

ibm.com/redbooks

DB2 Express-C:
The Developer Handbook for
XML, PHP, C/C++, Java, and
.NET

Whei-Jen Chen
John Chun

Naomi Ngan
Rakesh Ranjan

Manoj K. Sardana

Learn DB2 application development
with XML, PHP, C/C++, JAVA, and .NET

Understand DB2 supported
programming environments

Practical application
examples

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 Express-C: The Developer Handbook for XML,
PHP, C/C++, Java, and .NET

August 2006

International Technical Support Organization

SG24-7301-00

© Copyright International Business Machines Corporation August 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2006)

This edition applies to DB2 Universal Database for Linux, UNIX, and Windows Version 9.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Figures . vii

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi

Acknowledgement. xiii
Become a published author . xiv
Comments welcome. xiv

Chapter 1. DB2 application development overview 1
1.1 Application development with DB2 . 2

1.1.1 DB2 supported development environments . 2
1.1.2 DB2 supported interfaces . 3

1.2 DB2 Express-C . 11
1.3 DB2 Developer Workbench. 24

Chapter 2. Application development with DB2 pureXML 49
2.1 Web application: XML is the answer . 50
2.2 pureXML in DB2 . 52

2.2.1 When to use DB2 pureXML . 52
2.2.2 Designing pureXML-based applications . 53
2.2.3 DB2 hybrid query engine. 54
2.2.4 pureXML storage overview . 55
2.2.5 SQL support for XML data (INSERT, SELECT) 58
2.2.6 Schema support . 62
2.2.7 Annotated XML schema decomposition . 65
2.2.8 XML query support . 68
2.2.9 Constructor function (publishing functions) . 77
2.2.10 XML indexing . 79
2.2.11 Application support (interfaces). 83
2.2.12 Utilities and XML support . 86
2.2.13 XML type support in stored procedures . 90

Chapter 3. Application development with PHP. 93
3.1 Application environment . 95

3.1.1 Zend Framework overview . 97
3.1.2 Setting up Zend Framework . 99
© Copyright IBM Corp. August 2006. All rights reserved. iii

3.2 DB2 Interface with PHP. 105
3.3 Setting up Eclipse with PHP . 106
3.4 Sample Web application . 108

3.4.1 Integrating with databases: Zend_Db_Adapter. 111
3.4.2 Zend framework: XCS. 116
3.4.3 myContacts.com: An XCS application . 122
3.4.4 Other Zend Framework components . 139
3.4.5 Creating Web services with Zend Framework 140

3.5 Conclusion. 145

Chapter 4. Application development with C/C++ 147
4.1 Overview . 148

4.1.1 C/C++ development environment setup . 148
4.2 Building a C/C++ application using embedded SQL 150

4.2.1 Host variables and parameter markers . 151
4.3 A simple C inventory program using embedded SQL 151

4.3.1 The INVENTORY table . 152
4.3.2 Precompiler source file extensions . 153
4.3.3 Inventory program code template . 154
4.3.4 Host variable declarations. 156
4.3.5 Using db2bfd to display host variable declarations 157
4.3.6 Using db2dclgn to generate host variable declarations 157
4.3.7 Connecting to a database . 158
4.3.8 Disconnecting from a database. 158
4.3.9 The SQL Communications Area (SQLCA) 159
4.3.10 Quick SQLCA example . 160
4.3.11 Inserting data . 162
4.3.12 Retrieving data . 163
4.3.13 Indicator variables . 165
4.3.14 The WHENEVER Statement. 166
4.3.15 Preparing SQL statements . 166
4.3.16 Complete C inventory program . 169
4.3.17 The SQL Descriptor Area (SQLDA) . 174

4.4 Building a C/C++ application using CLI. 177
4.4.1 CLI handles . 177
4.4.2 The CLI driver . 178
4.4.3 The CLI configuration file (db2cli.ini) . 178
4.4.4 Setting up the CLI Environment . 180
4.4.5 Overview of steps . 182

4.5 A simple C inventory program using CLI. 182
4.5.1 CLI header files . 183
4.5.2 Allocating handles . 183
4.5.3 Freeing handles . 184
iv DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

4.5.4 Connecting and disconnect to and from a database. 185
4.5.5 Processing SQL statements . 186
4.5.6 Complete CLI Inventory Program . 188
4.5.7 Error handling . 189
4.5.8 Quick SQLGetDiagRec() example . 190

4.6 XML support . 191
4.6.1 Embedded SQL. 191
4.6.2 Call Level Interface (CLI) . 196

Chapter 5. Application development with Java . 199
5.1 Application requirements. 200
5.2 Drivers . 200
5.3 Application example . 201
5.4 java.sql package . 208

