product>");

strcpy(hv_blob2.data, xmldata);

EXEC SQL UPDATE PO SET porder = XMLPARSE(
 DOCUMENT :hv_blob2 STRIP WHITESPACE) WHERE POID = 1612;

XML parsing and whitespace handling
During implicit or explicit XML parsing, you can control the preservation or
stripping of boundary whitespace characters when you store the data in the
database.

According to the XML standard, whitespace is space characters (U+0020),
carriage returns (U+000D), line feeds (U+000A), or tabs (U+0009) that are in the
document to improve readability. When any of these characters appear as part of
a text string, they are not considered to be whitespace.

Boundary whitespace is whitespace characters that appear between elements.
For example, in the following document the spaces between <customerinfo> and
<name> and between </customerinfo> and </name> are considered boundary
whitespace.

<customerinfo> <name> </name> </customerinfo>

With explicit invocation of XMLPARSE, you use the STRIP WHITESPACE or
PRESERVE WHITESPACE option to control preservation of boundary
whitespace. The default is stripping of boundary whitespace.
272 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
With implicit XML parsing:

� If the input data type is not an XML type or is not cast to an XML data type,
the DB2 database manager always strips whitespace.

� If the input data type is an XML data type, you can use the CURRENT
IMPLICIT XMLPARSE OPTION special register to control preservation of
boundary whitespace. You can set this special register to STRIP WHITESPACE
or PRESERVE WHITESPACE. The default is stripping of boundary whitespace.
Note that this special register only applies for nonvalidating XML parsing.

� If the input data type is non-XML, but is CAST as XML (either explicitly or as
an ambiguous parameter marker) then implicit XML parse applies and the
CURRENT IMPLICIT XMLPARSE OPTION special register will as well.

Example 6-6 illustrate setting the CURRENT IMPLICIT XMLPARSE OPTION
special register in various application settings.

Example 6-6 Setting the Current IMPLICIT XMPLPARSE OPTION special register

CLI:
strcpy((char *)stmt, "SET CURRENT IMPLICIT XMLPARSE OPTION =
'PRESERVE WHITESPACE'");

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

Embedded SQL:
EXEC SQL BEGIN DECLARE SECTION;
char parse_option[30];
EXEC SQL END DECLARE SECTION;
strcpy(parse_option, "preserve whitespace");

/* SET the register with the option PRESERVE WHITESPACE */
EXEC SQL SET CURRENT IMPLICIT XMLPARSE OPTION = :parse_option;

JAVA (SQLJ):
String parse_option = "preserve whitespace";
#sql {
 SET CURRENT IMPLICIT XMLPARSE OPTION = :parse_option};

Note: The CurrentImplicitXMLParseOption may also be set in the db2cli.ini
initialization file. Refer to Current Implicit XML Parse Option in the Call Level
Interface Guide and Reference, Volume 1, SC10-4224, for details.
 Chapter 6. Application development 273

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
XML validation
XML validation is the process of determining whether the structure, content, and
data types of an XML document are valid. XML validation also adds type
annotations to element nodes, attribute nodes and atomic values, and strips off
ignorable whitespace in the XML document. Validation is optional, but highly
recommended.

The XMLVALIDATE function is used to validate an XML document. It is
commonly used when inserting or updating an XML document in a DB2
database. XMLVALIDATE can also be invoked on an XML document that is not
in a database. Before you can invoke XMLVALIDATE, all schema documents
that make up an XML schema must be registered in the built-in XML schema
repository (XSR). An XML schema provides the rules for a valid XML document.

If you use XML validation, the DB2 database manager ignores the CURRENT
IMPLICIT XMLPARSE OPTION special register and uses only the validation
rules to determine stripping or preservation of whitespace in the following cases:

� xmlvalidate(? ACCORDING TO XMLSCHEMA ID schema name)
� xmlvalidate(?)
� xmlvalidate(:hvxml ACCORDING TO XMLSCHEMA ID schema name)
� xmlvalidate(:hvxml)
� xmlvalidate(cast(? as xml) ACCORDING TO XMLSCHEMA ID schema

name)
� xmlvalidate(cast(? as xml))

In these cases, question mark (?) represents XML data, and :hvxml is an XML
host variable.

Encoding considerations for input of XML data to a database
XML data can be internally or externally encoded. When the encoding of XML
data is derived from the data itself, it is known as internally encoded data. If the
data is derived from external sources, it is known as externally encoded data.

� XML data that is sent to the database server as binary data is treated as
internally encoded data.

� XML data that is sent to the database server as character data is treated as
externally encoded data.

External encoding on input for Java applications is always Unicode encoding.

Important: The insert or update operation on which the XMLVALIDATE was
specified will only occur if the validation succeeds.
274 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Externally encoded data can have internal encoding. That is, the data might be
sent to the database server as character data, but the data contains encoding
information. The database server handles incompatibilities between internal and
external encoding as follows:

� If the database server is DB2 Database for Linux, UNIX, and Windows, the
database server generates an error if the external and internal encoding are
incompatible, unless the external and internal encoding are Unicode. If the
external and internal encoding are Unicode, the database server ignores the
internal encoding. If internal encoding is Unicode, but external is
non-Unicode, the mismatch will be flagged.

� If the database server is DB2 for z/OS, the database server ignores the
internal encoding.

Data in XML columns is stored in UTF-8 encoding. The database server handles
conversion of the data from its internal or external encoding to UTF-8.

When you store XML data in a DB2 table, observe the following rules:

� If the internal and external encoding are not Unicode encoding, for externally
encoded XML data (data that is sent to the database server using character
data types), any internally encoded declaration must match the external
encoding. Otherwise, an error occurs, and the database manager rejects the
document.

� If the external encoding and the internal encoding are Unicode encoding, and
the encoding schemes do not match, the DB2 database server ignores the
internal encoding.

� For internally encoded XML data (data that is sent to the database server
using binary data types), the application must ensure that the data contains
accurate encoding information.

6.3.3 Considerations when retrieving XML data

When an application retrieves data from XML columns, the DB2 database server
converts the data from the XML hierarchical format to the XML serialized string
format. In addition, the database server might need to convert the output data
from UTF-8 to the application encoding.

For implicit and explicit XML serialization, implicit is much safer as the encoding
is done automatically by the application interface. Explicit XMLSERIALIZE is
subject to extra codepage conversion.

When you retrieve XML data, you need to be aware of the effect of code page
conversion on data loss. Data loss can occur when characters in the source code
page cannot be represented in the target code page.
 Chapter 6. Application development 275

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
An application program can retrieve an entire document or a fragment of a
document from an XML column. However, you can store only an entire
document in an XML column.

When you fetch an entire XML document, you retrieve the document into an
application variable.

When you retrieve an XML sequence, you have several choices:

� Execute an XQuery expression directly.

To execute an XQuery expression in an application, you add the string
“XQUERY” to the XQuery expression, and dynamically execute the resulting
string.

When you execute an XQuery expression directly, the DB2 database server
returns the sequence that is the result of the XQuery statement as a result
table. Each row in the result table is an item in the sequence.

� Execute an XQuery expression within an SQL FETCH or single-row SELECT
INTO operation by calling the XMLQUERYor XMLTABLE built-in functions
and passing an XQuery expression as an argument. XMLQUERY is a scalar
function that returns the entire sequence in an application variable.
XMLTABLE is a table function that returns each item in the sequence as a
row of the result table. The columns in the result table are values from the
retrieved sequence item. An illustration of this is shown in Example 6-7 below.

This technique can be used with static or dynamic SQL and any application
programming language.

Example 6-7 Executing an XQuery expression within an SQL FETCH

select deptID,xmlquery('for $d in $doc/dept
 where $d/@bldg = 101
 return $d/name' passing doc as "doc")

from dept
where deptID <> "PR27";

Parameter markers and host variables
The following rules/restrictions apply to employing parameter markers or host
variables in an XQuery expression:

� Parameter markers or host variables cannot be specified anywhere in an
XQuery expression, including within the SQL specified in an XQuery
expression.

� You cannot specify a parameter marker or host variable in the XQuery
expression, even within the fullselect.
276 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� In order to pass application values to XQuery expressions, use the SQL/XML
functions XMLQUERY and XMLTABLE. The PASSING clause of these
functions allows you to use application values during the evaluation of the
XQuery expression.

Example 6-8 illustrates passing an application value to an XQuery expression, in
a Java application, using the SQL/XML function XMLQUERY.

Example 6-8 Passing an application value to an XQuery expression in a Java application

// The table CUSTOMER exists with the following definition:
// CREATE TABLE customer (cid BIGINT, info XML, history XML)

private static int cid=1002;
...
Statement stmt = con.createStatement();
String query="select xmlquery('declare default element namespace
\"http://posample.org\";"+
" for $customer in $cust/customerinfo"+
" where ($customer/@Cid gt $id)"+
" return <customer id=\"{$customer/@Cid}\">"+
" {$customer/name} {$customer/addr} </customer>'"+
" passing by ref customer.info as \"cust\", cast(? as integer) as
\"id\")"+
" from customer";

// Prepare the statement
 PreparedStatement pstmt = con.prepareStatement(query);

// Set the value for the parameter marker

pstmt.setInt(1,cid);
 ResultSet rs = pstmt.executeQuery();

Encoding considerations for retrieval of XML data from a database
When you retrieve XML data from a DB2 table, you need to avoid data loss and
truncation.

� Data loss can occur when characters in the source data cannot be
represented in the encoding of the target data.

Data loss is less of a problem for Java and .NET applications than for other
types of applications because Java and .NET string data types use Unicode
UTF-16 or UCS2 encoding.
 Chapter 6. Application development 277

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
� Truncation can occur when conversion to the target data type results in
expansion of the data.

Truncation is possible because expansion can occur when UTF-8 characters
are converted to UTF-16 or UCS-2 encoding.

6.4 DB2 application development with CLI and ODBC

DB2 Call Level Interface (DB2 CLI) is IBM’s callable SQL interface to the DB2
family of database servers. It is a ‘C’ and ‘C++’ application programming
interface for relational database access that uses function calls to pass dynamic
SQL statements as function arguments. It is an alternative to embedded dynamic
SQL, but unlike embedded SQL, DB2 CLI does not require host variables or a
precompiler.

DB2 CLI is based on the Microsoft** Open Database Connectivity** (ODBC)
specification, and the International Standard for SQL/CLI. These specifications
were chosen as the basis for the DB2 Call Level Interface in an effort to follow
industry standards and to provide a shorter learning curve for those application
programmers already familiar with either of these database interfaces. In
addition, some DB2 specific extensions have been added to help the application
programmer specifically exploit DB2 features.

The DB2 CLI driver also acts as an ODBC driver when loaded by an ODBC
driver manager. It conforms to ODBC 3.51.

6.4.1 Setting up the CLI environment

Runtime support for DB2 CLI applications is contained in all DB2 clients. Support
for building and running DB2 CLI applications is contained in the DB2 Client. This
section describes the general setup required for DB2 CLI runtime support.

Note: Refer to the XML Guide, SC10-4254, chapter 8, XML CODING for
complete details regarding XML coding considerations.

Note: For complete information regarding CLI requirements, configuration,
programming, and other relevant topics refer to the manuals: Call Level
Interface Guide and Reference, Volume 1, SC10-4224 and Call Level
Interface Guide and Reference, Volume 2, SC10-4225
278 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
In order for a DB2 CLI application to successfully access a DB2 database:

1. Ensure the DB2 CLI/ODBC driver was installed during the DB2 client install.

2. Catalog the DB2 database and node if the database is being accessed from a
remote client. On the Windows platform, you can use the CLI/ODBC Settings
GUI to catalog the DB2 database.

3. Optional: Explicitly bind the DB2 CLI/ODBC bind files to the database with the
command:

db2 bind ~/sqllib/bnd/@db2cli.lst blocking all sqlerror continue \
messages cli.msg grant public

On the Windows platform, you can use the CLI/ODBC Settings GUI to bind
the DB2 CLI/ODBC bind files to the database.

4. Optional: Change the DB2 CLI/ODBC configuration keywords by editing the
db2cli.ini file, located in the sqllib directory on Windows, and in the sqllib/cfg
directory on UNIX platforms. On the Windows platform, you can use the
CLI/ODBC Settings GUI to set the DB2 CLI/ODBC configuration keywords.

Once you have completed the above steps, proceed to setting up your Windows
CLI environment, or setting up your UNIX ODBC environment if you are running
ODBC applications on UNIX.

6.4.2 Building CLI applications

DB2 provides build scripts for compiling and linking CLI programs. For UNIX or
Windows these scripts, along with sample programs that can be built with these
files, are located in the following directories:

� UNIX: sqllib/samples/cli directory
� Windows: sqllib\samples\cli directory

In addition to the CLI samples that may be found in the directories above, there
are specific XML examples that can be found in the following locations:

� On UNIX:

– sqllib/samples/xml/cli
– sqllib/samples/xml/xquery/cli

Note: Before you set up your CLI environment, ensure you have set up the
application development environment. Refer to the Call Level Interface Guide
and Reference, Volume 1, SC10-4224 for an overview of the CLI application
development environment setup.
 Chapter 6. Application development 279

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
� On Windows:

– sqllib\samples\xml\cli
– sqllib\samples\xml\xquery\cli

The build scripts, bldapp (on UNIX) or bldapp.bat (Windows), contain the
commands to build a DB2 CLI application. It takes up to four parameters,
represented inside the UNIX script file by the variables: $1, $2, $3, and $4 or
inside the Windows file by the variables: %1, %2, %3, %4.

� Parameter $1 (%1): This parameter specifies the name of your source file.
This is the only required parameter, and the only one needed for CLI
applications that do not contain embedded SQL.

Building embedded SQL programs requires a connection to the database so
three optional parameters are also provided

� Parameter $2 (%2): This parameter specifies the name of the database to
which you want to connect.

� Parameter $3 (%3):This parameter specifies the user ID for the database.

� Parameter $4 (%4): This parameter specifies the password.

If the program contains embedded SQL, with a .sqc or the .sqx extension, then
the embprep (UNIX) or the embprep.bat (Windows) script is called to precompile
the program, producing a program file with a .c or a .cxx extension.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldapp tbinfo

The result is an executable file, tbinfo. You can run the executable file by
entering the executable name:

tbinfo

In addition to the sample build scripts supplied by DB2, it is possible to build all of
the applications by executing the makefile that is found in the corresponding
directories.

On UNIX the makefile is found in these directories:

� sqllib/samples/cli
� sqllib/samples/xml/cli
� sqllib/samples/xml/xquery/cli

On Windows the makefile is found in these directories:

� sqllib\samples\cli
� sqllib\samples\xml\cli
� sqllib\samples\xml\xquery\cli
280 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Before running the makefile, modify the makefile to reflect your environment:

� set UID (user ID to access the sample database)
� set PWD (password to access the sample database)

To build the file or files, execute the appropriate command for your environment
in your working directory, for example:

� UNIX

make some_parameter

� Windows

nmake some_parameter

Where some_parameter corresponds to one of the parameters specified below:

� make (or nmake) <app_name>

/*Builds the program designated by <app_name>*/

� make (or nmake) all

/* Builds all supplied sample programs */

� make (or nmake) srv

/*Builds sample that can only be run on the server, (stored procedure)*/

� make (or nmake) all_client

/* Builds all client samples (all programs in the 'call_rtn' and 'client_run'
categories). */

� make (or nmake) call_rtn

/* Builds client programs that call stored procedure */

� make (or nmake) client_run

/* Builds all programs that run completely on the client (not ones that call
stored procedure)*/

� make (or nmake) clean

/* Erases all intermediate files produced in the build process */

� make (or nmake) cleanall

/* Erases all files produced in the build process (all files except the original
source files)*/
 Chapter 6. Application development 281

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
6.4.3 XML data handling in CLI applications

DB2 CLI applications can retrieve and store XML data using the SQL_XML data
type. This data type corresponds to the native XML data type of the DB2
database, which is used to define columns that store well-formed XML
documents. The SQL_XML type can be bound to the following C types:

� SQL_C_BINARY
� SQL_C_CHAR
� SQL_C_WCHAR
� SQL_C_DBCHAR

Inserts and updates to XML columns in CLI applications
When you update or insert data into XML columns, the input data must be in
serialized string format.

For XML data, use the function SQLBindParameter() to bind parameter markers
to input data buffers. When you bind a data buffer that contains XML data as
SQL_C_BINARY, DB2 CLI processes the XML data as internally encoded data.
This is the preferred method because it avoids the overhead and potential data
loss of character conversion when character types are used.

If you want the database server to implicitly parse the data before storing it in an
XML column, the argument ParameterType in SQLBindParameter() should be
specified as SQL_XML.

Implicit parsing is recommended, because explicit parsing of a character type
with XMLPARSE can introduce encoding issues. Note that internally encoded
data might require an XML declaration if encoded in anything other than UTF-8.

Example 6-9 on page 283 shows an INSERT of XML data into an XML column.
In this example, the data buffer is bound with the recommended SQL_C_BINARY

Note: To ensure a successful build of the sample applications, the following is
suggested:

� Read the Prerequisites section of the header in the sample file and follow
the directions and suggestions before building or running the sample.

� Make sure that a compatible make. or nmake, executable program is
resident on your system in a directory included in your PATH variable.

Note: Using the default SQL_C_BINARY instead of character types is
recommended, but not required, to avoid possible data loss or corruption
resulting from code page conversion when character types are used.
282 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
type, and the ParameterType for SQLBindParameter() is SQL_XML. Since
SQL_C_BINARY is used, the data must be internally encoded in order to be
interpreted correctly. In this example the internal encoding is declared as
ISO-8859-1.

Example 6-9 Inserting XML data with recommended SQL_C_BINARY type binding

char xmldata[500];
int length;
SQLRETURN cliRC = SQL_SUCCESS;

/* Assume the table PO has been created with the following definition:
*/
/* CREATE table PO (poid BIGINT, porder XML) */

 strcpy(xmldata, "<?xml=\”1.0\” encoding=\”ISO-8859-1\”?><product
xmlns = \"http://posample.org\" pid=\"10\"><description>"
"<name> Plastic Casing </name>"
"<details> Blue Color </details>"
"<price> 2.89 </price>"
"<weight> 0.23 </weight>"
"</description></product>");

length = strlen(xmldata);

/* inserting when source is from host variable of type XML */
 strcpy(stmt, "INSERT INTO PO (poid, porder) "
 "VALUES (8956, ?)");

/* prepare the statement */
 cliRC = SQLPrepare(hstmt, (SQLCHAR *)stmt, SQL_NTS);

/* bind Paramenter to the Insert statement */
 cliRC = SQLBindParameter(hstmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_BINARY,
 SQL_XML,
 length,
 0,
 Chapter 6. Application development 283

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
 &xmldata,
 length,
 NULL);

 cliRC = SQLExecute(hstmt);

Example 6-10 demonstrates an INSERT of XML data into an XML column. In this
example, the data buffer is bound with the SQL_C_CHAR type. The function
XMLCAST is used to typecast the character data to an XML data type.

Example 6-10 Using XMLCAST to typecast data into an XML column

char xmldata[500];
SQLRETURN cliRC = SQL_SUCCESS;

/* Assume the table PO exists with the following definition: */
/* CREATE table po (poid BIGINT, porder XML) */

strcpy(xmldata, "<product xmlns = \"http://posample.org\"
pid=\"10\"><description>"
 "<name> Plastic Casing </name>"
 "<details> Blue Color </details>"
 "<price> 2.89 </price>"
 "<weight> 0.23 </weight>";

 "</description></product>");

strcpy(stmt, "INSERT INTO PO (poid, porder) "
 "VALUES(125, XMLCAST(? as XML))");

cliRC = SQLPrepare(hstmt, (SQLCHAR *)stmt, SQL_NTS);

/* bind Paramenter to the Insert statement */
 cliRC = SQLBindParameter(hstmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_CHAR,
 SQL_CHAR,
 500,
 0,
 &xmldata,
 500,
 NULL);

cliRC = SQLExecute(hstmt);
284 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
The code segment in Example 6-11 illustrates binding a parameter marker for an
INSERT operation when the source is a variable of Type XML. This example also
demonstrates implicit parsing.

Example 6-11 An INSERT with implicit parsing

int length;
int rc = 0;
char xmldata[500];
SQLRETURN cliRC = SQL_SUCCESS;

strcpy(xmldata, "<?xml version=\”1.0\” encoding=\”ISO-8859-1\”
?><product xmlns = \"http://posample.org\"
pid=\"10\"><description>"
"<name> Plastic Casing </name>"
"<details> Blue Color </details>"
"<price> 2.89 </price>"
"<weight> 0.23 </weight>"
"</description></product>");

length = strlen(xmldata);

/* Assume the table PO exists with the following definition: */
/* CREATE table po (poid BIGINT, porder XML) */

strcpy(stmt, "INSERT INTO PO (poid, porder) "
 "VALUES (8956, ?)");
cliRC = SQLBindParameter(hstmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_CHAR,

 SQL_XML,
 length,

 0,
 &xmldata,
 length,
 NULL);

cliRC = SQLExecute(hstmt);
 Chapter 6. Application development 285

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Example 6-12 illustrates performing an INSERT when the source is an XML
document from a column of type VARCHAR. In this case, the description column
is explicitly parsed since an SQL expression with a string data type is assigned
to an XML column.

Example 6-12 INSERT an XML document from VARCHAR column with explicit parsing

/* 1) Assume table TABLE1 has been created with the following
definition: */
/* CREATE TABLE table1 (id INT, description VARCHAR(500)) */

/* 2) Assume TABLE1 has been populated as follows:*/
/* INSERT INTO table1 VALUES (22222, '<product xmlns =
\"http://posample.org\" pid=\"80\"> <description><name> Plastic Casing
</name> <details> Green Color </details> <price> 7.89 </price> <weight>
6.23 </weight> </description></product>', 'Last Product')"

/* 3) Assume table po has been created with the following definition:
*/
/* CREATE TABLE po (poid BIGINT, porder XML) */

char stmt[500];
SQLRETURN cliRC = SQL_SUCCESS;

strcpy(stmt, "INSERT INTO po (poid, porder) "
"(SELECT id, XMLPARSE(DOCUMENT description) FROM table1 WHERE id =
22222)");

/* execute the statement */
 cliRC = SQLExecDirect(hstmt, (SQLCHAR *)stmt, SQL_NTS);
 STMT_HANDLE_CHECK(hstmt, hdbc,
cliRC);

Retrieving data from XML columns in a CLI application
When you select data from XML columns in a table, the output data is in the
serialized string format.

For XML data, as with any data returned from a CLI application, the function
SQLBindCol() is used to bind the columns of a query result set to application
variables. The data types of the application variables may be specified as:

� SQL_C_BINARY
� SQL_C_CHAR
� SQL_C_DBCHAR or
� SQL_C_WCHAR
286 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
When retrieving a result set from an XML column, it is recommended that you
bind your application variable to the SQL_C_BINARY type. Binding to character
types can result in possible data loss resulting from code page conversion. Data
loss can occur when characters in the source code page cannot be represented
in the target code page. Binding your variable to the SQL_C_BINARY C type
avoids these issues.

XML data is returned to the application as internally encoded data. DB2 CLI
determines the encoding of the data as follows:

� If the C type is SQL_C_BINARY, the data is returned in the UTF-8 encoding
scheme.

� If the C type is SQL_C_CHAR or SQL_C_DBCHAR

If the C type is SQL_C_CHAR, the data is returned in the application
character code page encoding scheme.

If the C type is SQL_C_DBCHAR, the data is returned in the application
graphic code page encoding scheme.

� If the C type is SQL_C_WCHAR, the data is returned in the UCS-2 encoding
scheme.

When an XML value is retrieved into an application data buffer, the DB2 server
performs an implicit serialization on the XML value to convert it from its stored
hierarchical form to the serialized string form. For character typed buffers, the
XML value is implicitly serialized to the application code page associated with the
character type.

By default, an XML declaration is included in the output serialized string. This
default behavior can be changed by setting the Attribute and ValuePtr arguments
of SQLSetStmtAttr(), respectively, to:

� SQL_ATTR_XML_DECLARATION and
� SQL_XML_DECLARATION_NONE.

For further information about CLI connection attributes refer to the manual:
CLI Guide and Reference, volume 2.

The default behavior for including an XML declaration in the output serialized
string can also be altered by changing XMLDeclaration in the CLI/ODBC
configuration keyword in the db2cli.ini file. Refer to the manual CLI Guide and
Reference, volume 1, for more information

Example 6-13 on page 288 illustrates setting the
SQL_ATTR_XML_DECLARATION attribute in the SQLSetStmtAttr() function.
 Chapter 6. Application development 287

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Example 6-13 Setting the SQL_ATTR_XML_DECLARATION attribute

int rc = 0;
rc=SQLSetStmtAttr(hdbc, SQL_ATTR_XML_DECLARATION,
(SQLPOINTER)SQL_XML_DECLARATION_NONE, SQL_NTS);

The code segment in Example 6-14 illustrates binding the column of a result set
to an application variable declared as a character data type SQL_C_CHAR. This
example also shows an XQuery that is not preceded by the keyword XQUERY.
As required, the SQL_ATTR_XQUERY_STATEMENT attribute of the
SQLSetStmtAttr() function has been set to SQL_TRUE, indicating that the
statement is an XQUERY.

Example 6-14 Binding the column of a result set to a character data type

SQLRETURN cliRC = SQL_SUCCESS;
int rc = 0;
SQLHANDLE hstmt; /* statement handle */
SQLVARCHAR xmldata[3000];

/* The table Customer exists with the following definition: */
/* CREATE table CUSTOMER (cid BIGINT, info XML, history XML) */

/* query to be executed */
SQLCHAR *stmt = (SQLCHAR *)"declare default element namespace
\"http://posample.org\";"
"for $custinfo in db2-fn:xmlcolumn('CUSTOMER.INFO')"
"/customerinfo[addr/@country=\"Canada\"]"
" order by $custinfo/name"
" return $custinfo";

cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

/* Set the attribute SQL_ATTR_XQUERY_STATEMENT to indicate that the
query is an XQuery */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_XQUERY_STATEMENT,
(SQLPOINTER)SQL_TRUE, SQL_NTS);

 if (rc != 0)
 {
 return rc;
 }

cliRC = SQLExecDirect(hstmt, stmt, SQL_NTS);

/* bind column 1 to variable */
288 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
 cliRC = SQLBindCol(hstmt, 1, SQL_C_CHAR, &xmldata, 1000, NULL);
/* fetch each row and display */
cliRC = SQLFetch(hstmt);
...

The code segment in Example 6-15 illustrates a query which binds the result of
an SQL/XML query to an application variable bound with an SQL_C_BINARY
data type.

Example 6-15 An SQL/XML query with the result bound to a column of SQL_C_BINARY
data type

...
char xmlBuffer[10240];
/* xmlBuffer is used to hold the retrieved XML document */
integer length;

/* Assume a table named dept has been created with the definition */
/* CREATE TABLE dept (id CHAR(8), deptdoc XML) */

length = sizeof (xmlBuffer);
SQLExecute (hStmt, "SELECT deptdoc FROM dept WHERE id='001'", SQL_NTS);
SQLBindCol (hStmt, 1, SQL_C_BINARY, xmlBuffer, &length, NULL);
SQLFetch (hStmt);
SQLCloseCursor (hStmt);
// xmlBuffer now contains a valid XML document encoded in UTF-8
...

6.4.4 Embedded SQL Applications: overview

Despite differences between host languages, embedded SQL applications,
(C/C++, COBOL, FORTRAN and REXX) are all made up of three main elements
which are required to setup and execute an SQL statement:

� A DECLARE SECTION for declaring host variables

The declaration of the SQLCA structure does not need to be in the DECLARE
section.

� The main body of the application, the setup, and execution of SQL statements

� Placements of logic that either commit, or rollback, the changes made by the
SQL statements

For each host language, there are differences between the general guidelines
which apply to all languages, and rules that are specific to individual languages.
 Chapter 6. Application development 289

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
This section focuses on various aspects of embedded SQL application
programming, specifically in relation to XML. All of the specifics, and nuances, of
developing embedding SQL applications is beyond the scope of this document.

6.5 Building applications in C or C++

DB2 provides build scripts for compiling and linking embedded SQL and DB2
administrative API programs in C or C++, along with sample programs that can
be built with these files.

On UNIX platforms the build file is bldapp, and it is found in these directories:

� sqllib/samples/c for C applications and,
� sqllib/samples/cpp for in C++ applications

On Windows the build file is bldapp.bat, and it is found in these directories:

� sqllib\samples\c for C applications, and
� sqllib\samples\cpp for C++ applications

In addition to the embedded SQL samples that may be found in the directories
above, there are specific XML examples that can be found in the following
locations:

� On UNIX:

– sqllib/samples/xml/c
– sqllib/samples/xml/xquery/c for C applications and
– sqllib/samples/xml/cpp
– sqllib/samples/xml/xquery/cpp for C++ applications

� On Windows:

– sqllib\samples\xml\c
– sqllib\samples\xml\xquery\c for C applications and
– sqllib\samples\xml\cpp
– sqllib\samples\xml\xquery\cpp for C++ applications

The build scripts, bldapp (on UNIX) or bldapp.bat (Windows,) contain the
commands necessary to build a DB2 CLI application. It takes up to four

Note: For a complete understanding of application development using
embedded SQL, refer to the manual Developing Embedded SQL Applications,
SC10-4232.
290 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
parameters, represented inside the UNIX script file by the variables: $1, $2, $3,
and $4 or inside the Windows file by the variables: %1, %2, %3, %4.

� Parameter $1 (%1): Specifies the name of your source file. This is the only
required parameter, and the only one needed for CLI applications that do not
contain embedded SQL.

Building embedded SQL programs requires a connection to the database so
three optional parameters are also provided.

� Parameter $2 (%2): Specifies the name of the database to which you want to
connect.

� Parameter $3 (%3): Specifies the user ID for the database.

� Parameter $4 (%4): Specifies the password.

For embedded SQL programs the build files, bldapp or bldapp.bat, pass the
parameters to the precompile and bind script, embprep (UNIX) or embprep.bat
(Windows). If no database name is supplied, the default SAMPLE database is
used. The user ID and password parameters are only needed if the instance
where the program is built is different from the instance where the database is
located.

6.5.1 Building C/C++ applications with the sample build script

Using the supplied build files, there are three ways to build an embedded SQL
application. Using, as an example, the source file tbmod.sqc for C or tbmod.sqC
the process is as follows:

� If connecting to the sample database on the same instance, enter

bldapp tbmod

� If connecting to another database on the same instance, also enter the
database name

bldapp tbmod database

� If connecting to a database on another instance, also enter the user ID and
password of the database instance

bldapp tbmod database userid password

The result is an executable file, tbmod.
 Chapter 6. Application development 291

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Running C/C++ applications with the sample build script
After the application has been built, there are three ways to run this embedded
SQL application:

� If accessing the sample database on the same instance, simply enter the
executable name:

tbmod

� If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

� If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Building C/C++ applications using the makefile
In addition to the sample build scripts supplied by DB2, it is possible to build all of
the applications by executing the makefile that is found in the corresponding
directories.

On UNIX the makefile is found in these directories:

� sqllib/samples/c
� sqllib/samples/xml/c
� sqllib/samples/xml/xquery/c for C applications and,
� sqllib/samples/cpp
� sqllib/samples/xml/cpp
� sqllib/samples/xml/xquery/cpp for in C++ applications.

On Windows the makefile is found in these directories:

� sqllib\samples\c
� sqllib\samples\xml\c
� sqllib\samples\xml\xquery\c for C applications, and
� sqllib\samples\cpp
� sqllib\samples\xml\cpp
� sqllib\samples\xml\xquery\cpp for C++ applications

Before running the makefile modify the makefile to reflect your environment:

� set UID (user ID to access the sample database)
� set PWD (password to access the sample database)
292 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
To build the file or files, execute the appropriate command for your environment
in your working directory, e.g.,

� UNIX:

make some_parameter

� Windows

nmake some_parameter

Where some_parameter corresponds to one of the parameters specified here:

� make (or nmake) <app_name>

/*Builds the program designated by <app_name>*/

� make (or nmake) all

/* Builds all supplied sample programs */

� make (or nmake) srv

/*Builds sample that can only be run on the server, (stored procedure)*/

� make (or nmake) all_client

/* Builds all client samples (all programs in the 'call_rtn' and 'client_run'
categories). */

� make (or nmake) call_rtn

/* Builds client programs that call stored procedure */

� make (or nmake) client_run

/* Builds all programs that run completely on the client (not ones that call
stored procedure)*/

� make (or nmake) clean

/* Erases all intermediate files produced in the build process */

� make (or nmake) cleanall

/* Erases all files produced in the build process (all files except the original
source files)*/

Note: To ensure a successful build of the sample applications, the following
tasks are suggested:

� Read the Prerequisites section of the header in the sample file and follow
the directions/suggestions before building or running the sample.

� Make sure that a compatible make. or nmake, executable program is
resident on your system in a directory included in your PATH variable.
 Chapter 6. Application development 293

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
6.5.2 Declaring XML host variables

To transmit XML data between the database server and an embedded SQL
application, you must declare host variables in your application source code.

DB2 9 introduces an XML data type that stores XML data in a structured set of
nodes in a tree format. Columns with this XML data type are described as a
SQL_TYP_XML column SQLTYPE, and applications can bind various
language-specific data types for input to and output from these columns or
parameters. Note that SQL_TYP_XML is a describe-only data type. It cannot be
used in an SQLDA to insert or retrieve XML values, a string or binary type is
required.

To access XML data, use XML host variables within your embedded SQL
applications instead of casting the data to character or binary data types. If you
do not make use of XML host variables, the best alternative for accessing XML
data is with FOR BIT DATA or BLOB data types to avoid codepage conversion.

If a CHAR, VARCHAR, CLOB, or BLOB host variable is used for input where an
XML value is expected, the value will be subject to an XMLPARSE function
operation with default whitespace (STRIP) handling. Otherwise, an XML host
variable is required.

To declare an XML host variable, the XML host variable must be declared as a
LOB data types in the declaration section as following:

� SQL TYPE IS XML AS CLOB(n) <hostvar_name>

Where <hostvar_name> is a CLOB host variable that contains XML data
encoded in the mixed codepage of the application. See Example 6-16.

Example 6-16 CLOB SQL type

EXEC SQL BEGIN DECLARE SECTION;
 ...
SQL TYPE IS XML AS CLOB(10K) xmlclob;
 ...
EXEC SQL END DECLARE SECTION;

� SQL TYPE IS XML AS DBCLOB(n) <hostvar_name>

where <hostvar_name> is a DBCLOB host variable that contains XML data
encoded in the application graphic codepage. See Example 6-17 on
page 295.
294 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Example 6-17 DBCLOB SQL type

EXEC SQL BEGIN DECLARE SECTION;
 ...
SQL TYPE IS XML AS DBCLOB(10K) xmldbclob;
...
EXEC SQL END DECLARE SECTION;

� SQL TYPE IS XML AS BLOB(n) <hostvar_name>

Where <hostvar_name> is a BLOB host variable that contains XML data
internally encoded. See Example 6-18.

Example 6-18 BLOB SQL type

EXEC SQL BEGIN DECLARE SECTION;
 ...
SQL TYPE IS XML AS BLOB(10K) xmlblob;
 ...
EXEC SQL END DECLARE SECTION;

� SQL TYPE IS XML AS CLOB_FILE <hostvar_name>

Where <hostvar_name> is a CLOB file that contains XML data encoded in the
application mixed codepage. See Example 6-19.

Example 6-19 CLOB_FILE SQL type

EXEC SQL BEGIN DECLARE SECTION;
 ...
SQL TYPE IS XML AS CLOB_FILE clob_file;
 ...
EXEC SQL END DECLARE SECTION;

� SQL TYPE IS XML AS DBCLOB_FILE <hostvar_name>

Where <hostvar_name> is a DBCLOB file that contains XML data encoded in
the application graphic codepage. See Example 6-20.

Example 6-20 DBCLOB_FILE SQL type

EXEC SQL BEGIN DECLARE SECTION;
 ...
SQL TYPE IS XML AS DBCLOB_FILE dbclob_file;
 ...
EXEC SQL END DECLARE SECTION;
 Chapter 6. Application development 295

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
� SQL TYPE IS XML AS BLOB_FILE <hostvar_name>

Where <hostvar_name> is a BLOB file that contains XML data internally
encoded. Example 6-21 shows an example.

Example 6-21 BLOB_FILE SQL type

EXEC SQL BEGIN DECLARE SECTION;
 ...
SQL TYPE IS XML AS BLOB_FILE blob_file;
 ...
EXEC SQL END DECLARE SECTION;

6.5.3 Referencing XML host variables

Example 6-22 shows f how to reference XML host variables in a C/C++
application.

Example 6-22 Referencing XML host variables in a C/C++ application

// The table definition for the table myTable is: //
// CREATE TABLE myTable (id varchar(5), xmlCol XML) //

EXEC SQL BEGIN DECLARE;
 SQL TYPE IS XML AS CLOB(10K) xmlBuf;
 SQL TYPE IS XML AS BLOB(10K) xmlblob;
 SQL TYPE IS CLOB(10K) clobBuf;
EXEC SQL END DECLARE SECTION;

// as XML AS CLOB
EXEC SQL SELECT xmlCol INTO :xmlBuf
 FROM myTable
 WHERE id = '001';
EXEC SQL UPDATE myTable
 SET xmlCol = :xmlBuf
 WHERE id = '001';

// as XML AS BLOB
EXEC SQL SELECT xmlCol INTO :xmlblob
 FROM myTable
 WHERE id = '001';
EXEC SQL UPDATE myTable
 SET xmlCol = :xmlblob
 WHERE id = '001';
296 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
/* as CLOB using XMLSERIALIZE to return a serialized version of CLOB
data type */
// The output will be encoded in the application character codepage,
// but will not contain an XML declaration
EXEC SQL SELECT XMLSERIALIZE (xmlCol AS CLOB(10K)) INTO :clobBuf
 FROM myTable
 WHERE id = '001';
EXEC SQL UPDATE myTable
 SET xmlCol = XMLPARSE (:clobBuf PRESERVE WHITESPACE)
 WHERE id = '001';

6.5.4 Declaring large object type host variables

There are several considerations to be observed when declaring large object
type (LOB type) host variables.

� The SQL TYPE IS clause is needed to distinguish the three LOB-types
(BLOB, CLOB, and DBCLOB) from each other. This is so that type checking
and function resolution can be carried out for LOB-type host variables that are
passed to functions.