5.4.1 Getting a connection . 208
5.4.2 Manipulating data . 209
5.4.3 MetaData. 217

5.5 Stored procedure support . 219
5.6 Handling large objects. 222
5.7 Simple application program life cycle . 225
5.8 Introduction to javax.sql package . 227

5.8.1 DataSource . 227
5.9 Exception handling . 228

5.9.1 SQLExceptions . 228
5.9.2 SQLWarning . 231
5.9.3 DataTruncation . 231
5.9.4 BatchUpdateException . 232

5.10 Transactions . 233
5.10.1 Auto commit mode . 234
5.10.2 Transaction isolation level . 234
5.10.3 Savepoints . 237

5.11 SQL/XML and XQuery support . 238
5.12 SQLj support . 239

5.12.1 Getting connection context . 240
5.12.2 Manipulating data . 240
5.12.3 Iterators . 241
5.12.4 Batch updates with SQLj. 243
5.12.5 Savepoints . 244
5.12.6 XQuery and SQL/XML support . 244
5.12.7 Exception handling . 245
5.12.8 JDBC and SQLj. 245

5.13 Running the application. 247
5.13.1 Running an application stand-alone . 247
 Contents v

5.13.2 Running the application as a Web service 248

Chapter 6. Application development with .NET . 251
6.1 .NET technology and ADO.NET . 252
6.2 Requirements for .NET application development with DB2 253
6.3 Add-in features for Visual Studio .NET . 253

6.3.1 Visual Studio 2005 Add-In: Sever Explorer integration 256
6.3.2 Visual Studio 2005 Add-In: IBM Designer. 259

6.4 Data Providers for ADO.NET . 267
6.4.1 Managed provider and unmanaged provider 267

6.5 Application example using ADO.NET . 279

Appendix A. Setup procedure and sample data. 295
A.1 Example data . 296
A.2 Setting up the database . 301
A.3 Setting up Apache HTTP server, PHP, and DB2 on Windows 308

Appendix B. Ruby on Rails. 313
B.1 Introduction to Ruby . 314

B.1.1 Getting started with Ruby programming language 315
B.2 Introduction to Ruby on Rails . 315

B.2.1 DB2 9 on Rails . 316
B.2.2 Further reading . 316

Appendix C. Additional material . 319
Locating the Web material . 319
Using the Web material . 319

System requirements for downloading the Web material 320
How to use the Web material . 320

Related publications . 321
IBM Redbooks . 321
Other publications . 321
Online resources . 323
How to get IBM Redbooks . 324
Help from IBM . 324

Index . 325
vi DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Figures

0-1 Left to right: Naomi, Whei-Jen, Rakesh, Manoj, and John. xiii
1-1 Embedded SQL creation overview . 5
1-2 Setup wizard: specifying response file option . 14
1-3 Setup wizard: selecting DB2 features to install 15
1-4 Setup wizard: setting DB2 copy name . 16
1-5 Setup wizard: specifying the location of DB2 Information Center 17
1-6 Setup wizard: setting DAS user information . 18
1-7 Setup wizard: configuring DB2 instances . 19
1-8 Setup wizard: DB2 instance configuration window 20
1-9 Setup wizard: preparing the DB2 tools catalog 21
1-10 Setup wizard: enabling operating system security for DB2 objects 22
1-11 Selecting new data development project . 25
1-12 New Project drop-down menu . 26
1-13 Data development project for a stored procedure 27
1-14 Specifying language type for stored procedure 28
1-15 Creating a Java project . 29
1-16 Specifying package and SQLJ name. 30
1-17 Switching to Data perspective . 31
1-18 Selecting user defined function wizard . 32
1-19 XQuery Visual Builder: connecting to database. 34
1-20 DWB: creating new project . 35
1-21 XQuery Visual Builder: specifying the connection 35
1-22 XQuery Visual Builder: specifying the document location 36
1-23 XQuery Visual Builder: specifying the document location 37
1-24 XQuery Visual Builder: specifying XML file name 38
1-25 XQuery Visual Builder: adding representative XML documents 38
1-26 XQuery Visual Builder: associating documents with XML columns 39
1-27 XQuery Visual Builder: XQM tab . 40
1-28 XQuery Visual Builder: adding element to XQuery 41
1-29 XQuery Visual Builder: For Logic (FLWOR) window 42
1-30 XQuery Visual Builder: matches window . 43
1-31 XQuery Visual Builder: For Logic (FLWOR) window with operand 1. . . 44
1-32 XQuery Visual Builder: source tab . 44
1-33 XQuery Visual Builder: Data Output tab . 46
1-34 XQuery Visual Builder: XQuery results . 47
2-1 Web application XML: connecting each other . 51
2-2 Integrating XML and relational data . 55
2-3 Creating table with XML data type . 56
© Copyright IBM Corp. August 2006. All rights reserved. vii