� The declaration SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G may be in
mixed case.

� The maximum length allowed for the initialization string “init-data” is 32,702
bytes, including string delimiters. This is the same as the existing limit on C
and C++ strings within the precompiler.

� The initialization length, init-len, must be a numeric constant (for example, it
cannot include K, M, or G).

� A length for the LOB must be specified. Length can be any valid constant
expression, in which the constant K, M, or G can be used. The value of length
after evaluation for BLOB and CLOB must be 1 <= length <= 2,147,483,647.
The value of length after evaluation for DBCLOB must be 1 <= length <=
1,073,741,823.

� If the LOB is not initialized within the declaration, no initialization will be done
within the precompiler-generated code.

� If a DBCLOB is initialized, it is the user's responsibility to prefix the string with
an “L” (indicating a wide-character string).

Note: Wide-character literals, for example L“Hello”, should only be used in a
precompiled program if the WCHARTYPE CONVERT precompile option is
selected. For detailed information regarding precompiler options, refer to
Developing Embedded SQL Applications, SC10-4232.
 Chapter 6. Application development 297

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
The precompiler generates a structure tag which can be used to cast to the host
variable's type. Following are generated structure tags for various data type
declarations:

� BLOB example:

Declaration:

static Sql Type is Blob(2M) my_blob=SQL_BLOB_INIT("mydata");

This declaration results in the generation of the following structure:

static struct my_blob_t {
 sqluint32 length;
 char data[2097152];
} my_blob=SQL_BLOB_INIT("mydata");

� CLOB example:

Declaration:

volatile sql type is clob(125m) *var1, var2 = {10, "data5data5"};

This declaration results in the generation of the following structure:

volatile struct var1_t {
 sqluint32 length;
 char data[131072000];
} * var1, var2 = {10, "data5data5"};

� DBCLOB examples:

Declaration:

SQL TYPE IS DBCLOB(30000) my_dbclob1;

When precompiled with the WCHARTYPE NOCONVERT option, this
declaration results in the generation of the following structure:

struct my_dbclob1_t {
 sqluint32 length;
 sqldbchar data[30000];
} my_dbclob1;

Declaration:

SQL TYPE IS DBCLOB(30000) my_dbclob2 =
SQL_DBCLOB_INIT(L"mydbdata");

When precompiled with the WCHARTYPE CONVERT option, this declaration
results in the generation of the following structure:

struct my_dbclob2_t {
 sqluint32 length;
 wchar_t data[30000];
 } my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");
298 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
6.5.5 Referencing LOB type host variables

Example 6-23 shows examples of referencing XML LOB data type host variables
in a C/C++ application:

Example 6-23 Declaring XML Lob type host variables

EXEC SQL BEGIN DECLARE SECTION;
short nullind;
static SQL TYPE IS XML AS CLOB(1k) xmlclob1=SQL_CLOB_INIT("<a> a
") ;
static SQL TYPE IS BLOB(1k) hv_blob2 = SQL_BLOB_INIT("<init> a
</init>");
static SQL TYPE IS XML AS BLOB(1k) xmlblob3 = SQL_BLOB_INIT("<init>
a</init>");

EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO purchaseorder (poid, porder)
VALUES (1612, :xmlclob1:nullind);

EXEC SQL INSERT INTO purchaseorder (poid, porder)
VALUES (712, XMLPARSE(DOCUMENT :hv_blob2:nullind STRIP WHITESPACE));

EXEC SQL INSERT INTO purchaseorder (poid, porder)
VALUES (999, :xmlclob3:nullind);

6.5.6 Executing XQuery expressions in embedded SQL applications

You can store XML data in your tables and use embedded SQL applications to
access the XML columns using XQuery expressions. To access XML data, use
XML host variables instead of casting the data to character or binary data types.

To directly execute an XQuery expression in an embedded SQL application,
prepend the expression with the XQUERY keyword. For static SQL use the
XMLQUERY function. When the XMLQUERY function is called, the XQuery
expression is not prefixed by XQUERY.

It is significant to note that an XQUERY statement cannot be executed statically.
In order to embed an XQuery statement an application must make use of
dynamic sql statements, such as:

� PREPARE
� DECLARE CURSOR
� OPEN
� FETCH
 Chapter 6. Application development 299

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Example 6-24 shows an embedded XQuery statement. Observe that the
statement is dynamically prepared, declared, opened, and fetched.

Example 6-24 An embedded XQuery statement

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
 char stmt[16384];

SQL TYPE IS XML AS BLOB(10K) xmlblob;
EXEC SQL END DECLARE SECTION;

sprintf(stmt, "XQUERY declare default element namespace
\"http://posample.org\";"
 "db2-fn:xmlcolumn('CUSTOMER.INFO')");

EXEC SQL PREPARE s1 FROM :stmt;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO :xmlblob;

while(sqlca.sqlcode == SQL_RC_OK)
 {
 /* Display results */
 xmlblob.data[xmlblob.length]='\0';
 printf("\n\n\n%s",xmlblob.data);
 EXEC SQL FETCH c1 INTO :xmlblob;
 EMB_SQL_CHECK("cursor -- fetch");
 }

 EXEC SQL CLOSE c1;

The alternative to using dynamic XQuery statements, is to use the XMLQUERY
function. In this way, XQuery constructs can be embedded statically in an SQL
statement.

The code segment in Example 6-25 shows an embedded static SQL statement in
which an XQuery is called from the XMLQUERY function.

Example 6-25 XQuery called from within an XMLQUERY function.

EXEC SQL BEGIN DECLARE SECTION;
 char stmt[16384];

SQL TYPE IS XML AS BLOB(10K) xmlblob;
EXEC SQL END DECLARE SECTION;
300 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
EXEC SQL DECLARE C2 CURSOR FOR SELECT XMLQUERY(
'declare default element namespace "http://posample.org";
$cust/customerinfo[addr/city="Toronto"]'
PASSING CUSTOMER.INFO as "cust" RETURNING SEQUENCE BY REF) from
customer;

EXEC SQL OPEN c2;

EXEC SQL FETCH c2 INTO :xmlblob;

 while(sqlca.sqlcode == SQL_RC_OK)
 {
 /* Display results */
 xmlblob.data[xmlblob.length]='\0';
 printf("\n\n\n%s",xmlblob.data);
 EXEC SQL FETCH c2 INTO :xmlblob;
 EMB_SQL_CHECK("cursor -- fetch");
 }

EXEC SQL CLOSE c2;

Identifying XML values in an SQLDA
To indicate that a base type holds XML data, the sqlname field of the SQLVAR
must be updated as follows:

� sqlname.length must be eight (8).

� The first two bytes of sqlname.data must be X’0000’

� The third and fourth bytes of sqlname.data should be X’0000’ .

� The fifth byte of sqlname.data must be X’01’ (referred to as the XML subtype
indicator only when the first two conditions are met).

� The remaining bytes should be X’000000.’

If the XML subtype indicator is set in an SQLVAR whose SQLTYPE is non-LOB,
an SQL0804 error (rc=115) will be returned at runtime.

Note: SQL_TYP_XML can only be returned from the DESCRIBE statement.
This type cannot be used for any other requests. The application must modify
the SQLDA to contain a valid character or binary type, and set the sqlname
field appropriately to indicate that the data is XML.
 Chapter 6. Application development 301

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
For complete details concerning the SQLDA structure refer to Chapter 3 of the
manual: Developing Embedded SQL Applications, SC10-4232.

6.6 Java application programming

In JDBC and SQLJ applications, you can:

� Store an entire XML document in an XML column using setXXX methods.

� Retrieve an entire XML document from an XML column using getXXX
methods.

� Retrieve a sequence from a document in an XML column by using the SQL
XMLQUERY function to retrieve the sequence into a serialized XML string in
the database, and then using getXXX methods to retrieve the data into an
application variable.

� Retrieve a sequence from a document in an XML column by using an XQuery
expression, prepended with the string 'XQUERY', to retrieve the elements of
the sequence into a result table in the database, in which each row of the
result table represents an item in the sequence. Then use getXXX methods to
retrieve the data into application variables.

� Retrieve a sequence from a document in an XML column as a user-defined
table by using the SQL XMLTABLE function to define the result table and
retrieve it. Then use getXXX methods to retrieve the data from the result table
into application variables.

6.6.1 Setting up the DB2 JDBC and SQLJ development environment

In this section, we describe the procedure for setting up the DB2 JDBC and
SQLJ development environment.

The following is required before setting up the DB2 JDBC and SQLJ
environment:

� An SDK for Java, 1.4.2 or later. For all DB2 products except the DB2 Runtime
Client, the installation process automatically or optionally installs an SDK for
Java.

� JVM™ native threads support.

Note: Java has no XML data type, and invocations of metadata methods, such
as ResultSetMetaData.getColumnTypeName return a type of
java.sql.Types.OTHER for an XML column type.
302 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
During the DB2 Database for Linux, UNIX, and Windows installation process,
select Java support on UNIX or Linux, or JDBC support on Windows. These
selections are the defaults.

Selection of Java support or JDBC support causes the DB2 installation process
to automatically perform the following actions:

1. Install the IBM DB2 Driver for JDBC and SQLJ class files, and to modify the
CLASSPATH to include them.

2. Install IBM DB2 Driver for JDBC and SQLJ license files, and modify the
CLASSPATH to include them.

3. Configure TCP/IP.

In addition to these steps, the following steps must be completed:

� On DB2 servers on which you plan to run Java stored procedures or
user-defined functions, update the database manager configuration to include
the path where the SDK for Java is located.

� If you plan to run Java stored procedures that work with XML data on DB2
Database for Linux, UNIX, and Windows servers, you must set the IBM DB2
Driver for JDBC and SQLJ as the default JDBC driver for running stored
procedures.

6.6.2 Building JDBC applications

DB2 provides source code samples of JDBC applications. The sample are
available in the following directories:

� UNIX

JDBC: sqllib/samples/java/jdbc

� Windows

JDBC: sqllib\samples\java\jdbc

In addition to the JDBC samples that might be in the directories listed above,
there are examples, specific to XML, that might be found in the following
locations:

� On UNIX:

– sqllib/samples/xml/java/jdbc
– sqllib/samples/xml/xquery/java/jdbc

Note: For complete information regarding the installation of the DB2 driver for
JDBC and SQLJ refer to: Developing Java Applications, SC10-4233.
 Chapter 6. Application development 303

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
� On Windows:

– sqllib\samples\xml\java\jdbc
– sqllib\samples\xml\xquery\java\jdbc

To build and run the sample JDBC applications from the command line:

1. Compile the source_filename.java (where source_filename is the name of a
source file in the samples directory) to produce the file source_filename.class
with this command:

javac source_filename.java

For example, if the file is DbInfo.java the command would be:

javac DbInfo.java

2. Execute the application with this command:

java source_filename

For example, to execute the DbInfo.class the command would be:

java DbInfo

Inserting and updating XML data in JDBC applications
When you update or insert data into XML columns of a DB2 table, the input data
must be in the serialized string format.

Table 6-1 lists the methods and corresponding input data types that can be used
to input data into XML columns.

Table 6-1 PreparedStatement methods and input data types for updating XML columns

Note: You can also use the Java makefile command to build the sample
programs provided. The makefile command can be found in the same
directories as the source code for JDBC and SQLJ sample applications.

METHOD Input Data Type

PreparedStatement.setAsciiStream InputStream

PreparedStatement.setBinaryStream InputStream

PreparedStatement.setBlob BLOB

PreparedStatement.setBytes byte[]

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob CLOB
304 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Encoding considerations
XML data can be internally or externally encoded. When the encoding of XML
data is derived from the data itself, it is known as internally encoded data. If the
data is derived from external sources, it is known as externally encoded data.

� XML data that is sent to the database server as binary data is treated as
internally encoded data.

� XML data that is sent to the database server as character data is treated as
externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be
sent to the database server as character data, but the data contains encoding
information. The database server handles incompatibilities between internal and
external encoding as follows:

� If the database server is DB2 Database for Linux, UNIX, and Windows, the
database server generates an error if the external and internal encoding are
incompatible, unless the external and internal encoding are Unicode. If the
external and internal encoding are Unicode, the database server ignores the
internal encoding.

� If the database server is DB2 for z/OS, the database server ignores the
internal encoding.

Data in XML columns is stored in UTF-8 encoding. The database server handles
conversion of the data from its internal or external encoding to UTF-8.

Example 6-26 illustrates a technique of inserting XML data from a file into a DB2
database using the PreparedStatement.setBinaryStream method. The data is
inserted as binary data, so the database accepts the encoding.

Example 6-26 Inserting XML data from a file input as binary data

// Assume the table PO exists with the following definition://
// CREATE table PO (poid BIGINT, porder XML)

String sql = "INSERT INTO PO VALUES(?, ?)";
PreparedStatement stmt = connection.prepareStatement(sql);
stmt.setInt(1, 5000);

PreparedStatement.setObject byte[], BLOB, CLOB, DB2Xml,
InputStream, Reader, String

PreparedStatement.setString String

METHOD Input Data Type
 Chapter 6. Application development 305

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
File binFile = new File("myXmlFile.xml");
InputStream inBin = new FileInputStream(binFile);
stmt.setBinaryStream(2, inBin, (int) binFile.getLength());
stmt.execute();

Example 6-27 shows a technique of inserting XML data from a file into a DB2
database using the PreparedStatement.setClob() method. The data is inserted
as character data (CLOB), so it is treated as externally encoded data.

Example 6-27 Inserting XML data from a file using the setClob() method

int customerid = 0;
String customerInfo = "";
String Data = new String();

Data=returnFileValues("myXmlFile.xml");

// Create a CLOB object
java.sql.Clob clobData =
 com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(Data);

PreparedStatement pstmt = con.prepareStatement(
"UPDATE customer " +
"SET INFO=XMLPARSE(document cast(? as Clob) strip whitespace)" +
" WHERE cid=1008");

System.out.println(" Set parameter value: parameter 1 = " + "clobData"
);

pstmt.setClob(1, clobData);

pstmt.execute();

General recommendations for input of XML data
Here are some basic recommendations:

� If the input data is in a file, read the data in as a binary stream
(setBinaryStream) so that the database manager processes it as internally
encoded data.

� If the input data is in a Java application variable, your choice of application
variable type determines whether the DB2 database manager uses any
internal encoding. If you input the data as a character type (for example,
306 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
setString), the database manager converts the data from UTF-16 (the
application code page) to UTF-8 before storing it.

Retrieving XML data in JDBC applications
When you retrieve data from XML columns of a DB2 table, the output data is in
the serialized string format. This is true whether you retrieve the entire contents
of an XML column or a sequence from the column.

One of the following techniques can be employed to retrieve XML data:

� Use a ResultSet.getXXX method (other than ResultSet.getObject()) to
retrieve the data into a compatible data type. Example 6-28 illustrates this
point.

Example 6-28 Retrieving data using resultset.getXXX methods

String sql = "SELECT POID, DESCRIPTION from PO where POID = ?";
PreparedStatement stmt = connection.prepareStatement(sql);

stmt.setInt(1, 5000);

ResultSet resultSet = stmt.executeQuery();
String xml = resultSet.getString("PORDER");

// also possible
InputStream inputStream = resultSet.getBinaryStream("PORDER");

// also possible
Reader reader = resultSet.getCharacterStream("PORDER");

� Use the ResultSet.getObject method to retrieve the data, and then cast it to
the DB2Xml type and assign it to a DB2Xml object. Then use a
DB2Xml.getDB2XXX or DB2Xml.getDB2XmlXXX method to retrieve the data
into a compatible output data type. Example 6-29 illustrates this point.

Example 6-29 Retrieving data using getObject

ResultSet rs = stmt.executeQuery("XQUERY for $i in db2-fn:" +
 "xmlcolumn('COMPANY.DOC') /company/"+
 "emp[@id = '42366'] return $i/name ");

while (rs.next())
 {
com.ibm.db2.jcc.DB2Xml data = (com.ibm.db2.jcc.DB2Xml)
rs.getObject(1);
 // Print the result as an DB2 XML String
 Chapter 6. Application development 307

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
 System.out.println();
 System.out.println(data.getDB2XmlString());
 System.out.println();
 }

Table 6-2 lists the ResultSet methods and corresponding output data types for
retrieving XML data.

Table 6-2 ResultSet methods and output data types for retrieving XML data

Table 6-3 lists the methods and corresponding output data types for retrieving
data from a DB2Xml object, as well as the type of encoding in the XML
declaration that the driver adds to the output data.

Table 6-3 Methods, output data types, and encoding specifications

Method Output data type

ResultSet.getAsciiStream InputStream

ResultSet.getBinaryStream InputStream

ResultSet.getBytes byte[]

ResultSet.getcharacterStream Reader

ResultSet.getObject DB2Xml

ResultSet.getString String

Method Output
data type

Type of XML internal encoding
declaration added

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream
targetEncoding parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes
targetEncoding parameter

DB2Xml.getDB2XmlCharacterString Reader ISO-10646-UCS-2
308 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
To summarize Table 6-3 on page 308:

� DB2Xml.getDB2XmlXXX methods add XML declarations with encoding
specifications to the output data.

� DB2Xml.getDB2XXX methods do not add XML declarations with encoding
specifications to the output data.

General recommendations for output of XML data
When XML data is output to a file as nonbinary data, XML internal encoding
should be added to the output data, i.e., DB2Xml.getDB2XmlXXX methods.

6.6.3 Building SQLJ applications

DB2 provides source code samples of SQLJ applications. The sample are
available in the following directories:

� UNIX

SQLJ:

sqllib/samples/java/sqlj

� Windows

SQLJ:

sqllib/samples/java/sqlj

In addition to the SQLJ samples that may be found in the directories listed above
- there are examples, specific to XML, that may be found in the following
locations:

� On UNIX:

– sqllib/samples/xml/java/sqlj
– sqllib/samples/xml/xquery/java/sqlj

� On Windows:

– sqllib\samples\xml\java\sqlj
– sqllib\samples\xml\xquery\java\sqlj

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

Method Output
data type

Type of XML internal encoding
declaration added
 Chapter 6. Application development 309

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
DB2 provides build files, found in the same directories as the source code for the
sample applications, which contain commands to build either an SQLJ applet or
application. The build files are:

� bldsqlj (UNIX), or
� bldsqlj.bat (Windows)

To build and run the sample SQLJ applications:

1. Compile the source code by entering this command on the command line:

bldsqlj source_filename <userid> <password> <server_name>
<port_number> <db_name>

source_filename is the name of a .sqlj source file in the samples directory.

The parameters <userid> <password> <server_name> <port_number>
<db_name> can have default values, as explained in the build file.

For example, if the file is DbAuth.sqlj the command would be:

bldsqlj DbAuth

OR

bldsqlj,bat DbAuth

2. Execute the application with this command:

java DbAuth

Inserting and updating XML data in SQLJ applications
When you update or insert data into XML columns of a DB2 table, the input data
must be in the serialized string format. The host expression data types that you
can use to update XML columns are:

� com.ibm.db2.jcc.DB2Xml
� String
� byte
� Blob
� Clob
� sqlj.runtime.AsciiStream

Note: If you are running a Java application on UNIX in a 64-bit DB2 instance
but the software development kit for Java is 32-bit, you need to change the
DB2 library path before running the application. For example on AIX:

� If using bash or Korn shell:

export LIBPATH=$HOME/sqllib/lib32

� If using C shell:

setenv LIBPATH $HOME/sqllib/lib32
310 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� sqlj.runtime.BinaryStream
� sqlj.runtime.CharacterStream

Encoding considerations
As with JDBC applications, XML data in SQLJ applications can be internally or
externally encoded. When the encoding of XML data is derived from the data
itself, it is known as internally encoded data. If the data is derived from external
sources, it is known as externally encoded data.

� XML data that is sent to the database server as binary data is treated as
internally encoded data.

� XML data that is sent to the database server as character data is treated as
externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be
sent to the database server as character data, but the data contains encoding
information. The database server handles incompatibilities between internal and
external encoding as follows:

� If the database server is DB2 Database for Linux, UNIX, and Windows, the
database server generates an error if the external and internal encoding are
incompatible, unless the external and internal encoding are Unicode. If the
external and internal encoding are Unicode, the database server ignores the
internal encoding.

� If the database server is DB2 for z/OS, the database server ignores the
internal encoding.

Data in XML columns is stored in UTF-8 encoding. The database server handles
conversion of the data from its internal or external encoding to UTF-8.

Examples
Example 6-30 demonstrates inserting data from a String host expression,
xmlData, into an XML column. The String xmlData is a character type, so
external encoding is used, whether or not internal encoding is specified.

Example 6-30 Inserting data from a String host expression

String xmlData = "XMLPARSE(document '<customerinfo " +
 "cid=\"999\"><address country= " +
 "\"US\"><street>225 Brown St." +
 "</street><city>White Plains</city><state>"+
 Chapter 6. Application development 311

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
 "NEW YORK</state></address>" +
 "</customerinfo>' preserve whitespace)";

#sql [ctx] {INSERT INTO CUSTOMER VALUES (1, :xmlData)};

Example 6-31 demonstrates copying data from a String, xmlString, into a byte
array with CP500 encoding; the data then contains an XML declaration with an
encoding declaration for CP500. In this example, the data is then inserted from
the byte[] host expression into an XML column. A byte string is considered to be
internally encoded data.

Example 6-31 Copying data from a String into a byte array with CP500 encoding

String xmlData = "XMLPARSE(document '<customerinfo " +
 "cid=\"999\"><address country= " +
 "\"US\"><street>225 Brown St." +
 "</street><city>White Plains</city><state>"+
 "NEW YORK</state></address>" +
 "</customerinfo>' preserve whitespace)";

byte[] xmlBytes = xmlData.getBytes("CP500");
#sql[ctx] {INSERT INTO CUSTOMER VALUES (4, :xmlBytes)};

Example 6-32 shows an example of copying data from a String, xmlData, into a
byte array with US-ASCII encoding. Following this, an sqlj.runtime.AsciiStream
host expression is constructed, and data is inserted from the
sqlj.runtime.AsciiStream host expression into an XML column.
sqljXmlAsciiStream is a stream type, so its internal encoding is used. The data is
converted from its internal encoding to UTF-8 encoding and stored in its
hierarchical form on the database server.

Example 6-32 Inserting data from an sqlj.runtimeAsciiStream

String xmlData = "XMLPARSE(document '<customerinfo " +
 "cid=\"999\"><address country= " +
 "\"US\"><street>225 Brown St." +
 "</street><city>White Plains</city><state>"+
 "NEW YORK</state></address>" +
 "</customerinfo>' preserve whitespace)";

byte[] b = xmlData.getBytes("US-ASCII");
java.io.ByteArrayInputStream xmlAsciiInputStream = new
java.io.ByteArrayInputStream(b);
312 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
sqlj.runtime.AsciiStream sqljXmlAsciiStream = new
sqlj.runtime.AsciiStream(xmlAsciiInputStream, b.length);
#sql[ctx] {INSERT INTO CUSTOMER VALUES (4, :sqljXmlAsciiStream)};

Example 6-33 illustrates constructing an sqlj.runtime.CharacterStream host
expression, and inserting data from the sqlj.runtime.CharacterStream host
expression into an XML column. sqljXmlCharacterStream is a character type, so
its external encoding is used, whether or not it has an internal encoding
specification.

Example 6-33 Inserting data from a sqljXmlCharacterStream host expression

String xmlData = "XMLPARSE(document '<customerinfo " +
 "cid=\"999\"><address country= " +
 "\"US\"><street>225 Brown St." +
 "</street><city>White Plains</city><state>"+
 "NEW YORK</state></address>" +
 "</customerinfo>' preserve whitespace)";

java.io.StringReader xmlReader = new java.io.StringReader(xmlData);
sqlj.runtime.CharacterStream sqljXmlCharacterStream = new
sqlj.runtime.CharacterStream(xmlReader, xmlData.length());
#sql [ctx] {INSERT INTO CUSTOMER VALUES (4, :sqljXmlCharacterStream)};

Example 6-34 demonstrates retrieving a document from an XML column into a
com.ibm.db2.jcc.DB2Xml host expression. The data is then inserted into an XML
column, in the same table. No conversion occurs because after you retrieve the
data it is still in UTF-8 encoding.

Example 6-34 Retrieving a document into a com.ibm.db2.jcc.DB2Xml host expression

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTOMER");
rs.next();
com.ibm.db2.jcc.DB2Xml xmlObject =
(com.ibm.db2.jcc.DB2Xml)rs.getObject(2);
#sql [ctx] {INSERT INTO CUSTOMER VALUES (6, :xmlObject)};

Retrieving XML data in SQLJ applications
When you update or insert data into XML columns of a DB2 table, the input data
must be in the serialized string format. The host expression data types that you
can use to update XML columns are:

� com.ibm.db2.jcc.DB2Xml
� String
� byte
 Chapter 6. Application development 313

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
� sqlj.runtime.AsciiStream
� sqlj.runtime.BinaryStream
� sqlj.runtime.CharacterStream

Table 6-4 lists the methods that may be called to retrieve data from an
com.ibm.db2.jcc.DB2Xml object, as well as the corresponding output data types
and type of encoding in the XML declarations.

Table 6-4 Methods for retrieving XML data

If the application does not call the XMLSERIALIZE function before data retrieval,
the data is converted from UTF-8 to the external application encoding for the
character data types, or the internal encoding for the binary data types. No XML
declaration is added.

Examples
The code segment in Example 6-35 on page 315 is an example of retrieving data
from an XML column into a String host expression. Since the String type is a
character type, the data is converted from UTF-8, to the external encoding and
returned without any XML declaration.

Method Output data
type

Type of XML internal
encoding declaration
added

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by
getDB2XmlBinaryStream
targetEncoding parameter

DB2Xml.getDB2XmlBytes byte[] Specified by
DB2Xml.getDB2XmlBytes
targetEncoding parameter

DB2Xml.getDB2XmlCharacterString Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2
314 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Example 6-35 Retrieving data from an XML column into a string

#sql iterator XmlStringIter (int, String);
#sql [ctx] siter = {SELECT poid, porder FROM po};
#sql {FETCH :siter INTO :row, :outString};

Example 6-36 demonstrates retrieving data from an XML column into a byte []
host expression. Because the byte [] data type is a binary type, the data is
converted from UTF-8 to the internal encoding, and returned without any XML
declaration.

Example 6-36 Retrieving data from an XML column into a byte[] host expression

#sql iterator XmlByteArrayIter (int, byte[]);
XmlByteArrayIter biter = null;
#sql [ctx] biter = {SELECT poid, porder FROM po};
#sql {FETCH :biter INTO :row, :outBytes};

The code segment for Example 6-37 shows retrieving a document from an XML
column into a com.ibm.db2.jcc.DB2Xml host expression. In this example, the
data is in a byte string with an XML declaration that includes an internal encoding
specification for UTF-8.

Example 6-37 Retrieving data from an XML column into a UTF-8 byte[] host expression

#sql iterator DB2XmlIter (int, com.ibm.db2.jcc.DB2Xml);
DB2XmlIter db2xmliter = null;
com.ibm.db2.jcc.DB2Xml outDB2Xml = null;
#sql [ctx] db2xmliter = {SELECT poid, porder FROM po};
#sql {FETCH :db2xmliter INTO :row, :outDB2Xml};
byte[] byteArray = outDB2XML.getDB2XmlBytes("UTF-8");

The FETCH statement retrieves the data into the DB2Xml object in UTF-8
encoding. The getDB2XmlBytes method with the UTF-8 argument adds an XML
declaration with a UTF-8 encoding specification and stores the data in a byte
array.

6.7 Building DB2 applications with PHP

PHP: Hypertext Preprocessor (PHP) is an interpreted programming language
primarily intended for the development of Web applications. PHP has become a
popular language for Web application development because of its focus on
practical solutions and support for the most commonly required functionality in
Web applications.
 Chapter 6. Application development 315

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
PHP is a modular language that enables you to customize the available
functionality through the use of extensions. These extensions can simplify tasks
such as reading, writing, and manipulating XML, creating SOAP clients and
servers, and encrypting communications between server and browser. The most
popular extensions for PHP, however, provide read and write access to
databases so that you can easily create a dynamic database-driven Web site.

On Windows, precompiled binary versions of PHP are available for download
from this Web site:

http://php.net/

Most Linux distributions include a precompiled version of PHP.

Your own version of PHP can be compiled on UNIX operating systems that do
not include a precompiled version of PHP.

6.7.1 Setting up the PHP application development environment

This section covers prerequisites for, and installation of, the PHP application
development environment on Linux, Unix, and Windows.

Linux and UNIX
Prerequisites for a PHP installation on Linux and UNIX are:

� The Apache HTTP Server must be installed on your system.

� The DB2 development header files and libraries must be installed on your
system.

� The gcc compiler and other development packages including apache-devel,
autoconf, automake, bison, flex, gcc, and libxml2-devel package must be
installed on your system.

A brief overview of the steps involved in installing PHP on Linux or Unix:

� Download the latest version of the PHP tar file from

http://www.php.net

� Configure the makefile

� Compile the files by issuing the make command

� Install the files by issuing the make install command

Note: For complete information about setting up the PHP application
development environment on Linux, Unix, and Windows, refer to the manual
Developing Perl and PHP Applications, SC10-4234.
316 DB2 9 pureXML Guide

http://php.net/
http://php.net/
http://www.php.net

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� Install the ibm_db2 extension

� Edit the php.ini file

� Restart the Apache server

Windows
Prerequisites for an installation of PHP on Windows are:

� The Apache HTTP Server must be installed

A brief overview of the steps involved in installing PHP on Windows:

� Download the latest version of the PHP zip package and the collection of
PECL modules zip package from

http://www.php.net

� Extract the PHP zip package into an install directory.

� Extract the collection of PECL modules zip package into the \ext\ subdirectory
of your PHP installation directory.

� Edit the php.ini file

� Enable PHP support in Apache HTTP Server 2.x

� Restart the Apache HTTP Server

PHPEclipse and the Developer Workbench
Developer Workbench is built on the Eclipse framework. This framework allows
the installation of IDE plug-ins that are created to support various application
development APIs. One such plug-in, PHPEclipse, is available for PHP. To
acquire the PHPEclipse plug-in, complete the following steps:

1. Open the Eclipse IDE on your development desktop.

2. Click Help → Software Updates → Find/Install from the file menu in
Eclipse.

3. Select the radio button labeled, search for new features to install.

4. Click the New Remote Site button.

5. Type PHP SourceForge as the name, and enter the URL as:

http://phpeclipse.sourceforge.net/update/releases

6. Click OK, then Click Finish.

7. A list of features will be presented, open the list and check the one labeled
phpeclipse.

8. Click Next.

9. Follow the on-screen instructions to finish the automatic installation.
 Chapter 6. Application development 317

http://www.php.net
http://phpeclipse.sourceforge.net/update/releases

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
After restarting Eclipse switch to the IDE perspective specific to PHP:

1. Under the Window menu, choose Open Perspective.

2. Select Other

3. Select PHP and click OK.

The PHPEclipse IDE in Developer Workbench is shown in Figure 6-19.

Figure 6-19 PHPEclipse IDE in Developer Workbench

6.7.2 Introduction to PHP application development for DB2

IBM supports access to DB2 databases from PHP applications through two
extensions offering distinct sets of features:

� ibm_db2 is an extension written, maintained, and supported by IBM for
access to DB2 databases. The ibm_db2 extension offers a procedural
application programming interface (API) that, in addition to the normal create,
read, update, and write database operations, also offers extensive access to
the database metadata. You can compile the ibm_db2 extension with either
PHP 4 or PHP 5.
318 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� PDO_ODBC is a driver for the PHP Data Objects (PDO) extension that offers
access to DB2 databases through the standard object-oriented database
interface introduced in PHP 5.1. Despite its name, you can compile the
PDO_ODBC extension directly against the DB2 libraries to avoid the
communications overhead and potential interference of an ODBC driver
manager.

A third extension, Unified ODBC, has historically offered access to DB2
database systems. It is not recommended that you write new applications with
this extension because ibm_db2 and PDO_ODBC both offer significant
performance and stability benefits over Unified ODBC. The ibm_db2 extension
API makes porting an application that was previously written for Unified ODBC
almost as easy as globally changing the odbc_ function name to db2_ throughout
the source code of your application.

Executing XQuery expressions in PHP (ibm_db2)
After connecting to a DB2 database, your PHP scripts is ready to issue XQuery
expressions. The db2_exec() and db2_execute() functions execute SQL
statements, through which you can pass your XQuery expressions. A typical use
of db2_exec() is to set the default schema for your application in a common
include file or base class.

Call db2_exec() with the following arguments:

� The connection resource

� A string containing the SQL statement, including the XQuery expression

The XQuery expression must be wrapped in an XMLQUERY clause in the
SQL statement.

� (Optional): An array containing one of the two following statement options:

– DB2_ATTR_CASE
– DB2_ATTR_CURSOR

DB2_ATTR_CASE
For compatibility with database systems that do not follow the SQL standard, this
option sets the case in which column names will be returned to the application.
By default, the case is set to DB2_CASE_NATURAL, which returns column
names as they are returned by DB2. You can set this parameter to
DB2_CASE_LOWER to force column names to lower case, or to DB2_CASE_UPPER to
force column names to upper case.

DB2_ATTR_CURSOR
This option sets the type of cursor that ibm_db2 returns for result sets. By
default, ibm_db2 returns a forward-only cursor (DB2_FORWARD_ONLY) which
 Chapter 6. Application development 319

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
returns the next row in a result set for every call to db2_fetch_array(),
db2_fetch_assoc(), db2_fetch_both(), db2_fetch_object(), or db2_fetch_row().
You can set this parameter to DB2_SCROLLABLE to request a scrollable cursor so
that the ibm_db2 fetch functions accept a second argument specifying the
absolute position of the row that you want to access within the result set.

The value returned by db2_exec() will indicate if the SQL statement succeeded
or failed. The significance of the values returned can be explained this way:

� If the value is FALSE, the SQL statement failed. You can retrieve diagnostic
information through the db2_stmt_error() and db2_stmt_errormsg() functions.

� If the value is not FALSE, the SQL statement succeeded and returned a
statement resource that can be used in subsequent function calls related to
this query.

Example 6-38 illustrates an example of a PHP program that executes an XQuery
statement and returns a result set.

Example 6-38 PHP program that executes an XQuery and returns a result set

<?php
$database = 'sample';
$user = 'db2inst1';
$password = 'db2pwd';

$conn = db2_connect($database, $user, $password);

if ($conn) {

$xml = "XQUERY db2-fn:sqlquery(\"select info from customer\")";
$stmt = db2_exec($conn,$xml);

while ($row = db2_fetch_array($stmt)) {
printf ("%100s\n", $row[0]);
}

 db2_close($conn);
}
else {
 echo "Connection failed.";
}

?>
320 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-20 on page 321 shows the output of the execution of the preceding PHP
source.

Figure 6-20 Results of the execution of an XQuery in a PHP program

6.8 The DB2 .NET environment

There are several prerequisites that must be checked before developing
applications in the .NET environment. In brief, the following items must be
verified:

� What is the supported .NET development software?

� Is Windows application development environment setup and configured
correctly?

� Is the DB2 Visual Studio Add-In installed?

� Have the DB2 .Net provider system requirements been met?

6.8.1 Building sample applications for the DB2 .NET
data provider

DB2 provides a batch file, bldapp.bat, for compiling and linking DB2 Visual Basic
or DB2 C# .NET applications.

Note: For in-depth information about environmental prerequisites, installation,
and configuration concerns, refer to the manual: Developing ADO.NET and
OLE DB Applications, SC10-4230.
 Chapter 6. Application development 321

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
The Visual Basic .NET samples are located in:

sqllib\samples\.NET\vb

The DB2 C# .Net samples are located in:

sqllib\samples\.NET\cs directory

Along with these files are the sample programs that can be built with these files.
The batch file (bldapp.bat), takes one parameter, %1, for the name of the source
file to be compiled (without the .vb or .cs extension).

Refer to “XML and XQuery support in C# .NET CLR routines” on page 343 in this
document for information regarding XML and C# applications.

6.8.2 XML support in Visual Studio.NET - overview

Support for DB2 9 XML features in IBM Visual Studio 2005 Add-In are:

� XML data visualization
– Full integration with .NET XML designer
– XML data validation
– XML data import and export

� New XML index designer

– XML pattern builder

� XQuery script designer

� Full integration with DB2 XML Schema Repository
– Full integration with .NET XML Schema designer
– Create/register/test annotated XSD using IBM DB2 mapping editor

DB2.NET Data Provider provides the following features:

� Enables access to DB2 Family of servers
� Fully implements the Microsoft ADO.NET data access API’s/interfaces
� Binding XML types to String, byte[], XMLReader, XPathDocument
� IBM.Data.DB2 namespace

6.8.3 XML data type support in Visual Studio .NET

Because DB2 now provides support for XML data processing, and XML values
can be stored natively in an XML data type column, there are additional features
that have been implemented in the Visual Studio add-in. The areas affected in
.NET are:

� IBM Table Designer
� IBM View Designer
322 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� IBM Procedure Designer
� IBM Data Designer
� Index Designer

IBM Table Designer and IBM View Designer
A column of XML type can be defined in tables or views using the IBM Table or
View Designer. Figure 6-21 illustrates an example of creating a table with an
XML column using the IBM Table Designer.

Figure 6-21 Creating an XML column using the IBM Table Designer

IBM Procedure Designer
An XML data type can be defined as an IN, OUT, or INOUT parameter in a
stored procedure created by the IBM Procedure Designer. An example is shown
in Figure 6-22 on page 324.
 Chapter 6. Application development 323

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-22 Using IBM Procedure Designer to create a procedure

IBM Data Designer
IBM Data Designer allows user to modify, export, or import data and visualize
XML data. As shown in Figure 6-23 on page 325, when an XML column is
selected, a drop-down box offers three choices:

� XML Designer
� HTML Visualizer
� Clear Data
324 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-23 Selecting an XML column offers three choices.

XML Designer
Choosing XML Designer opens the DB2 XML Designer window. The XML
Designer window contains three tabs: TextView; Grid View; and Sample XML.

Text View
The editor section, the top portion, of the Text View window allow users to enter
XML manually. The editor also provides intellisense, word completion, and
syntactical colorization.