3-1 Eclipse . 108
3-2 Movie of the Week initial page . 116
3-3 XCS architecture overview. 117
3-4 Navigation diagram for MyContacts.com application. 124
3-5 MyContacts.com Index page . 127
3-6 My Profile page showing logged-in user and his contacts 128
3-7 Create a new member profile. 132
3-8 Define relationship and make contact . 134
3-9 Search for Flickr image . 144
4-1 CLI handles . 178
4-2 Processing SQL statements . 186
5-1 Different path for an SQL statement in a JDBC program. 226
6-1 ADO.NET architecture . 252
6-2 Adding connection in Data Explorer. 256
6-3 Selecting IBM DB2 in Data Explorer . 257
6-4 Providing connection information in Data Explorer 258
6-5 Starting IBM Table Designer . 259
6-6 Table Designer window . 260
6-7 Starting IBM View Designer . 261
6-8 View Designer window. 262
6-9 Starting IBM Procedure Designer . 263
6-10 Procedure Designer window . 264
6-11 Adding debug breakpoints in Procedure Designer 266
6-12 DB2 Data Provider . 268
6-13 Sample info XML data from the CUSTOMER table 283
6-14 XML document tree for the customer info data 289
viii DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. August 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Redbooks (logo) ™
developerWorks®
iSeries™
pureXML™
z/OS®

zSeries®
AIX®
AS/400®
Cloudscape™
DB2 Connect™
DB2 Universal Database™

DB2®
IBM®
OS/390®
Redbooks™
RETAIN®
WebSphere®

The following terms are trademarks of other companies:

Java, JDBC, JDK, J2EE, Solaris, Sun, Sun Microsystems, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Active Directory, ActiveX, Microsoft, Visual C++, Visual Studio, Windows Server, Windows, and the
Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Preface

This IBM® Redbook will help you get started in application development with
XML, PHP, C/C++, Java™, and .NET using the free IBM database management
system offering DB2® Express-C V9. This book is organized as follows:

� Chapter 1 introduces application development options for DB2 Universal
Database™ for Linux®, UNIX®, and Windows®. Installation and features of
DB2 Express-C and DB2 Developer Workbench are also presented.

� Chapter 2 introduces the new pureXML™ technology in DB2 Express-C V9
and provides an overview to design and build a Web application that utilizes
this technology.

� Chapter 3 provides an easy to use framework for developing a Web
application using PHP and DB2 Express-C. It discusses application
environment setup and provides practical PHP application examples.

� Chapter 4 discusses how to develop DB2 applications with C/C++ including
the environment setup, the fundamentals of using embedded SQL, and XML.

� Chapter 5 discusses how to develop Java application with DB2 Express-C
including application software requirements, an in-depth description of the
java.sql package, an overview of the javax.sql package, exception handling,
XML/XQuery, and SQLj support.

� Chapter 6 introduces DB2 application development using .NET. It discusses
requirements for .NET application development with DB2, add-in features for
Visual Studio® .NET, DB2 Data Providers available for use with .NET, and
application examples using .NET and DB2 Express-C.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development as well as an IBM Certified IT Specialist.
© Copyright IBM Corp. August 2006. All rights reserved. xi

John Chun joined IBM in 2000 and has held various roles within the company.
He is an IBM Certified Solutions Expert in DB2 and WebSphere. Currently, he is
working as an Application Development Specialist within the IBM DB2 Advanced
Support Services team where he helps customers and vendors get the best out
of their applications and DB2. John also enjoys writing articles and books, which
help share his experience and knowledge with all those interested in the IT
Industry.

Naomi Ngan joined IBM in 2000, and worked for over three years as an
application development specialist for the IBM DB2 Advanced Support team.
Currently, she is a database developer, responsible for analyzing, designing, and
developing Bioinformatics software for the Gallo research center at UCSF. She
has in-depth knowledge of application development and tooling for DB2 and
holds numerous IBM and Sun™ developer certifications in DB2, XML,
WebSphere®, and Java/J2EE™.

Rakesh Ranjan is an Advisory software engineer and currently works on the
DB2 XML technology development at the IBM Silicon Valley Lab in San Jose,
California. He has 12+ years of software development experience ranging from
midrange servers to Java and Web technology. He is also an open source
enthusiast and uses XML, PHP, and frameworks for application development.
You can reach Rakesh at ranjanr@us.ibm.com.