Alternately, an XML file from file system can be chosen by selecting Open File
from the lower portion of the window. See Figure 6-24 on page 326.
 Chapter 6. Application development 325

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-24 The Text View from the DB2 XML Designer

Grid view
When the Grid view tab is selected, the XML document is shown in grid form.
From this view, values can be entered inside the XML navigation grid cell. See
Figure 6-25 on page 327.
326 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-25 DB2 XML Designer Grid View

If an element from Grid View is selected, it is possible to drill-down into the child
elements and attributes of that element. An example of this is seen in Figure 6-26
on page 328. In this example the customerinfo element was chosen. From this
view, it is also possible to modify the current cell or add a new row.
 Chapter 6. Application development 327

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
.

Figure 6-26 Drilling-down into the elements of an XML column

If the content is changed in the Text View, the changes will be synchronized and
shown in the grid view, and vice versa.

HTML Visualizer
When the HTML Visualizer is chosen from the IBM Data Designer, an embedded
browser is launched, as in Figure 6-27 on page 329. The XML content is shown
in the browser.
328 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-27 XML content in HTML Visualizer

Clear Data
When Clear Data is chosen from the IBM Data Designer, data is deleted from
the XML column.

Index Designer
After a table has been created, an index can be added to an XML column. To
complete this, right-click on an existing table and select Open Definition to start
the IBM Table Designer. See Figure 6-28 on page 330.
 Chapter 6. Application development 329

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-28 Open the IBM Table Designer

To launch the XML Index view, click the XML indexes toolbar button, highlighted
in red in Figure 6-29 on page 331.
330 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-29 Select the XML indexes toolbar button to launch the XML Index view.

The XML Index designer consists of two panes:

� Index Properties Grid
� XML Pattern Selection

From the Property Grid on the Index Properties Grid Pane it is possible to add or
remove indices by selecting the (+) or (-) symbols. In the Index properties, you
can set or unset index properties. See Figure 6-30 on page 332.
 Chapter 6. Application development 331

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-30 Index properties Grid pane

When you choose Select… on the Build XML Pattern source button, it launches
the XML Pattern Source dialog box (Figure 6-31 on page 333). The following
options are available from this dialog box :

� Use XSR object as source
� Use column value as XML pattern source
� Use a document from file system
332 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-31 XML Pattern source dialog

Details for the options are:

� Use registered XML schema:

Use this option if you want to use an XML Schema from XSR as the XML
source.

� Use document from the column:

Use this option if the selected table contains at least one row and the XML
column is already populated with an XML document.

� Use schema/XML document on disk:

Use this option if neither of the other options applies. Select file of type xml or
xsd from your file system.

6.8.4 XQuery support in Visual Studio.NET

The IBM Script Designer allows you to execute relational SQL, SQLXML, or
XQuery queries and view the results.

To access Script Designer, right-click the DB2 connection in Visual Studio's
Server Explorer and then select New Script. This is shown in Figure 6-32 on
page 334.
 Chapter 6. Application development 333

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-32 Accessing the Script Designer

Figure 6-33 on page 335 shows Script Designer after it has been opened. In this
figure, an example of an XQuery statement has been entered. From this tool it is
possible to enter single or multiple SQL, SQLXML or Xqueries and return single
or multiple resultsets.
334 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-33 Script Designer opened with an XQuery entered

To execute the query, select Execute Script. The button for Execute Script is
highlighted in red in Figure 6-34 on page 336.
 Chapter 6. Application development 335

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-34 Execute the script

When the script has been executed, the results can be seen in the Result Data
window. XML data will appear with an ellipsis (...). To view the data, either
expand the column or click the ellipsis (...). See Figure 6-35 on page 337.
336 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-35 To view XML data expand the column or click the ellipsis

When the data is viewed by clicking the ellipsis, the HTML Visualizer window
opens to the selected row. Figure 6-36 on page 338 shows the HTML Visualizer
opened to the selected row.
 Chapter 6. Application development 337

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-36 The HTML Visualizer opened to the selected row.

6.9 XML and stored procedures

XML data can be passed to SQL procedures and external procedures by
including parameters of data type XML in CREATE PROCEDURE parameter
signatures.

Parameters of type XML are supported in:

� SQL procedures

� External procedures and external functions implemented in the following
programming languages: C, C++, COBOL, Java(TM), and .NET CLR

Variables of type XML are supported in:

� SQL procedures

� External procedures and external functions implemented in the following
programming languages: C, C++, COBOL, Java, and .NET CLR

XML parameter and XML variable within procedures can be:

� Referenced in contexts including SQL statements where XML values are
allowed

� Assigned to other variables using the following statements:

– SELECT...INTO statement
338 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
– VALUES...INTO statement
– FETCH...INTO statement
– CALL statement
– EXECUTE ...INTO statement
– SET statement

6.9.1 XML and XQuery support in SQL procedures

DB2 SQL procedures support parameters and variables of data type XML. They
can be used in SQL statements in the same way as variables of any other data
type. In addition, variables of data type XML can be passed as parameters to
XQuery expressions in XMLEXISTS, XMLQUERY and XMLTABLE expressions.

Example 6-39 shows the declaration, use, and assignment of XML parameters
and variables in a simple SQL procedure:

In this procedure, simpleProc, the following occurs:

� var1 is inserted into column COL1 in table T1.

� An XML variable, var1, is declared.

� The value of the XML INPUT parameter, parm1, is checked to determine if it
contains an item with a value less than 200. If so, the XML value is directly
inserted into column COL1 in table T1.

� The value of parameter parm2 is parsed using the XMLPARSE function and
assigned to XML variable var1.

� The value of var1 is then inserted into column COL1 in table T1.

Example 6-39 An SQL procedure using XML parameters

/* Assume table T1 exists with the following definition */
/* CREATE TABLE T1(col1 XML) */

CREATE PROCEDURE simpleProc (IN parm1 XML, IN parm2 VARCHAR(32000))
LANGUAGE SQL
BEGIN
DECLARE var1 XML;

/* check if the value of XML parameter parm1 contains an item with a
value less than 200 */
IF(XMLEXISTS(’$x/ITEM[value < 200]’ passing by ref parm1 as "x"))THEN
/* if it does, insert the value of parm1 into table T1 */

INSERT INTO T1 VALUES(parm1);

END IF;
 Chapter 6. Application development 339

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
/* parse the parameter and assign it to the XML variable */
SET var1 = XMLPARSE(document parm preserve whitespace);

/* insert variable var1 into table T1 */
INSERT INTO T1 VALUES(var1);

END

Cursors for XQuery expressions in SQL procedures
SQL Procedures support the definition of cursors on XQuery expressions. Unlike
cursors defined on SQL statements, which can be defined either statically or
dynamically, cursors on XQuery expressions can only be defined dynamically.

To declare a cursor dynamically, it is necessary to:

� Declare a variable of type CHAR or VARCHAR to contain the XQuery
expression using DECLARE statement.

� Prepare the XQuery expression before the cursor can be opened using
PREPARE statement.

Example 6-40 is an example of an SQL procedure that dynamically declares a
cursor for an XQuery expression, opens the cursor, and fetches XML data.

Example 6-40 Declaring a dynamic cursor for an XQuery expression

CREATE PROCEDURE my_Simple_XML_Proc_SQL()
RESULT SETS 1
LANGUAGE SQL
BEGIN

 DECLARE stmt_text VARCHAR (1024);
 DECLARE city VARCHAR(100);
 DECLARE stmt STATEMENT;
 DECLARE cur1 CURSOR WITH RETURN FOR stmt;

SET city = 'Toronto';

-- find out all the customers from Toronto
 SET stmt_text = 'XQUERY declare default element namespace
"http://posample.org"; for $cust in
db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo/addr[city= "' || city
||'"] return <Customer>{$cust/../@Cid}{$cust/../name}</Customer>';

 PREPARE stmt FROM stmt_text;
340 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
 OPEN cur1;

END

The code segment in Example 6-41 shows a CLI stored procedure that utilizes
an XQuery to return a result set to the caller

Example 6-41 A CLI stored procedure utilizing XQuery to return a result set

SQL_API_RC SQL_API_FN my_simple_proc (char sqlstate[6],
 char qualName[28],
 char specName[19],
 char diagMsg[71])
{
 SQLHANDLE henv;
 SQLHANDLE hdbc = 0;
 SQLHANDLE hstmt5;
 SQLRETURN cliRC;
 SQLCHAR stmt5[1024];
 SQLINTEGER custid,quantity,count;
 char city[100];

cliRC = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 SRV_HANDLE_CHECK(SQL_HANDLE_ENV, henv, cliRC, henv, hdbc);

 /* allocate the database handle */
 cliRC = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 SRV_HANDLE_CHECK(SQL_HANDLE_ENV, henv, cliRC, henv, hdbc);

 /* set AUTOCOMMIT off */
 cliRC = SQLSetConnectAttr(hdbc,
 SQL_ATTR_AUTOCOMMIT,
 SQL_AUTOCOMMIT_OFF,
 SQL_NTS);
 SRV_HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, cliRC, henv, hdbc);

Note: When a commit or rollback is enacted during the execution of an SQL
procedure, the values assigned to XML parameters and XML variables will no
longer be available. After a commit or rollback, any attempt to reference these
variable or parameters will cause an error (SQL1354N, 560CE) to be raised.
To successfully reference XML parameters and variables after a commit or
rollback, new values must be assigned to them.
 Chapter 6. Application development 341

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
 /* issue NULL Connect, because in CLI a statement handle is
 required and thus a connection handle and environment handle.
 A connection is not established; rather the current
 connection from the calling application is used. */

 /* connect to a data source */
 cliRC = SQLConnect(hdbc, NULL, SQL_NTS, NULL, SQL_NTS, NULL,
SQL_NTS);
 SRV_HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, cliRC, henv, hdbc);

/* allocate the statement handle */
 cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt5);
 SRV_HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, cliRC, henv, hdbc);

/* The query will find customers from Toronto... */
 strcpy((char *)city, "Toronto");

 /* XQuery to find all the customers from Toronto and return to
caller */
 strcpy((char *)stmt5,"XQUERY declare default element namespace "
 "\"http://posample.org\"; for $cust in
db2-fn:xmlcolumn"
"(\"CUSTOMER.INFO\")/customerinfo/addr[city=\"");
 strcat((char *)stmt5, city);
 strcat((char *)stmt5, "\"] return
<Customer>{$cust/../@Cid}{$cust/../name}</Customer>");

 cliRC = SQLPrepare(hstmt5, stmt5, SQL_NTS);
 SRV_HANDLE_CHECK_SETTING_SQLST_AND_MSG(SQL_HANDLE_STMT,
 hstmt5,
 cliRC,
 henv,
 hdbc,
 sqlstate,
 diagMsg,
 "XQUERY statement
failed.");
 cliRC = SQLExecute(hstmt5);
 SRV_HANDLE_CHECK(SQL_HANDLE_STMT, hstmt5, cliRC, henv, hdbc);

 ...
 return (0);
}

342 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
6.9.2 XML support in external routines

DB2 supports parameters and variables of data type XML in external procedures
and functions written in the following programming languages:

� C
� C++
� CLI
� COBOL
� Java
� .NET CLR languages

Since XML data type values are represented in external routines in the same
way as CLOB data types, the routines must specify that the XML data type is to
be stored as a CLOB data type.

Example 6-42 shows a CREATE PROCEDURE statement for an external
procedure implemented in the C. The statement shows the proper declaration of
input and output XML parameters.

Example 6-42 A CREATE PROCEDURE statement for a C routine

CREATE PROCEDURE Simple_XML_Proc_C(IN inXML XML as CLOB(5000),
 OUT outXML XML as CLOB(5000))
LANGUAGE C
PARAMETER STYLE SQL
FENCED
DYNAMIC RESULT SETS 1
PARAMETER CCSID UNICODE
EXTERNAL NAME 'simple_xmlproc!simple_proc'

XML and XQuery support in C# .NET CLR routines
When any C# routines in a file contain parameters or variables of type XML, it is
required that the IBM.Data.DB2Types inclusion be specified. Example 6-43
illustrates this point.

Example 6-43 The IBM.Data.DB2Types inclusion

using System;
using System.IO;
using System.Data;
using IBM.Data.DB2;

Note: The size of the CLOB value should be close to the size of the XML
document represented by the XML parameter.
 Chapter 6. Application development 343

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
using IBM.Data.DB2Types;
namespace bizLogic
{
class empOps
{ ...
// C# procedures ...
}

}

XML data type values are represented in .NET routines in the same way as in
other external routines, that is the routines must specify that the XML data type is
to be stored as a CLOB data type. Example 6-44 shows the correct parameter
designation for input and output parameters of type XML in a CREATE
PROCEDURE statement for a C# application.

Example 6-44 A CREATE PROCEDURE statement for a C# routine

CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER, IN inXML XML as CLOB
(1K), OUT inXML XML as CLOB (1K), OUT inXML XML as CLOB (1K))
LANGUAGE CLR
PARAMETER STYLE GENERAL
DYNAMIC RESULT SETS 0
FENCED
THREADSAFE
DETERMINISTIC
NO DBINFO
MODIFIES SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!xmlProc1’ ;

XML and XQUERY support in Java
When any Java routines in a source file contain parameters or variables of type
XML, the com.ibm.db2.jcc.DB2Xml import is required. Example 6-45 illustrates
this point.

Example 6-45 Importing the com.ibm.db2.jcc.DB2Xml

using System;
import java.lang.*;
import java.io.*;
import java.sql.*;
import java.util.*;
import com.ibm.db2.jcc.DB2Xml;
public class stpclass
{ ...
344 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
// Java procedure implementations ...
}

XML data type values are represented in JAVA routines in the same way as in
other external routines. That is, the routines must specify that the XML data type
is to be stored as a CLOB data type. Example 6-46 shows the correct parameter
designation for input and output parameters of type XML.

Example 6-46 Using XML input and output parameters

CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER, IN inXML XML as CLOB
(1K), OUT out1XML XML as CLOB (1K), OUT out2XML XML as CLOB (1K))
DYNAMIC RESULT SETS 0
DETERMINISTIC
LANGUAGE JAVA
PARAMETER STYLE JAVA
MODIFIES SQL DATA
FENCED
THREADSAFE
PROGRAM TYPE SUB
NO DBINFO
EXTERNAL NAME ’myJar:stpclass.xmlProc1’@

Invocation of routines with XML parameters in Java applications
When you call a stored procedure that has XML parameters, a compatible data
type must be used in the invoking statement.

For JDBC applications, when calling a routine with XML input parameters, use
parameters of the com.ibm.db2.jcc.DB2Xml type.

To register XML output parameters, use parameters as the
com.ibm.db2.jcc.DB2Types.XML type.

The code segment in Example 6-47 calls a stored procedure, SP_xml, with one
input and two output parameters:

Example 6-47 A Java Stored Procedure call with one input and two output parameters

// Declare nput, output, and inout parameters
com.ibm.db2.jcc.DB2Xml in_xml = xmlvar;
com.ibm.db2.jcc.DB2Xml out_xml = null;
com.ibm.db2.jcc.DB2Xml inout_xml = xmlvar;
...

Connection con; CallableStatement cstmt;
ResultSet rs;
 Chapter 6. Application development 345

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
...
// Create a CallableStatement object
cstmt = con.prepareCall("CALL SP_xml(?,?,?)");

// Set input parameter as type com.ibm.db2.jcc.DB2Xml
cstmt.setObject (1, in_xml);

// Register output parms as type com.ibm.db2.jcc.DB2Types.XML
cstmt.registerOutParameter (2, com.ibm.db2.jcc.DB2Types.XML);
cstmt.registerOutParameter (3, com.ibm.db2.jcc.DB2Types.XML);

// Call the stored procedure
cstmt.executeUpdate();
System.out.println("Parameter values from SP_xml call: ");

System.out.println("Output parameter value ");

// Use the DB2-only method getBytes to
// convert the value to bytes for printing
printBytes(out_xml.getDB2String());

System.out.println("Input/output parameter value ");
printBytes(inout_xml.getDB2String());

...

When you call a stored procedure that has XML parameters, a compatible data
type must be used in the invoking statement.

For JDBC applications, when calling a routine with XML input parameters, use
parameters of the com.ibm.db2.jcc.DB2Xml type.

To register XML output parameters, use parameters as the
com.ibm.db2.jcc.DB2Types.XML type.

For additional information regarding the retrieval of output parameters, refer
to“Retrieving XML data in JDBC applications” on page 307.

For considerations of retrieving output parameters when invoking Java/SQLJ
stored procedures, refer to “Retrieving XML data in SQLJ applications” on
page 313.

Example 6-48 on page 347 demonstrates the invocation of a Java stored
procedure that has two XML type INPUT parameters and one INTEGER
OUTPUT parameter.
346 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Example 6-48 An invocation of a Java Stored Procedure with XML input parameters

public static void callSimple_Proc(Connection con)
 {
 try
 {
 // prepare the CALL statement
 String procName = "Simple_XML_Proc_Java";
 String sql = "CALL " + procName + "(?, ?, ?)";

 CallableStatement callStmt = con.prepareCall(sql);

// input data
 String inXml = "<customerinfo xmlns=\"http://posample.org\"
Cid=\"5002\">"
+ "<name>Kathy Smith</name><addr country=\"Canada\"><street>25
EastCreek"
+"</street><city>Markham</city><prov-state>Ontario</prov-state><pcode-z
ip>"
+ "N9C-3T6</pcode-zip></addr><phone type=\"work\">905-566-7258"
+ "</phone></customerinfo>";

callStmt.setString (1, inXml) ;

// register the output parameters
// the XML output parm is registered as com.ibm.db2.jcc.DB2Types.XML
type
 callStmt.registerOutParameter(2, com.ibm.db2.jcc.DB2Types.XML);
 callStmt.registerOutParameter(3, Types.INTEGER);

 // call the stored procedure
 System.out.println();
 System.out.println("Calling stored procedure " + procName);
 callStmt.execute();
 System.out.println(procName + " called successfully");

// retrieve output parameters using type com.ibm.db2.jcc.DB2Xml
// The
 com.ibm.db2.jcc.DB2Xml outXML = (DB2Xml) callStmt.getObject(2);
 System.out.println("\n \n Location is :\n "
 + outXML.getDB2String());
 ResultSet rs = callStmt.getResultSet();

Fetch...
 Chapter 6. Application development 347

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
To call a routine with XML parameters from an SQLJ program, use parameters of
the com.ibm.db2.jcc.DB2Xml type. Example 6-49 shows an SQLJ program that
calls a stored procedure that takes three XML parameters: an IN parameter, an
OUT parameter, and an INOUT parameter.

Example 6-49 Call a routine from an SQLJ program

com.ibm.db2.jcc.DB2Xml in_xml = xmlvar;
com.ibm.db2.jcc.DB2Xml out_xml = null;
com.ibm.db2.jcc.DB2Xml inout_xml = xmlvar;
// Declare an input, output, and
// input/output XML parameter
...
#sql [myConnCtx] {
CALL SP_xml(:IN in_xml, :OUT out_xml, :INOUT inout_xml)
};
// Call the stored procedure
System.out.println("Parameter values from SP_xml call: ");
System.out.println("Output parameter value ");
printBytes(out_xml.getDB2String());
// Use the DB2-only method getBytes to
// convert the value to bytes for printing
System.out.println("Input/output parameter value ");
printBytes(inout_xml.getDB2String());

6.9.3 XML Schema Repository object registration

An XML schema, DTD, or external entity must be registered with the XML
Schema repository (XSR), before it can be used for validation and annotation.
XSR object registration involves the following steps:

1. Register the XML schema document in the XML schema repository.

2. Specify additional XML schema documents to be included with the XSR
object. (required only if your XML schema consists of more than one schema
document).