Manoj K. Sardana is a software engineer in IBM India Software Labs and works
mainly on designing and implementing technology and application samples in
different programming languages for showcasing the main features of DB2. His
areas of expertise include XML/XQuery and JDBC™ application development.
Currently, he is involved in writing application samples for SQL/XML-related and
XQuery-related features for DB2 9. He has also worked closely with the
development team to perform Functional Verification Testing (FVT) for Utility
support for XML and Deadlock Monitor-related features.
xii DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Figure 0-1 Left to right: Naomi, Whei-Jen, Rakesh, Manoj, and John

Acknowledgement
Thanks to the following people for their contributions to this project:

Grant Hutchison
Rav Ahuja
Anita Chung
Prashant Juttukonda
Michael Hvizdos
Chris Gruber
Anson Kokkat
Nancy Taiyab
IBM Toronto Laboratory

Matthias Nicola
Salvador Ledzema
Cindy Saracco
IBM Silicon Valley Laboratory
 Preface xiii

Emma Jacobs
International Technical Support Organization, San Jose Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. DB2 application
development overview

In this chapter, we introduce application development options for DB2 Universal
Database for Linux, UNIX, and Windows. We present Installation and features of
DB2 Express-C and DB2 Developer Workbench.

In this chapter, we discuss the following:

� DB2 supported development environments
� DB2 supported interfaces
� DB2 Express-C
� DB2 Developer Workbench

1

© Copyright IBM Corp. August 2006. All rights reserved. 1

1.1 Application development with DB2

Application programmers face constant challenges to efficiently utilize database
resources to their full potential. This is especially the case with the growth of
e-business and the increased use of the Internet. This redbook provides various
application development options for DB2 using free distribution of DB2
Express-C.

This redbook is meant for you to use as a hands-on resource for developing DB2
UDB applications using XML, PHP, C/C++, Java, and .NET. We also cover the
new Developer Workbench tool, which provides a comprehensive development
environment for building data driven applications with DB2 9.

DB2 provides various flexible programming options. The DB2 product family
supports all major standardized programming interfaces for data access.

The IBM DB2 9 release features native support for storing, managing, and
querying XML data, which is explored throughout this book.

You should keep in mind that there are key advantages to each interface, which
need to be taken into consideration when choosing the programming interface
and language.

Various client side database application solutions using examples in PHP,
C/C++, Java, and C# with DB2 9 Express-C are presented in later chapters.

1.1.1 DB2 supported development environments

The DB2 application development environment is composed of several
elements:

� Operating system

– AIX®
– HP-UX
– Linux
– Solaris™
– Windows

There are various conditions you should be aware of when developing
application solutions on these environments. These include OS level and for
Linux, kernel level as well as glibc version.

This information can be obtained from the following Web site:

http://www.ibm.com/software/data/db2/udb/support/index.html
2 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www-306.ibm.com/software/data/db2/udb/support/index.html

� DB2 installation

DB2 V8 Application Development client or DB2 9 Client installation is required
for DB2 application development.

� Database application programming interface

The interfaces include CLI/ODBC, embedded SQL, JDBC/SQLJ, OLE DB,
Perl DBI, PHP, and ADO.NET. We discuss these in further detail in the next
section.

� Programming language

Supported programming languages for DB2 include C, C++, COBOL,
FORTRAN, Java, Perl, PHP, REXX, and .NET.

� Transaction manager and development tools

Keep in mind that using the XA (distributed transaction processing) interface
requires transaction manager.

There are a number of development tools available for DB2 database
application development. We discuss IBM DB2 Development Add-In for
Visual Studio (Visual Studio 2005 Add-In) and the Developer Workbench in
this book.

1.1.2 DB2 supported interfaces

IBM DB2 provides various programming interfaces for data access. These
interfaces provide functions and methods that you can use to perform various
interactions with the database.

Administrative API
The DB2 Administrative API is primarily used for issuing DB2 administrative
commands. It allows you to develop applications that you can use to administer
and monitor DB2 instances and databases.

All the administrative API functions are derived from DB2 Command Line
Processor (CLP) commands. You can find more information regarding DB2 API
functions in the Administrative API reference, SC10-4231.

Embedded SQL
The SQL statement can be embedded within a host language where SQL
statements provide the database interface while the host programming language
provides all remaining functionality.
 Chapter 1. DB2 application development overview 3

The nature of embedded SQL applications requires a vendor specific
precompiler first preprocesses the application code, then the resulting host
language code is compiled and linked directly with the vendor’s library.

DB2 supports C/C++, FORTRAN, COBOL, and Java (SQLJ) programming
languages for embedded SQL.

SQL statements in embedded applications are independent of the host
programming language used.