3. Complete the registration process with the XML schema repository.

When a DB2 database is created, the stored procedures needed to register an
XML schema are also created. They are:

� XSR_REGISTER procedure
� XSR_ADDSCHEMADOC procedure
� XSR_COMPLETE procedure
� XSR_DTD procedure
� XSR_EXTENTITY procedure
348 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
The XSR object registration steps can be performed by any of the following
methods:

� Stored procedures
� Command line processor
� Java applications

Java support for XML schema registration and removal
As indicated previously, DB2 provides the SYSPROC.XSR_REGISTER,
SYSPROC.XSR_ADDSCHEMADOC, SYSPROC.XSR_COMPLETE, and
SYSPROC.XSR_REMOVE stored procedures for registering and removing XML
schemas and components.

The IBM DB2 Driver for JDBC and SQLJ provides methods that let you perform
the same functions from a Java application program. Those methods are:

� DB2Connection.registerDB2XMLSchema

Registers an XML schema in DB2, using one or more XML schema
documents. There are two forms of this method: one form for XML schema
documents that are input from an InputStream objects, and one form for XML
schema documents that are in a Strings.

� DB2Connection.deregisterDB2XMLObject

Removes an XML schema definition from DB2.Before you can invoke these
methods, the underlying stored procedures must be installed on the DB2
database server.

6.10 Web services

Web services are self-describing and modular applications that expose business
logic as services that can be published, discovered, and invoked over the
Internet. It is technology that is well-suited to implementing a service-oriented
architecture (SOA).

Based on XML standards, Web services can be developed as loosely-coupled
application components using any programming language, any protocol, or any
platform. This mode of development facilitates the delivery of business
applications as a service accessible to anyone, anytime, at any location, and
using any platform. Of course, Web services are not the only technology that can
be used to implement an SOA. Many examples of organizations that have
successfully implemented SOAs using other technologies can be found. Web
services have also been used by others to implement architectures that are not
service-oriented.
 Chapter 6. Application development 349

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Web services and SOAs are dedicated to reducing or eliminating impediments to
interoperable integration of applications, regardless of their operating system
platform or language of implementation. The following list summarizes and
highlights the most compelling characteristics of Web services and SOA:

� Componentization

SOA encourages an approach to systems development in which software is
encapsulated into components called services. Services interact through the
exchange of messages that conform to published interfaces. The interface
supported by a service is all that concerns any prospective consumers;
implementation details of the service itself are hidden from all consumers of
the service.

� Platform independence

In an SOA, the implementation details are hidden. Therefore, services can be
combined and orchestrated regardless of programming language, platform,
and other implementation details. Web services provide access to software
components through a wide variety of transport protocols, increasing the
number of channels through which software components can be accessed.

� Investment preservation

As a benefit of componentization and encapsulation, existing software assets
can be exposed as services within an SOA using Web services technologies.
When existing software assets are exposed in this way, they can be
extended, refactored, and adapted into appropriate services to participate
within an SOA. This reuse reduces costs and preserves the investment. The
evolutionary approach enabled by Web services eliminates the need to rip
and replace existing solutions.

� Loose coupling

As another benefit of componentization, the SOA approach encourages loose
coupling between services, which is a reduction of the assumptions and
requirements shared between services. Implementations of individual
services can be replaced and evolved over time without disrupting the normal
activities of the SOA system as a whole. Therefore, loosely coupled systems
tend to reduce overall development and maintenance costs by isolating the
impact of changes to the internal implementation of components and
encouraging reuse of components.

� Distributed computing standardization

Web services are the focal point of many, if not most, of the current
standardization initiatives related to advancement of distributed computing
technology. Additionally, much of the computer industry's research and
development effort related to distributed computing is centered on Web
services.
350 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
� Broad industry support

Core Web services standards (SOAP, WSDL, XML, and XML Schema) are
universally supported by all major software vendors. This universal support
provides a broad choice of middleware and tooling products with which to
build service-oriented applications.

� Composability

Web services technologies are planned to enable designers to mix and match
different capabilities through composition. For example, systems that need
message-level security can leverage the Web services Security standard.
Any system that does not need message-level security is not forced to deal
with the complexity and overhead of signing and encrypting its messages.
This approach to composability applies to all of the various qualities of
service, such as reliable delivery of messages, transactions, and so forth.
Composability enables Web services technologies to be applied consistently
in a broad range of usage scenarios, such that only required functionality
needs be implemented.

6.10.1 Components of Web Services

Several key technologies and standards exist within the Web services
community. The most common and widely accepted Web services standards are
SOAP (Simple Object Access Protocol), WSDL (Web Services Description
Language), and UDID (Universal Description, Discovery and Integration). SOAP
is used as a communication protocol. WSDL is used for describing a construction
of Web Services. UDDI is a registry of Web Services.

SOAP
SOAP is a simple, flexible, and extendable mechanism for exchanging structured
data. Web Services uses SOAP as a communication protocol. Different from
HTTP protocol which uses text strings for GET/POST methods and URL, SOAP
is an XML-based messaging protocol. SOAP encodes messages as XML
documents for sending requests and receiving responses.

SOAP consists of two parts:

� Protocol binding header

SOAP can use HTTP, SMTP and FTP as the underneath protocol. The SOAP
library generates the protocol binding header based on the protocol specified.
When a Web server reads a protocol binding header, it understands that the
following message is a SOAP message.
 Chapter 6. Application development 351

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
� SOAP envelope

A SOAP envelope contains a header and a body. A SOAP header is optional,
and contains information such as security information, routing information,
and so forth. A SOAP body contains call and response information. It Includes
method names and arguments if it is Remote Procedure Call (RPC).

Example 6-50 shows a sample SOAP message:

Example 6-50 A SOAP message

(1) Protocol Binding Header
POST /services/weather/QueryWeather.dadx/SOAP HTTP/1.0
Host: localhost
Content-Type: text/xml; charset=utf-8
SOAPAction: http://tempuri.org/weather/QueryWeather.dadx

(2) SOAP Envelope
<?xml version=Åg1.0Åh encoding=ÅgUTF-8Åh ?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

(a) SOAP Header
<soap:Header>
 <t:Transaction xmlns:t="http://tempuri.org/transaction"
soap:mustUnderstand="1">
 5
 </t:Transaction>
</soap:Header>

(b) SOAP Body
<soap:Body>
 <m:getWeather xmlns:m="http://tempuri.org/weather/QueryWeather.dadx">
 <wDate xsi:type="xsd:date">2003-02-25</wDate>
 <prefName xsi:type="xsd:string">TOKYO</prefName>
 </m:getWeather>
</soap:Body>

</soap:Envelope>

WSDL
WSDL is a standardized XML interface description used to define a Web Service
interface. The interface includes the information about how to structure content
request messages, how to interpret response messages, and which transport
protocol to use to invoke the Web service. Web Services provider provides
352 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
interface description. Based on the description, the Web Services requesters
create applications to request Web services.

UDDI
UDDI is an open framework for describing, publishing, and finding Web services
on the Internet. UDDI is similar to a phone book where companies can list the
Web services they provide. Web Services requesters can search for UDDI to
locate the Web Service they need.

6.10.2 Web services in DB2 9

DB2 provides optimized supports for Web services since version 8. DB2 9
pureXML features, native XML store, SQL/XML, XQuery, and XPath supports
enrich DB2 Web services even more. DB2 users may take advantages of Web
services in two ways: as a provider and as a consumer or requestor.

Figure 6-37 illustrates Web services functionality in DB2 9.1.

Figure 6-37 Web services in DB2 9.1 overview

DB2 9.1
as Web Services Consumers

DB2 9.1
as Web Services Providers

DB2 9

SOAP
RouterWORF

Web Application Server or
Tomcat

SOAP Client

SO
AP

DB2 Client

INTERNET

Stock Price
Web Service

Web Service
UDFs

SOAP
 Chapter 6. Application development 353

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Web services consumer
When utilizing DB2 9 as the Web services consumer, application developers can
save the programming effort by using SQL to access Web service data. The data
can be manipulated within the context of an SQL statement before that data is
returned to the client application. DB2 provides UDFs to facilitate application
consuming and integrating Web services data.

Example 6-51 shows three SOAP UDFs which can be used to send SOAP
requests and receive SOAP response. These UDFs perform the same functions
but return values in different type and length. The UDFs do the following actions:

� They compose a SOAP request.
� They post the request to the service endpoint.
� They receive the SOAP response.
� They return the content of the SOAP body.

These three UDFs have three arguments to be specified as the following:

� The first argument is the endpoint where the utilized Web service is running.

� The second argument is the SOAP action (if required).

� The third argument is the SOAP body where the method name and
arguments for that Web service are specified.

Example 6-51 SOAP UDFs

db2xml.soaphttpv (
 endpoint_url VARCHAR(256),
 soap_action VARCHAR(256),
 soap_body VARCHAR(3072)) | CLOB(1M))
 RETURNS VARCHAR(3072)

db2xml.soaphttpc (
 endpoint_url VARCHAR(256),
 soapaction VARCHAR(256),
 soap_body VARCHAR(3072) | CLOB(1M))
 RETURNS CLOB(1M)

db2xml.soaphttpcl(
 endpoint_url VARCHAR(256),
 soapaction VARCHAR(256),
 soap_body varchar(3072))
 RETURNS CLOB(1M) as locator
354 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Example 6-52 shows the example of invoking SOAP UDF. Note that you
specified the method name getLastName and the argument wEmpno for that
method as the third argument.

Example 6-52 an example of SOAP UDF

values db2xml.soaphttpv(

-- (1) ENDPOINT
'http://localhost:8080/services/emp/getLastName.dadx/SOAP',

-- (2) ACTION
'http://tempuri.org/emp/getLastName.dadx',

-- (3) SOAP BODY
'<m:getLastName xmlns:m="http://tempuri.org/emp/getLastName.dadx">
 <wEmpno xsi:type="xsd:string">000100</wEmpno>
 </m:getWeather>Ae);
)

Web services provider
DB2 9 also can be the Web service provider. DB2 9 offers Web services client
application the ability to manipulate data inside the database through the WSDL
interface. You can create a WSDL interface to DB2 9 data by using the Web
services Object Runtime Framework (WORF). Inside WORF, Document Access
Definition Extension (DADX) file is used to specify the services. In DADX files,
you define the operation to access DB2 data. The DADX and its runtime
environment then are deployed to a supported Web server for users to use the
DB2 Web service.

Figure 6-38 on page 356 is shows an overview of the DB2 Web service provider
architecture. The SOAP client calls a Web service (In Figure 6-38 on page 356,
getName). WORF looks into the DADX file to find getName method and the SQL
is associated with it. The DB2 data retrieved by the SQL then is returned with a
SOAP message.
 Chapter 6. Application development 355

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
Figure 6-38 Web Services Provider (WORF) architecture overview

WORF
Web services Object Runtime Framework (WORF) provides an environment to
easily create simple XML based Web services that access DB2 data and stored
procedures. WORF application environment works on WebSphere Application
Server and Apache Tomcat. By using the framework, the application developers
can avoid writing program to handle the details of creating the Web services.

The easily programming environment WORF provided includes the functions for
application to connect to the database, executing SQL statements, and calling
the stored procedures. You also can use WORF to generate WSDL, test pages,
XML Schema for Web services. In addition, WORF provides automatic
documentation feature and resource-based deployment. For constructing a
simple WORF Web service, you only need to edit the DADX file and property file
group.properties.

DADX file
DADX is an XML file describing Web service definitions. Once Web application
server receives a SOAP request, WORF reads the DADX file to discern the

DB2 9.1
as Web Services Providers

DB2 9
Web Application Server or

Tomcat

SOAP Client

<DADX>
<operation name="getName">

<query>
<SQL_query>

select name from emp
</SQL_query>

</query>
</operation>

</DADX>
DADX

WORF

Call getName()
from program.

SOAP
Request

SOAP
Response

SELECT name
from emp

George

Receive
“George”
356 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
method name that is being called, then executes the SQL statements or stored
procedures corresponding to that method.

Example 6-53 is an example of DADX. In this DADX file, a Web service method
name, an argument, and a SELECT statement are defined. The getLastName
method takes employee number as an argument and returns the last name of the
employee whose employee number matches with the argument.

Example 6-53 getLastName.dadx

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dtd1="http://schemas.myco.com/sales/getstart.dtd"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <operation name="getLastName">
 <wsdl:documentation>uranai</wsdl:documentation>
 <query>
 <SQL_query>
 select lastname from employee where empno=:wEmpno
 </SQL_query>
 <parameter name="wEmpno" type="xsd:string"/>
 </query>
 </operation>
</DADX>

Example 6-54 is another example of DADX. This doXQuery method returns the
result set of an SQL/XML query.

Example 6-54 doXQuery.dadx

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dtd1="http://schemas.myco.com/sales/getstart.dtd"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <operation name="doXQuery">
 <wsdl:documentation>uranai</wsdl:documentation>
 <query>
 <SQL_query>
SELECT xmlserialize(xmlquery('$c/Application/Customer/Name' passing
APPL_DOC as "c") as varchar(128))
FROM DB2ADMIN.LOAN_APPLICATION
 Chapter 6. Application development 357

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
WHERE xmlexists('$i/Application/Customer/Name[FirstName = "Ippei" or
FirstName="Ichiro"]' passing APPL_DOC as "i")
 </SQL_query>
 </query>
 </operation>
</DADX>

group.properties file
In the group.properties there is information that WORF must have to access DB2
such as JDBC driver, database name, user ID, and password, and so forth.

Example 6-55 is an example of group.properties file for getLastName.dadx.

Example 6-55 group.properties

/dadx group properties
dbDriver=COM.ibm.db2.jdbc.app.DB2Driver
dbURL=jdbc:db2:sample
userID=xxxxx
password=xxxxxx
parserClass=org.apache.xerces.parsers.SAXParser
autoReload=true
reloadIntervalSeconds=5
initialContextFactory=com.ibm.websphere.naming.WsnInitialContextFactory
datasourceJNDI=jdbc/sample
groupNamespaceUri=http://schemas.ibm.com/employee

Testing WORF Web services
WORF comes with a testing framework so that you can easily verify your Web
services.

Once the methods are deployed, you can test the methods and acquire WSDL
and XML Schema. Now we have deployed two methods: getLastName and
doXQuery. Figure 6-39 on page 359 is a test page of WORF after deployed
getLastName and doXQuery are deployed.
358 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ch06.fm
Figure 6-39 WORF test page

Figure 6-40 shows a result page of executing the doXQuery methods. When you
click the invoke button in the right pane, doXQuery method is executed and the
result is displayed on the bottom pane. Note that the result set from the SELECT
statement in the doXQuery.dadx is wrapped in SOAP envelope.

Figure 6-40 WORF test result page
 Chapter 6. Application development 359

7315ch06.fm Draft Document for Review December 29, 2006 1:50 pm
360 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ax01.fm
Appendix A. Sample data

This appendix provides the following sample materials:

� DDLs for creating database and tables used in sample application XMLoan.
� The sample XML data used in Chapter 5, “Managing XML data” on page 173.

A

© Copyright IBM Corp. 2006. All rights reserved. 361

7315ax01.fm Draft Document for Review December 29, 2006 1:50 pm
A.1 Creating XMLoan database
This section provides the DDLs for the FAMDI bank loan application described in
Chapter 2, “Sample scenario description” on page 21.

A.1.1 Creating database
XML data is stored in code set UTF-8/code page 1208 on DB2 V9.1. In order to
use XML type, you must create a UTF-8 database.

Example A-1 shows creating a UTF-8 database called xmlrb.

Example: A-1 create database command

create database xmlrb using codeset UTF-8 territory US

A.1.2 Creating tables
There are seven tables. The data model in Chapter 2, “Sample scenario
description” on page 21 shows the relationship among them. The following is the
table names and the brief descriptions of the tables.

� APPLICATION_STATUS table has static data of an application. For instance,
new, in progress, accepted and rejected.

� LOAN_APPLICATION contains customers' loan applications. The loan
application is stored in XML form.

� CAMPAIGN table stores the campaigns for loan products. For instance, a
campaign can be TV, radio or new paper.

� LOAN table has the loan information. For instance, start date of the loan.

� PAYMENT table stores customer's payments.

� PRODUCT table stores all the loan products.

� FEEDBACK table stores customer's feedback. Customer can submit
feedback on line. The feedback is in stores XML form

Creating tables and primary keys
The following examples show creating tables and primary keys.

Example A-2 on page 363 shows creating table APPLICATION_STATUS and
STATUS_ID is the primary key.
362 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ax01.fm
Example: A-2 create table APPLICATION_STATUS

CREATE TABLE "DB2ADMIN"."APPLICATION_STATUS" (
 "STATUS_ID" INTEGER NOT NULL ,
 "STATUS_DESC" CHAR(50) NOT NULL);

ALTER TABLE "DB2ADMIN"."APPLICATION_STATUS"
ADD CONSTRAINT "CC1155357143051" PRIMARY KEY

("STATUS_ID");

Example A-3 shows creating LOAN_APPLICATION and APPL_ID is the primary
key. The column APPL_DOC has XML type.

Example: A-3 create table LOAN_APPLICATION

CREATE TABLE "DB2ADMIN"."LOAN_APPLICATION" (
 "APPL_ID" BIGINT NOT NULL GENERATED ALWAYS AS IDENTITY (
 START WITH +0
 INCREMENT BY +1
 MINVALUE +0
 MAXVALUE +9223372036854775807
 NO CYCLE
 NO CACHE
 NO ORDER) ,
 "APPL_DOC" XML ,
 "APPL_STATUS" INTEGER NOT NULL WITH DEFAULT 1 ,
 "PROD_ID" INTEGER WITH DEFAULT NULL);

ALTER TABLE "DB2ADMIN"."LOAN_APPLICATION"
ADD CONSTRAINT "CC1155685528218" PRIMARY KEY

("APPL_ID");

Example A-4 shows creating table CAMPAIGN and CAMP_ID is the primary key.

Example: A-4 create table CAMPAIGN

CREATE TABLE "DB2ADMIN"."CAMPAIGN" (
 "CAMP_ID" INTEGER NOT NULL ,
 "CAMP_DESC" CHAR(30) NOT NULL);

ALTER TABLE "DB2ADMIN"."CAMPAIGN"
ADD CONSTRAINT "CC1155685220956" PRIMARY KEY

("CAMP_ID");
 Appendix A. Sample data 363

7315ax01.fm Draft Document for Review December 29, 2006 1:50 pm
Example A-5 shows creating table LOAN and LOAN_ID is the primary key.

Example: A-5 create table LOAN

CREATE TABLE "DB2ADMIN"."LOAN" (
 "START_DATE" DATE NOT NULL ,
 "LOAN_ID" INTEGER NOT NULL ,
 "PYMT_STATUS" CHAR(10) ,
 "PYMT_COUNT" INTEGER);

ALTER TABLE "DB2ADMIN"."LOAN"
ADD CONSTRAINT "CC1155686490131" PRIMARY KEY

("LOAN_ID");

Example A-6 shows creating table PAYMENT

Example: A-6 create table command for table PAYMENT

CREATE TABLE "DB2ADMIN"."PAYMENT" (
 "APPL_ID" INTEGER NOT NULL ,
 "PYMT_DATE" DATE NOT NULL);

Example A-7 shows create table PRODUCT and PROD_ID is the primary key.