Precompilers or SQLJ translators are required for embedded code (to generate
the necessary packages or the serialized file for SQLJ) prior to generating the
binaries through the native compiler. Precompilers for C, C++, COBOL, and
FORTRAN as well as the SQLJ translator are provided with DB2 application
development components.

A precompiler processes the source file to separate SQL statements from
non-SQL host languages, which are surrounded by special delimiters to generate
native host language code and a package.

Embedded SQL applications can be categorized into two separate categories:

� Static embedded SQL

In embedded SQL, you have to specify complete SQL statement structure.
This means that all database objects (including columns and table) must be
fully known at the precompile time with the exception of objects referenced in
the SQL WHERE clause. However, all host variable data types must be still
known at the precompiler time.

� Dynamic embedded SQL

When not all of the database objects in the SQL statement are known at
precompile time, use dynamic embedded SQL. The dynamic embedded SQL
statement accepts a character string host variable and a statement name as
argument. These character string host variables serve as placeholders for
future SQL statements to be executed.

There are some differences in syntax between static and dynamic SQL
statements. In dynamic SQL statements, the following conditions exist:

� Comments are not allowed.

� The statement is not prefixed by EXEC SQL.

� The statement cannot end with the statement terminator except in the
CREATE TRIGGER statement, which can contain a semicolon.

The dynamic embedded SQL is the ideal option for creating embedded SQL
applications when the user does not have complete information about all
4 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

underlying database objects at precompile time, wants to always use the most
optimized access path based on current database statistics, or authorization of
the SQL statement needs to be determined at runtime.

Figure 1-1 demonstrates a general overview of embedded SQL creation.

Figure 1-1 Embedded SQL creation overview

Driver support
More common application solutions are developed using drivers. When
accessing a database using various available drivers, driver manager is usually
involved. The driver manager provides a set of industry standard interfaces
(APIs) to access a data source using data source specific drivers. Applications
utilizing drivers are compiled and linked with the driver manager’s libraries to
invoke standardized APIs.
 Chapter 1. DB2 application development overview 5

DB2 currently provides support for a large number of drivers, including
CLI/ODBC, ADO and OLEDB, JDBC, SQLJ, PERL DBI, and .NET data provider.

CLI/ODBC
As part of the X/Open standard, Call Level Interface (CLI) and Open DataBase
Connectivity (ODBC) standards had the same origin. The ODBC standards
provide a set of interfaces for accessing the database.

DB2 CLI driver can be used on its own to access a DB2 database or as an
ODBC driver. The DB2 CLI driver is an ODBC 3 compliant driver and contains
further functionality that is not specified in ODBC standards. In order to utilize
additional functionality in CLI driver, the application program needs to be linked
directly to CLI driver without the use of the ODBC driver manager.

Perl Database Interface (DBI)
Perl is part of Open Source Standard and is one of the popular choices for use
with Web services through the Common Gateway Interface (CGI). IBM DB2
provides support for Perl Scripts using Database Interface (DBI). DBI provides a
set of standard class methods to access data sources using drivers called
Database Drivers (DBD). In order to develop Perl application solutions, you
need to obtain Perl, the DBI module, and the DBD:DB2 driver from the
Comprehensive Perl Archive network:

http://www.cpan.org

Building and installing the DBD:DB2 module requires the following:

� For Linux and UNIX:

To build and install the DBD::DB2 module, you must have:

– Perl 5.005_03 or later.

– DB2 V8 Application Development Client or DB2 9 client.

– A supported C compiler as documented under “Supported operating
systems” on the Application development Web page.

– Set the DB2_HOME environment variable to the location of your DB2
instance. For example:

bash# export DB2_HOME=/home/db2inst1/sqllib

– Install the DBI module:

bash# perl -MCPAN -e 'install DBI'

– Install the DBD::DB2 module:

bash# perl -MCPAN -e 'install DBD::DB2'
6 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.cpan.org

� For Windows:

If you are using the ActiveState Perl distribution on Windows, you can install a
binary version of the DBI and DBD::DB2 modules.

Prerequisites:

– ActivePerl 5.8 or later
– DB2 client, Version 8.1 or later

For example, if you have ActivePerl 5.8.7 installed, you can install the DBD::DB2
modules as follows:

1. Install the DBI module by issuing the following command (the DBI module is a
prerequisite for the DBD::DB2 module):

ppm install
http://www.cpan.org/authors/id/H/HO/HOYMICH/db2/perl58/DBI-1.45.ppd

2. Install the DBD::DB2 module by issuing the following command:

ppm install
http://www.cpan.org/authors/id/H/HO/HOYMICH/db2/perl58/DBD-DB2-0.78.
ppd

To uninstall the DBD-DB2 module, issue:

ppm uninstall DBD-DB2

Alternatively, you can download the corresponding DBD-DB2.ppd and .tar.gz
files from:

http://www.cpan.org/authors/id/H/HO/HOYMICH/db2/

Install them locally by issuing the following command:

ppm install DBD-DB2.ppd

When the DBD::DB2 module is successfully installed, you can access
documentation and a sample application by issuing the following command:

perldoc DBD::DB2

OLE DB
OLE DB is a data access service that was introduced with Microsoft®’s ActiveX®
Data Objects (ADO). ActiveX Data Objects are a set of classes by which
applications can access data from multiple sources that utilize a given layer. It
provides consistent access to data sources exposed through OLE DB, XML, or
third-party .NET data provider.

IBM’s OLE DB driver is called IBMDADB2. If IBMDADB2 is not explicitly
specified, Microsoft’s OLE DB driver (MSDASQL) will be utilized by default.
 Chapter 1. DB2 application development overview 7

http://www.cpan.org/authors/id/H/HO/HOYMICH/db2/

MSDASQL allows clients utilizing OLE DB to access third party (non-Microsoft
SQL server) data sources using ODBC driver but does not guarantee full
functionality of OLE DB driver.

JDBC driver
Java is one of the most popular choices for application solutions. Write once, run
everywhere is the theme of JAVA, which reduces development time and has
made this technology an ideal choice for many.

The data source access is achieved through the JDBC programming interface in
Java. JDBC driver specification defines four types of driver architectures:

� Type 1

Drivers that implement the JDBC API as a mapping to another data access
API, such as Open Database Connectivity (ODBC). Drivers of this type are
generally dependent on a native library, which limits their portability. DB2
does not provide type 1 driver.

� Type 2

Drivers that are written partly in the Java programming language and partly in
native code. The drivers use a native client library specific to the data source
to which they connect. Because of the native code, their portability is limited.

� Type 3

Drivers that use a pure Java client and communicate with a server using a
database-independent protocol. The server then communicates the client's
requests to the data source. DB2 no longer includes a type 3 driver.

� Type 4

Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source.

DB2 V8 provides type 2 (APP driver and JCC type 2), type 3 (NET driver), and
type 4 (JCC type 4) drivers with APP and NET drivers being deprecated from V8
GA but still shipped (for V8).

DB2 9 provides type 2 (APP driver and JCC type 2) and type 4 (JCC type 4)
drivers. The JDBC type 3 driver (NET) has been discontinued and is not shipped
with V9. The DB2 JDBC type 2 (APP) driver was deprecated in DB2 V8 and will
remain deprecated in V9. Support for DB2 JDBC type 2 (APP) will be removed in
a future release.

Note that there have been no functional enhancements on deprecated DB2
JDBC type 2 (APP) and DB2 JDBC type 3 (NET) drivers since DB2 V7.
8 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

All future Java application development on DB2 UDB should be done using DB2
JCC type 2 or DB2 JCC type 4 drivers.

Table 1-1 summarizes the DB2 JDBC driver support on V8 and V9.

Table 1-1 DB2 JDBC driver

SQLJ
Along with host language embedded SQL type applications, there are also
embedded Java applications, better known as SQLJ programs. SQLJ is a
method for accessing DB2 from a Java application that supports static execution.
Again, the benefits of a static execution are reduced resource consumption,
improved diagnostics, improved security, and greater repeatability of SQL
performance due to static access paths and plans. Everything you need to get
from the data is already in the package bound at bind time.

SQLJ provides performance benefits of static query execution by embedding
SQL queries into Java applications. SQLJ still utilizes the JDBC driver to access
data source and is the layer above JDBC. SQLJ translator is used to process
SQLJ source files with the extension .sqlj. It translates .sqlj source files into .java
files and an SQLJ serialized profile into a form of .ser file. The serialized file
contains all the SQL statements in original SQLJ source file. The translated
resulting .java file will contain calls to SQLJ run-time libraries in place of SQL
statements. In order to bind the application statically to a DB2 database, you use
the DB2 profile customizer tool called db2sqljcustomize. The db2sqljcustomize
connects and binds a package on the target database using the serialized profile.
The package bound in the target database using db2sqljcustomize will contain
sections which correspond to each SQL query in the serialized profile.