Example: A-7 create table PRODUCT

CREATE TABLE "DB2ADMIN"."PRODUCT" (
 "PROD_ID" INTEGER NOT NULL ,
 "PROD_DESC" CHAR(50) NOT NULL ,
 "RATE" DECIMAL(6,3) ,
 "AMOUNT" DECIMAL(14,2) ,
 "TERM" INTEGER);

ALTER TABLE "DB2ADMIN"."PRODUCT"
ADD CONSTRAINT "CC1155685582066" PRIMARY KEY

("PROD_ID");

Example A-8 shows creating table FEEDBACK. The column COMMENT has
XML type.

Example: A-8 create table command for FEEDBACK

CREATE TABLE "DB2ADMIN"."FEEDBACK" (
 "APPL_ID" INTEGER NOT NULL ,
 "COMMENT" XML);
364 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ax01.fm
Creating foreign keys
Foreign keys are the ways to define relationship among tables. The following
examples show the commands to define foreign keys.

Example A-9 shows column APPL_STATUS in table LOAN_APPLICATION is a
foreign key that refers to column STATUS_ID in table APPLICATION_STATUS.
The column PROD_ID int table LOAN_APPLICATION is a foreign key that refers
to PROD_ID in table PRODUCT.

Example: A-9 define foreign keys for table LOAN_APPLICATION

ALTER TABLE "DB2ADMIN"."LOAN_APPLICATION"
ADD CONSTRAINT "CC1155687456882" FOREIGN KEY

("APPL_STATUS")
REFERENCES "DB2ADMIN"."APPLICATION_STATUS"

("STATUS_ID")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

ALTER TABLE "DB2ADMIN"."LOAN_APPLICATION"
ADD CONSTRAINT "CC1155687530557" FOREIGN KEY

("PROD_ID")
REFERENCES "DB2ADMIN"."PRODUCT"

("PROD_ID")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

Example A-10 shows column LOAN_ID in table LOAN is a foreign key that refers
to column APPL_ID in table LOAN_APPLICATION.

Example: A-10 define foreign key for table LOAN

ALTER TABLE "DB2ADMIN"."LOAN"
ADD CONSTRAINT "CC1155686626047" FOREIGN KEY

("LOAN_ID")
REFERENCES "DB2ADMIN"."LOAN_APPLICATION"

("APPL_ID")
ON DELETE NO ACTION
 Appendix A. Sample data 365

7315ax01.fm Draft Document for Review December 29, 2006 1:50 pm
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

Example A-11 shows column APPL_ID in table PAYMENT is a foreign key that refers
to column LOAN_ID in table LOAN.

Example: A-11 define foreign key for table PAYMENT

ALTER TABLE "DB2ADMIN"."PAYMENT"
ADD CONSTRAINT "CC1155686683650" FOREIGN KEY

("APPL_ID")
REFERENCES "DB2ADMIN"."LOAN"

("LOAN_ID")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

Example A-12 shows column APPL_ID in table FEEDBACK is a foreign key that
refers to column APPL_ID in table APPLICATION_APPLICATION.

Example: A-12 define foreign key for table FEEDBACK

ALTER TABLE "DB2ADMIN"."FEEDBACK"
ADD CONSTRAINT "CC1155687388774" FOREIGN KEY

("APPL_ID")
REFERENCES "DB2ADMIN"."LOAN_APPLICATION"

("APPL_ID")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

A.2 contactInfo.xsd
Example A-13 shows the XML schema used in 5.3.1, “IMPORT” on page 208.

Example: A-13 XML schema contactInfo.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="work" type="xsd:string"/>
 <xsd:element name="mobile" type="xsd:string"/>
 <xsd:element name="State" type="xsd:string"/>
366 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ax01.fm
 <xsd:element name="ContactInfo">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Address" minOccurs="1" maxOccurs="2"/>
 <xsd:element ref="Phone" minOccurs="1" maxOccurs="3"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Zip" type="zipType"/>
 <xsd:element name="Address">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Street"/>
 <xsd:element ref="City"/>
 <xsd:element ref="State"/>
 <xsd:element ref="Zip"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="City" type="xsd:string"/>
 <xsd:element name="Street" type="xsd:string"/>
 <xsd:element name="Phone">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="work"/>
 <xsd:element ref="home"/>
 <xsd:element ref="mobile"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="home" type="xsd:string"/>
 <xsd:simpleType name="zipType">
 <xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{5}(-[0-9]{4})?"></xsd:pattern>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>
 Appendix A. Sample data 367

7315ax01.fm Draft Document for Review December 29, 2006 1:50 pm
A.3 Sample XML data
Example A-14 is an XML file to be used in 5.4.3, “Node-level access control” on
page 241.

Example: A-14 employee002.xml

<?xml version="1.0"?>
<Employee>
 <Name>John Smith2</Name>
 <EmpNo>002</EmpNo>
 <Title>Engineer</Title>
 <DateOfBirth>2/22/1967</DateOfBirth>
 <SSN>892-76-0002</SSN>
 <Address country="US">
 <Street>2 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 </Address>
 <Phone type="work">312-964-0002</Phone>
 <Phone type="home">678-181-0002</Phone>
 <Email>john.smith2@my.com</Email>
 <Salary>20000</Salary>
</Employee>

Example A-15 is an XML file to be used in 5.4.3, “Node-level access control” on
page 241.

Example: A-15 employee003.xml

<?xml version="1.0"?>
<Employee>
 <Name>John Smith3</Name>
 <EmpNo>003</EmpNo>
 <Title>Architect</Title>
 <DateOfBirth>2/23/1967</DateOfBirth>
 <SSN>892-76-0003</SSN>
 <Address country="US">
 <Street>3 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 </Address>
368 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ax01.fm
 <Phone type="work">312-964-0003</Phone> <Phone
type="home">678-181-0003</Phone>
 <Email>john.smith3@my.com</Email>
 <Salary>30000</Salary>
</Employee>

Example A-16 is an XML file to be used in 5.4.3, “Node-level access control” on
page 241

Example: A-16 employee004.xml

<?xml version="1.0"?>
<Employee>
 <Name>John Smith4</Name>
 <EmpNo>004</EmpNo>
 <Title>Director</Title>
 <DateOfBirth>2/24/1967</DateOfBirth>
 <SSN>892-76-0004</SSN>
 <Address country="US">
 <Street>4 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 </Address>
 <Phone type="work">312-964-0004</Phone>
 <Phone type="home">678-181-0004</Phone>
 <Email>john.smith4@my.com</Email>
 <Salary>40000</Salary>
</Employee>

Example A-17 is an XML file to be used in 5.4.3, “Node-level access control” on
page 241.

Example: A-17 employee005.xml

<?xml version="1.0"?>
<Employee>
 <Name>John Smith5</Name>
 <EmpNo>005</EmpNo>
 <Title>CEO</Title>
 <DateOfBirth>2/25/1967</DateOfBirth>
 <SSN>892-76-0005</SSN>
 <Address country="US">
 <Street>5 East Main Street</Street>
 <City>Los Gatos</City>
 Appendix A. Sample data 369

7315ax01.fm Draft Document for Review December 29, 2006 1:50 pm
 <State>CA</State>
 <Zip>95034</Zip>
 </Address>
 <Phone type="work">312-964-0005</Phone>
 <Phone type="home">678-181-0005</Phone>
 <Email>john.smith5@my.com</Email>
 <Salary>50000</Salary>
</Employee>

Example A-18 is INSERT statements for emp table. EMP table is used in 5.4.3,
“Node-level access control” on page 241.

Example: A-18 Insert statement for John Smith2 - John Smith5

INSERT INTO EMP VALUES ('002', XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith2</Name>
 <EmpNo>002</EmpNo>
 <Title>Engineer</Title>
 <Phone type="work">312-964-0002</Phone>
 <Email>john.smith2@my.com</Email>
</Employee>'),
 XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith2</Name>
 <EmpNo>002</EmpNo>
 <DateOfBirth>2/22/1967</DateOfBirth>
 <SSN>892-76-0002</SSN>
 <Address country="US">
 <Street>2 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 <Phone type="home">678-181-0002</Phone>
 </Address>
 <Salary>20000</Salary>
</Employee>'),
SECLABEL_BY_NAME('EMP_POLICY', 'PUBLIC'));

INSERT INTO EMP VALUES ('003', XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith3</Name>
370 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315ax01.fm
 <EmpNo>003</EmpNo>
 <Title>Architect</Title>
 <Phone type="work">312-964-0003</Phone>
 <Email>john.smith3@my.com</Email>
</Employee>'),
 XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith3</Name>
 <EmpNo>003</EmpNo>
 <DateOfBirth>2/23/1967</DateOfBirth>
 <SSN>892-76-0003</SSN>
 <Address country="US">
 <Street>3 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 <Phone type="home">678-181-0003</Phone>
 </Address>
 <Salary>30000</Salary>
</Employee>'),
SECLABEL_BY_NAME('EMP_POLICY', 'PUBLIC'));

INSERT INTO EMP VALUES ('004', XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith4</Name>
 <EmpNo>004</EmpNo>
 <Title>Director</Title>
 <Phone type="work">312-964-0004</Phone>
 <Email>john.smith4@my.com</Email>
</Employee>'),
 XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith4</Name>
 <EmpNo>004</EmpNo>
 <DateOfBirth>2/24/1967</DateOfBirth>
 <SSN>892-76-0004</SSN>
 <Address country="US">
 <Street>4 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 <Phone type="home">678-181-0004</Phone>
 Appendix A. Sample data 371

7315ax01.fm Draft Document for Review December 29, 2006 1:50 pm
 </Address>
 <Salary>40000</Salary>
</Employee>'),
SECLABEL_BY_NAME('EMP_POLICY', 'HR_ONLY'));

INSERT INTO EMP VALUES ('005', XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith5</Name>
 <EmpNo>005</EmpNo>
 <Title>Manager</Title>
 <Phone type="work">312-964-0005</Phone>
 <Email>john.smith5@my.com</Email>
</Employee>'),
 XMLPARSE(DOCUMENT
'<?xml version="1.0"?>
<Employee>
 <Name>John Smith5</Name>
 <EmpNo>005</EmpNo>
 <DateOfBirth>2/25/1967</DateOfBirth>
 <SSN>892-76-0005</SSN>
 <Address country="US">
 <Street>5 East Main Street</Street>
 <City>Los Gatos</City>
 <State>CA</State>
 <Zip>95034</Zip>
 <Phone type="home">678-181-0005</Phone>
 </Address>
 <Salary>50000</Salary>
</Employee>'),
SECLABEL_BY_NAME('EMP_POLICY', 'HR_ONLY'));
372 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315addm.fm
Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG24-7315-01

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-7315-01.

B

© Copyright IBM Corp. 2006. All rights reserved. 373

ftp://www.redbooks.ibm.com/redbooks/SG24-7315-01
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

7315addm.fm Draft Document for Review December 29, 2006 1:50 pm
Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
ch5sampledata.zip Zipped sample data used in chapter 5
setup.zip Zipped Sample application code and data

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 3 MB
Operating System: Windows/Linux
Processor: 486 or higher
Memory: 512 MB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
374 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 378. Note that some of the documents referenced here may
be available in softcopy only.

� DB29: pureXML Overview and Fast Start, SG24-7298

� DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and
.NET, SG24-7301

Other publications
These publications are also relevant as further information sources:

IBM - DB2 9
� What's New, SC10-4253

� Administration Guide: Implementation, SC10-4221

� Administration Guide: Planning, SC10-4223

� Administrative API Reference, SC10-4231

� Administrative SQL Routines and Views, SC10-4293

� Call Level Interface Guide and Reference, Volume 1, SC10-4224

� Call Level Interface Guide and Reference, Volume 2, SC10-4225

� Command Reference, SC10-4226

� Data Movement Utilities Guide and Reference, SC10-4227

� Data Recovery and High Availability Guide and Reference, SC10-4228

� Developing ADO.NET and OLE DB Applications, SC10-4230

� Developing Embedded SQL Applications, SC10-4232

� Developing Java Applications, SC10-4233
© Copyright IBM Corp. 2006. All rights reserved. 375

7315bibl.fm Draft Document for Review December 29, 2006 1:50 pm
� Developing Perl and PHP Applications, SC10-4234

� Getting Started with Database Application Development, C10-4252

� Getting started with DB2 installation and administration on Linux and
Windows, GC10-4247

� Message Reference Volume 1, SC10-4238

� Message Reference Volume 2, SC10-4239

� Migration Guide, GC10-4237

� Performance Guide, SC10-4222

� Query Patroller Administration and User's Guide, GC10-4241

� Quick Beginnings for DB2 Clients, GC10-4242

� Quick Beginnings for DB2 Servers, GC10-4246

� Spatial Extender and Geodetic Data Management Feature User's Guide and
Reference, SC18-9749

� SQL Guide, SC10-4248

� SQL Reference, Volume 1, SC10-4249

� SQL Reference, Volume 2, SC10-4250

� System Monitor Guide and Reference, SC10-4251

� Troubleshooting Guide, GC10-4240

� Visual Explain Tutorial, SC10-4319

� XML Extender Administration and Programming, SC18-9750

� XML Guide, SC10-4254

� XQuery Reference, SC18-9796

� DB2 Connect User's Guide, SC10-4229

� Quick Beginnings for DB2 Connect Personal Edition, GC10-4244

� Quick Beginnings for DB2 Connect Servers, GC10-4243

IBM - DB2 8.2
� What’s New V8, SC09-4848-01

� Administration Guide: Implementation V8, SC09-4820-01

� Administration Guide: Performance V8, SC09-4821-01

� Administration Guide: Planning V8, SC09-4822-01

� Application Development Guide: Building and Running Applications V8,
SC09-4825-01
376 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315bibl.fm
� Application Development Guide: Programming Client Applications V8,
SC09-4826-01

� Application Development Guide: Programming Server Applications V8,
SC09-4827-01

� Call Level Interface Guide and Reference, Volume 1, V8, SC09-4849-01

� Call Level Interface Guide and Reference, Volume 2, V8, SC09-4850-01

� Command Reference V8, SC09-4828-01

� Data Movement Utilities Guide and Reference V8, SC09-4830-01

� Data Recovery and High Availability Guide and Reference V8, SC09-4831-01

� Guide to GUI Tools for Administration and Development, SC09-4851-01

� Installation and Configuration Supplement V8, GC09-4837-01

� Quick Beginnings for DB2 Clients V8, GC09-4832-01

� Quick Beginnings for DB2 Servers V8, GC09-4836-01

� Replication and Event Publishing Guide and Reference, SC18-7568

� SQL Reference, Volume 1, V8, SC09-4844-01

� SQL Reference, Volume 2, V8, SC09-4845-01

� System Monitor Guide and Reference V8, SC09-4847-01

� Data Warehouse Center Application Integration Guide Version 8 Release 1,
SC27-1124-01

� DB2 XML Extender Administration and Programming Guide Version 8
Release 1, SC27-1234-01

� Federated Systems PIC Guide Version 8 Release 1, GC27-1224-01

Online resources
These Web sites are also relevant as further information sources:

� DB2 XML wiki

http://www.ibm.com/developerworks/wikis/display/db2xml/Home

� DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

� DB2 Express-C

http://www.ibm.com/software/data/db2/udb/db2express/
 Related publications 377

http://www.ibm.com/developerworks/wikis/display/db2xml/Home
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://www.ibm.com/software/data/db2/udb/db2express/

7315bibl.fm Draft Document for Review December 29, 2006 1:50 pm
� Saracco, C. M. Managing XML for Maximum Return, IBM White Paper,
October 2005.

ftp://ftp.software.ibm.com/software/data/pubs/papers/managingxml.pdf

� Nicola, Matthias and Bert Van der Linden. Native XML Support in DB2
Universal Database, Proceedings of the 31st Annual VLDB, 2005.

http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf

� Nicola, Matthias. 15 best practices for pureXML performance in DB2 9, IBM
developerWorks, October 2006

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0610nicola/

� Saracco, C. M. What's New in DB2 Viper: XML to the Core, IBM IBM IBM
developerWorks, February 2006.

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0602sar
acco/

� Holger Seubert and Sabine Perathoner-Tschaffler. XML full-text search in
DB2, IBM developerWorks article, June 2006

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606seu
bert/index.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
378 DB2 9 pureXML Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
ftp://ftp.software.ibm.com/software/data/pubs/papers/managingxml.pdf
http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606seubert/index.html

Draft Document for Review December 29, 2006 1:50 pm 7315IX.fm
Index

Symbols
!= 91
>= 91

A
access control 248
access plan 10, 186, 189, 191–192, 194–195
Add-In 250, 253, 321–322
ADO.NET 249, 321–322
API 250, 290, 318–319, 322
APIs 6, 317
application 6, 11, 15, 21–29, 31–38, 40, 47–48,
52–56, 58, 61, 63, 66, 77, 145, 155, 160, 162, 164,
167, 170, 176, 208, 217, 224, 249–250, 268–269,
271–273, 275–280, 286–291, 294–296, 299,
301–302, 304, 306, 310, 314–319, 321, 342, 344,
349, 354–356, 361–362
application programming interfaces 268
argument 88–89, 97, 99–101, 126, 144, 150–151,
159, 161, 271–272, 276, 282, 315, 320, 354, 357
array 237, 312, 315, 319
attribute 45, 50, 65, 67, 74–75, 77–80, 86, 93–94,
110, 122, 137–140, 150, 158, 161, 167–168, 170,
201, 206–208, 210, 213, 217, 219–220, 223, 225,
243, 266, 274, 287
axis 80

B
bind-in 43
bind-out 43
BLOB 5, 149–150, 204, 271–272, 294–297,
299–300, 304–305
Boolean operators 162
boundary whitespace 272
B-Tree index 176
buffer 69–70, 282, 284, 287
business logic 349

C
Call Level Interface 249, 273, 278–279
carriage returns 272
character string 180, 297
© Copyright IBM Corp. 2006. All rights reserved.
character type 282, 287, 306, 311, 313–314
class 4, 40, 51, 54, 69, 222, 303–304, 319, 344
CLI 11, 268, 271, 273, 278–280, 282, 286–287,
290–291, 341–343
CLI driver 278
CLOB 5, 43, 45, 149, 174, 271, 294–299, 304–306,
343–345, 354
COBOL 268, 289, 338, 343
code page 68, 70, 145, 217, 223, 275, 282, 287,
307, 362
colon 80
column path Index 182
column path index 183
Command Line Processor 253
comment() 80
communication 351
complex data type 50, 54–55
complex type element 50
components 71, 145, 234, 349–350
constraint 180
constructor 89–90, 93, 142, 150
CONTAIN() 159