V8 V9

Shipped Deprecated Shipped Deprecated

JDBC type 2
(APP)

Yes Yes Yes Yes

JDBC type 3
(NET)

Yes Yes No Yes

JCC type 2 Yes No Yes No

JCC type 4 Yes No Yes No

Note: JCC in V9 is JDBC 3 compliant.
 Chapter 1. DB2 application development overview 9

Commands associated with SQLJ:

� sqlj:

sqlj is the translator that takes an embedded SQLJ program and creates a
.ser file used for binding and a .java file that will also be compiled into byte
code, as typical Java programs are compiled.

� db2sqljcustomize:

This command will take the .ser file from the sqlj step, connect to the
database against which the application will be run, and bind four bind files for
this application, all with different isolation levels.

� db2sqljbind:

This command can be used to rebind this application against other
databases; for example, it can be used for moving the application from the
test to the production database.

The following packages need to be imported for SQLJ:

import java.sql.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

PHP
PHP: Hypertext Preprocessor (PHP) is an interpretive programming language
intended for Web application development. IBM supports access to DB2
Database from PHP applications through two extensions:

� ibm_db2:
The ibm_db2 extension offers a procedural application programming interface
to create, read, update, and write database operations in addition to
extensive access to the database metadata. It can be compiled with either
PHP 4 or PHP 5.

� PDO_ODBC:
The PDO_ODBC is a driver for the PHP Data Objects (PDO) extension that
offers access to DB2 database through the standard object-oriented
database interface introduced in PHP 5.1. It can be compiled directly against
DB2 libraries.
10 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

.NET data provider
The .NET developers have choices of incorporating ODBC .NET Data provider,
OLE DB .NET Data provider, or DB2 .NET Data provider (native provider). We
recommend that you first consider DB2 .NET Data provider when it comes to
.NET Application development. There are a number of enhancements made in
DB2 .NET Data provider in V9 for native XML support:

� The ODBC .NET Data provider makes ODBC calls to DB2 data source using
DB2 CLI driver. It has same keyword support and restrictions as that of DB2
CLI driver and can be used only with .NET Framework Version 1.1 or Version
2.0. This utilizes IBM DB2 ODBC (thus CLI) driver.

� The OLE DB .NET Data provider uses IBM DB2 OLE DB Driver (IBMDADB2).
It has same keyword support and restrictions as that of DB2 OLE DB driver
and can be used only with .NET Framework Version 1.1 or Version 2.0. This
utilizes IBM DB2 OLE DB (IBMDADB2) driver.

� The DB2 .NET Data provider extends DB2 support for the ADO.NET
interface. The DB2 managed provider implements the same set of standard
ADO.NET classes and methods and it is defined under IBM.DATA.DB2
namespace. We will use DB2 .NET Data provider for the sample application
example in Chapter 6, “Application development with .NET” on page 251.

1.2 DB2 Express-C

DB2 Express-C is a version of DB2 Universal Database Express Edition (DB2
Express) for the community, which is completely free to download, develop,
deploy, test, run, embed and redistribute. It provides the same core data server
features and development interfaces as well as system limits as DB2 Express in
a smaller package. DB2 Express-C is available for Linux and Windows running
32-bit or 64-bit hardware with up to 2 CPUs and 4 GBs of memory.

Support for DB2 Express-C is made available through forum:

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19

DB2 Express-C can be seamlessly upgraded to DB2 Express, Workgroup, and
Enterprise Server Edition without database or application modification.

DB2 Express-C is free to download from:

http://www.ibm.com/software/data/db2/udb/db2express/
 Chapter 1. DB2 application development overview 11

http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19
http://www-306.ibm.com/software/data/db2/udb/db2express/

DB2 Express-C installation
Before installing DB2 database, consult the system requirements listed in
following Web site:

http://www.ibm.com/software/data/db2/udb/sysreqs.html

The user installing DB2 should have System Administrator authority on the
system where the installation is to occur.

In a Linux system, you can use uname –a to determine the current kernel level
and rpm -qa | grep glibc for the glibc version.

There are a number of common and alternate methods for installing DB2:

� DB2 Setup Wizard

GUI installer available on Linux (requires X window server) and Windows
operating systems. It can be used to create instances and response files.

� Response file install

Automated install using the response file to avoid user interaction during
install and to ensure the same install options are used for multiple installs.

� db2_install script

It is only available on Linux and installs all components for the DB2 product
with English interface support. Additional language support can be selected
using –L parameter. It allows more control over the setup process and less
over the installation process. No user and group creation or configuration will
occur.

� Third-party deployment tools

Installation method for Windows. Used for mass client deployment using
Windows Active Directory®, Windows System Management Server, or Tivoli.

Table 1-2 summarizes DB2 installation methods.