D
data access 10, 243, 248, 322
data model 13–14, 19, 22, 75, 149, 222, 236, 362
data security 234
data source 342
data type 6–7, 12, 21, 40, 43–44, 50, 54–55, 67, 69,
88–89, 95, 97, 100, 127, 131, 142, 144–145,
149–150, 178–181, 196, 198–199, 208, 212, 216,
222, 226, 229, 233, 251–255, 269–270, 273, 278,
282, 284, 288–289, 294, 297–299, 302, 307–308,
314–315, 322–323, 338–339, 343–346
database objects 42, 71, 199, 253–254
DB2 Developer Workbench 12, 254
DB2 Express-C 37
db2cli.ini 273, 279
db2cli.lst 279
DB2Connection 349
db2-fn

sqlcolumn 103
sqlquery 103
 379

7315IX.fm Draft Document for Review December 29, 2006 1:50 pm
decimal 179
decomposition 11, 146, 148
default namespace 98, 137, 139–140, 151, 166
delimiters 297
descendant 79
distribution 229, 232
document model 167, 169–170
document-node() 80
dynamic 17, 77, 96, 270, 276, 278, 299–300, 316,
340

E
e-business 21
element 10–11, 47, 49, 51, 54–55, 62, 64, 67–68,
74–75, 77–78, 80, 83–85, 87, 93–94, 101–102, 110,
113–114, 116–117, 120, 122–124, 136–142,
147–148, 150–151, 154, 159–162, 164–167,
169–170, 186–188, 191–192, 196, 199–200,
206–207, 215, 230, 237–238, 243, 274, 277, 288,
300–301, 327, 340, 342, 366–367
embedded SQL 73, 126–127, 133–134, 136, 272,
278, 280, 289–292, 299
environment 5, 14, 21, 36–37, 87, 155, 158, 189,
250–251, 278–279, 281, 292, 302, 316, 321, 342,
355–356
eq 91
explicit validation 65–66
export 222–224, 226–227, 252–253, 310, 322, 324
expression 10, 47, 74, 78, 80–81, 84, 86–87,
90–92, 94–96, 103, 105–108, 112, 115, 118–119,
126–128, 130, 161, 168–169, 178, 197, 229, 266,
269, 276, 297, 299, 302, 310–315, 319, 340
extensions 6, 278, 316, 318

F
fetch 276, 289, 300–301, 320
FLWOR 90, 103, 106–108, 112, 119, 126, 266
fn

abs 100
ceiling 100
codepoints-to-string 98
compare 98
concat 98
contains 98
empty 101
ends-with 98
exist 101
floor 100

implicit-timezone 100
last 101
local-name 102
lower-case 98
matches 98
max 100
min 100
node-name 102
normalize-space 98
number 100
remove 101
round 100
starts-with 98
string-join 99
string-length 99
substring-before 99
tokenize 99
translate 99
upper-case 99

forward-only 319
function 43, 48, 61, 68, 78, 81, 86–90, 96–98, 115,
122, 126–128, 130, 132, 136, 138–141, 143–144,
149–153, 155, 159–160, 170, 197, 233, 243, 245,
248, 270–271, 274, 277–278, 282, 284, 286–287,
294, 297, 299–300, 302, 314, 319–320, 339

G
ge 91
global catalog path table 176
GRANT 237–239, 246

H
handle 2, 17, 40, 180, 288, 341–342, 356
host language 289
host variable 269, 271–272, 274, 276, 283,
294–295, 298

I
IBM.Data.DB2 322, 343
ibm_db2 317–319
implicit parsing 269, 285
implicit validation 61, 64–66
import 42–43, 51, 61–62, 164, 200–202, 208–213,
216–217, 221, 322, 324, 344
index access 176
installation 37, 250, 302–303, 316–317, 321
380 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315IX.fm
J
Java 11, 38, 122, 249, 254, 268, 274, 277,
302–306, 310–311, 338, 343–347, 349
JDBC 11–12, 268, 302–304, 307, 311, 345–346,
349, 358

K
keyword 94, 105, 252, 288, 299

L
Label-based access control 234
LBAC 234
le 91
let 103
LOB 42–44, 149, 222–224, 294, 297, 299, 301
local complex type 50
local name 75, 79, 102, 137, 139, 141
location 84
logical index 181
lt 91

M
metadata 302, 318
method 12, 15, 18, 154, 159, 282, 305–307, 315,
346, 348–349, 352, 354–355, 357, 359
modular 316, 349
monitor 68, 70

N
namespace 50, 62–63, 65, 67, 73, 75, 79, 87–88,
97–98, 102, 123, 137–141, 150–151, 166, 169, 200,
203, 255, 267, 277, 288, 300–301, 322, 340, 342,
344
namespace prefix 102, 137, 139
NCName 79
ne 91
Net Search Extender 11, 73, 154–155, 157, 159,
162, 167
node 7, 67, 74–75, 77–80, 83–84, 86, 90, 92–93,
96, 102, 113, 122–123, 139, 141, 144, 150,
152–153, 168, 174, 178, 181, 185, 196, 229, 244,
247–248, 251, 255, 263–265, 279
node value 180
NSE 154, 157–160, 164, 167, 169
numeric attribute 159

O
ODBC 11, 278–279, 319
OLE DB 249, 321
optimizer 40, 155, 186, 229
options 10, 39, 71, 123, 133–134, 143, 185, 208,
216, 221, 223–224, 226, 231, 268–269, 297, 319,
332–333
order by 103
overhead 5, 7, 45, 47–48, 61, 199, 282, 319, 351

P
package 316–317
parameter 123, 135–136, 170, 209, 212–213,
219–220, 228, 268–270, 276, 280, 282, 285, 291,
306, 308, 314, 319, 322–323, 338–340, 343–346,
348, 357
parameter marker 269–270, 277
parser 218
path ID 176
PDO_ODBC 319
performance 5, 7, 10, 17, 19, 40, 44, 46–49, 63, 66,
69, 173, 176, 197, 199, 231, 319
Perl 249, 316
PHP 11, 249, 268, 315–321
physical index 181
precompile 280, 291, 297
precompiler 278, 297
predicate 86, 186
predicate expression 86
prefix 75, 79, 88, 97, 102, 123, 137–139, 141, 166
PREPARE 299–300, 340
primary schema 63
privilege 71, 239, 246
procedures 251–252, 254–255, 268, 303,
338–340, 343–344, 346, 348–349, 356
processing-instruction() 80
programming interface 250, 278, 318
programming language 250, 268, 276, 315,
349–350
protocol 43, 57–58, 349, 351–352
pureXML 1, 4, 6, 11–13, 17–19, 21, 40, 43, 67, 69,
154, 173–174, 253, 268, 353
pureXML storage 67

Q
QName 75, 77, 79, 102, 137, 139, 141
qualified name 75, 78, 102, 137, 166, 169
query 176, 178–179, 183, 185–186, 188–189,
 Index 381

7315IX.fm Draft Document for Review December 29, 2006 1:50 pm
191–192, 194–196, 203–204, 240, 248

R
Redbooks Web site 378

Contact us xiii
registry 351
repository 10, 18, 58, 71, 199, 202, 251, 255, 348
result set 49, 97, 192, 240, 247–248, 286, 288, 320,
341, 357, 359
ResultSet 277, 307–308, 313, 345, 347
return 103
runtime 10, 229, 253, 278, 301, 310–313, 355

S
schema 10–11, 13, 15–16, 19, 42, 44–45, 47,
49–57, 60–68, 71, 75, 138, 144–145, 147–148, 173,
181, 185, 198–204, 206–208, 210, 212–213, 215,
219–220, 222, 225, 251, 253, 255, 262, 319, 333,
348–349, 366–367
schema document 51, 54–55, 62, 64, 144, 146,
199, 201–202, 204, 348
schema hint 64
schema validation 208, 212–213, 219–220
scripts 253–254, 279–280, 290, 292, 319
SECADM authority 233
security label 237–238
security label component 237
security policy 237
security structure 237
serialized string 149, 151, 269, 275, 282, 286–287,
304, 307, 310, 313
setup 21, 36–37, 122, 233, 237, 243–244,
247–248, 278–279, 289, 321
shredding 5, 7, 15, 146–147, 149
simple type element 50
source file 210, 280, 291, 304, 310, 322, 344
SQL 1, 6, 8, 10–11, 38, 40, 43, 45–46, 49, 62–63,
71, 73, 98, 103, 110, 115, 117, 120–121, 123–126,
129–135, 142–143, 154–155, 159, 173–174, 176,
178–181, 186–192, 194, 196, 201–203, 205, 213,
226, 234, 249, 251, 253–254, 269–273, 276–278,
280, 289–291, 294–302, 319–320, 333–334,
338–341, 343–345, 353–357
SQL statement 127, 300, 320
SQL_C_BINARY 282–283, 285, 287, 289
SQL_HANDLE_DBC 341–342
SQL_HANDLE_ENV 341
SQL_HANDLE_STMT 288, 342

SQLCA 289, 300
SQLCODE 215
SQLJ 11, 38, 122, 254, 268, 273, 302–304,
309–311, 313, 346, 348–349
sqlj 309–310, 312–313
sqlname.data 301
SQLSTATE 202, 215, 241
SQLVAR 301
square bracket 86
statement 8–10, 43, 45, 61, 64, 66, 68, 124,
126–127, 129, 142–143, 157, 177, 179, 181, 183,
197, 234, 238–240, 246–247, 269–270, 272,
276–277, 283–284, 288–289, 299–301, 315,
319–320, 334, 338–340, 342–347, 354, 357, 359,
370
static 271–272, 276–277, 298–300, 347, 362
static embedded SQL 272
statistics 12, 34, 59, 185–186, 189, 229–232, 252
stemming search 159, 163
storage model 67
stored procedure 37–38, 121–122, 124–125, 270,
281, 293, 323, 341, 345–348
string value 77, 99, 143
SYSCAT.INDEXES. Even though the XML column
path Index and the XML regions Index 182

T
tables 251–254, 268, 299, 323
text node 80, 123, 153
text() 80
thesaurus search 159
toolbar 330–331
tree structure 40, 43, 67

U
unicode 7, 43, 98
Uniform Resource Identifier 137
URI 75, 79, 102, 137–141
UTF-8 217, 224

V
VARCHAR 5, 38, 42–45, 122, 129–130, 159,
179–181, 183, 187–188, 191–192, 196, 203–204,
208, 246, 286, 294, 339–340, 354
variable 37, 43, 78, 90, 95, 103–108, 152, 158, 269,
271, 274, 276, 282–283, 285, 287–288, 293–295,
298, 302, 306, 338–341
382 DB2 9 pureXML Guide

Draft Document for Review December 29, 2006 1:50 pm 7315IX.fm
varying-length string 180
views 43, 48–49, 71, 199, 243–244, 247, 253, 323

W
well-formed XML 10, 43, 67, 143, 208, 269, 282
whitespace 48, 63, 65, 98, 143, 157, 218, 272, 274,
294, 306, 312–313, 340
wildcard search 164

X
XDA 174
XML 1–8, 10–13, 15–21, 24, 28, 31, 38, 40–47,
49–51, 53–71, 73–75, 77–78, 80–81, 83–85, 88, 90,
93, 97, 103, 109–110, 112, 114–118, 120–136,
138–139, 141–145, 147–149, 151–155, 158–161,
164–169, 173–179, 181, 184–190, 195–196,
198–199, 201–204, 206, 208–210, 212–213,
215–225, 227, 229, 231–233, 235–236, 239, 242,
244, 247–252, 254–257, 260–264, 266, 268–271,
273–275, 277–279, 282–285, 287–290, 294–296,
299–315, 322–333, 336–341, 343–349, 351–353,
356–358, 361–364, 366, 368–369
XML column path index 175
XML Data Area 174
XML data descriptor 174
XML index 174, 176, 178–179, 181, 183, 187–188,
192, 195–196, 198
XML schema 10, 13, 42, 44–45, 47, 49–51, 56, 61,
63–64, 67–68, 71, 75, 138, 144, 146, 148, 181,
198–199, 201–204, 206, 208, 210, 212–213,
221–222, 225, 251, 255, 348–349
XML schema repository 10, 199, 251, 255, 348
XML value index 195
XMLATTRIBUTES 150
XMLCONCAT 152
XMLELEMENT 150
XMLEXISTS 127
XMLFOREST 151
xmlns 137–139, 147–148, 152, 155–156, 165–166
XMLPARSE 43, 81, 109, 111, 121, 139, 143–144,
218, 220–221, 239, 270–273, 282, 294, 297, 299,
306, 311–312, 339–340, 370–372
xmlpattern 10, 174, 177, 179, 181, 183, 198
XMLQUERY, 127
XMLSERIALIZE 43, 149, 297, 314
XMLTABLE 127, 151
XMLUPDATE 122
XPath 10, 74, 78, 86–87, 123, 134, 149, 160,

167–169, 174, 176, 178, 190, 229, 353
XQUERY 81, 84–87, 93, 104–108, 112–117,
119–121, 126, 129, 140–141, 144, 160, 165, 178,
189, 192, 196, 252, 276, 288, 299–300, 302, 307,
320, 340, 342, 344
XSCAN 186
XSR 61, 71, 148, 199, 202–203, 205, 251,
332–333, 348–349
 Index 383

7315IX.fm Draft Document for Review December 29, 2006 1:50 pm
384 DB2 9 pureXML Guide

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 D

ecem
ber 29, 2006 1:50 pm

7315sp
in

e.fm
385

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

DB2 9 pureXM
L Guide

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 D

ecem
ber 29, 2006 1:50 pm

7315sp
in

e.fm
386

®

SG24-7315-00 ISBN 0738489506

Draft Document for Review December 29, 2006 1:50 pm

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 9 pureXML Guide

Learning SQL/XML,
XQuery, XPath with
working examples

Developing XML
applications with
DB2 pureXML

Managing XML for
maximum return

IBM DB2 9 for Linux, UNIX and Windows marks a new stage
in the evolution of data servers. IBM has continually led the
data management industry with the release of innovative
technology. DB2 9 is a new generation data server with
revolutionary pureXML technology. This technology in DB2 9
fundamentally transforms the way XML information is
managed for maximum return while seamlessly integrating
XML with relational data.

This IBM Redbook discusses the pureXML data store, hybrid
database design and administration. It describes XML
schema, industry standards, and how to manage schemas.
This IBM Redbook also covers SQL/XML, XQuery, and XPath
using easy-to-understand examples. Lastly, this IBM
Redbook shows how to use XML technology efficiently in
business applications.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Acknowledgement

	Become a published author
	Comments welcome

	Chapter 1. Introducing DB2 9: pureXML
	1.1 Growing importance of XML Data
	1.1.1 Growth of XML
	1.1.2 The value of XML data

	1.2 pureXML overview
	1.2.1 Traditional methods for managing XML data
	1.2.2 XML data management with DB2 9
	1.2.3 Setting up databases for XML
	1.2.4 XML optimized storage and XML data type
	1.2.5 Getting XML data into the database
	1.2.6 Querying XML data
	1.2.7 Query optimization and indexes for XML
	1.2.8 XML schema repository and validation
	1.2.9 Full text search for XML
	1.2.10 Annotated schema decomposition
	1.2.11 Application development support
	1.2.12 Tools and utilities
	1.2.13 Benefits of DB2 pureXML technology

	1.3 pureXML usage scenarios
	1.3.1 Integration of diverse data sources
	1.3.2 Forms and their processing
	1.3.3 Document storage and querying
	1.3.4 XML for transactions
	1.3.5 Syndication and XML feeds
	1.3.6 XML as a better data model

	1.4 Summary
	1.5 References

	Chapter 2. Sample scenario description
	2.1 Business requirements
	2.1.1 Data modeling

	2.2 Application description
	2.2.1 Loan application
	2.2.2 Loan processing
	2.2.3 Loan management

	2.3 Application setup

	Chapter 3. XML database design
	3.1 Architecture overview
	3.2 Logical database design
	3.2.1 XML data type
	3.2.2 Relational structure versus XML structure
	3.2.3 XML index
	3.2.4 Views
	3.2.5 XML schema
	3.2.6 XML schema design
	3.2.7 Industry standards and XML schemas
	3.2.8 XML data validation

	3.3 Physical database design
	3.4 Creating a database

	Chapter 4. Working with XML
	4.1 XPath
	4.1.1 XQuery/XPath data model
	4.1.2 Location paths
	4.1.3 Using location paths to retrieve nodes of XML document
	4.1.4 Predicates

	4.2 XQuery
	4.2.1 Types, expressions, and functions
	4.2.2 FLWOR and selecting XML data
	4.2.3 Updating XML data

	4.3 XQuery and SQL/XML
	4.3.1 XQuery with embedded SQL
	4.3.2 SQL/XML
	4.3.3 When to use what

	4.4 When and how to use namespaces
	4.5 Getting XML data in and out of database
	4.6 XML full-text search
	4.6.1 DB2 Net Search Extender
	4.6.2 Preparing the instance for text search
	4.6.3 Full-text searching using DB2 NSE
	4.6.4 Taking advantage of Net Search Extender text search features
	4.6.5 Full-text search considerations
	4.6.6 The NSE document model

	Chapter 5. Managing XML data
	5.1 XML indexes
	5.1.1 XML index types
	5.1.2 Creating XML indexes
	5.1.3 How to look up the information for XML index
	5.1.4 Access plan
	5.1.5 Best practices

	5.2 Schema management
	5.2.1 XML Schema Repository
	5.2.2 XML schema registration/dropping
	5.2.3 Querying XSR
	5.2.4 XSR support on Control Center
	5.2.5 Schema evolution

	5.3 IMPORT, EXPORT, and RUNSTATS
	5.3.1 IMPORT
	5.3.2 EXPORT
	5.3.3 RUNSTATS

	5.4 XML data security
	5.4.1 LBAC
	5.4.2 Row and column-level access control
	5.4.3 Node-level access control

	Chapter 6. Application development
	6.1 The database application development environment
	6.2 Application development tools
	6.2.1 Developer Workbench
	6.2.2 Developer Workbench: Visual Query Builder overview

	6.3 Accessing pureXML from application overview
	6.3.1 Application programming language support for XML
	6.3.2 Considerations when updating and inserting XML data
	6.3.3 Considerations when retrieving XML data

	6.4 DB2 application development with CLI and ODBC
	6.4.1 Setting up the CLI environment
	6.4.2 Building CLI applications
	6.4.3 XML data handling in CLI applications
	6.4.4 Embedded SQL Applications: overview

	6.5 Building applications in C or C++
	6.5.1 Building C/C++ applications with the sample build script
	6.5.2 Declaring XML host variables
	6.5.3 Referencing XML host variables
	6.5.4 Declaring large object type host variables
	6.5.5 Referencing LOB type host variables
	6.5.6 Executing XQuery expressions in embedded SQL applications

	6.6 Java application programming
	6.6.1 Setting up the DB2 JDBC and SQLJ development environment
	6.6.2 Building JDBC applications
	6.6.3 Building SQLJ applications

	6.7 Building DB2 applications with PHP
	6.7.1 Setting up the PHP application development environment
	6.7.2 Introduction to PHP application development for DB2

	6.8 The DB2 .NET environment
	6.8.1 Building sample applications for the DB2 .NET data provider
	6.8.2 XML support in Visual Studio.NET - overview
	6.8.3 XML data type support in Visual Studio .NET
	6.8.4 XQuery support in Visual Studio.NET

	6.9 XML and stored procedures
	6.9.1 XML and XQuery support in SQL procedures
	6.9.2 XML support in external routines
	6.9.3 XML Schema Repository object registration

	6.10 Web services
	6.10.1 Components of Web Services
	6.10.2 Web services in DB2 9

	Appendix A. Sample data
	A.1 Creating XMLoan database
	A.1.1 Creating database
	A.1.2 Creating tables

	A.2 contactInfo.xsd
	A.3 Sample XML data

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