Table 1-2 DB2 installation methods

Installation method Windows Linux or UNIX

DB2 Setup Wizard Yes Yes

db2_install Script No Yes

Response file installation Yes Yes

Third-party deployment tools Yes No
12 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.ibm.com/software/data/db2/udb/sysreqs.html

Installation steps using DB2 Setup Wizard
DB2 Setup Wizard is the most common method of installing DB2. It provides a
graphical user interface to step you through the DB2 installation process:

1. Execute setup.exe, which displays the welcome window.
The welcome window has several choices which include: Installation
Prerequisites, Release Notes, Migration Information, Install a Product, and
Exit. Upon choosing Install a Product, two installation options are presented.
One is for DB2 Express-C, which installs the database server component and
another is for DB2 Client, which only consists of DB2 client component.
Choose DB2 Express-C install, which starts the Setup Wizard. It will take
few moments for the Next button to become available. Click Next once it
becomes available.

2. Accept the terms in the license agreement to continue.

3. Several installation types are presented: Typical, Compact, and Custom.
Choose Custom to include all application development features.

4. Now you are offered Installation options regarding response file creation.
Installation can proceed with or without response file generation or you can
specify the response file for future installations.
 Chapter 1. DB2 application development overview 13

The response file path can be changed from the specified default. For this
scenario, specify installation with response file. See Figure 1-2.

Figure 1-2 Setup wizard: specifying response file option
14 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

5. The Select features to install window is displayed (Figure 1-3). All Application
development tools should be chosen by default. You can change the default
installation path on this window. For this walkthrough, we choose the default.

Figure 1-3 Setup wizard: selecting DB2 features to install

6. Select a language to install.
 Chapter 1. DB2 application development overview 15

7. Set the DB2 copy name window is next (Figure 1-4). This is used to identify a
location where DB2 products are installed on the computer.

Figure 1-4 Setup wizard: setting DB2 copy name
16 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

8. Specify the location of the DB2 Information Center. Choices are IBM Web site
or On intranet server. We accept the default of the external IBM Web site.
See Figure 1-5.

Figure 1-5 Setup wizard: specifying the location of DB2 Information Center

9. Next, set the user information for DB2 Administrator server (DAS). This user
ID is used to start DB2 Administration server, which responds to various DB2
administration tools and Configuration Assistant (CA).
 Chapter 1. DB2 application development overview 17

In this section of the wizard, you can also specify the option to use the same
user ID for other services. See Figure 1-6.

Figure 1-6 Setup wizard: setting DAS user information
18 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

10.The Configure DB2 instance window allows creation of DB2 instances. In
Windows, by default, a DB2 instance called DB2 will be created. See
Figure 1-7.

Figure 1-7 Setup wizard: configuring DB2 instances
 Chapter 1. DB2 application development overview 19

The Configure button provides the option to set or alter the service name and
listener port number associated with the given instance. See Figure 1-8.

Figure 1-8 Setup wizard: DB2 instance configuration window

11.The next step involves preparing the DB2 tools catalog. The Tools catalog will
be required for DB2 Task Center and Scheduler.
20 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

This step gives you the option to create the tools catalog in a new or an
existing database. See Figure 1-9.

Figure 1-9 Setup wizard: preparing the DB2 tools catalog

12.The Set up notifications window provides you the option to set up DB2 send
notifications automatically to the SMTP server when a database needs
attention. For our walkthrough, we uncheck this option.
 Chapter 1. DB2 application development overview 21

13.Enable operating system security for DB2 objects window (Figure 1-10)
provides you the option to enable operating system security, which is chosen
by default. With this security option, only users who belong to DB2 users
group (DB2USERS) and DB2 administrator group (DBADMINS) can access
DB2 objects.

Figure 1-10 Setup wizard: enabling operating system security for DB2 objects

14.Finally, DB2 Setup wizard starts copying the files and creates the response
file.

15.After the successful installation of DB2 Express-C, you can create the sample
database.

Installation using response file
On the Windows platform, enter following command:

setup -u my.rsp

On the Linux platform, use the following command:

db2setup -r <responsefile_directory>/<response_file>
22 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Installation using db2_install script
On a Linux system, log in as a user with root authority.

If DB2 Express-C has been downloaded from the previously mentioned URl, it
needs to be decompressed and untarred prior to installation:

1. Decompress the product file:

gzip -d db2exc_91_LNX_x86.tar.gz

2. Untar the product file:

tar -xvf db2exc_91_LNX_x86.tar

3. Change directory into the product directory where db2_install can be found
and enter the following command:

./db2_install

Sample database creation
There are several options for creating the sample database.

You can create the sample database with just the tables in V8 sample SQL
database objects, XML database objects, or both.

The graphical option prompts you for the creation of the database once
installation is complete and provides graphical options for creating a sample
database.

The command line option involves the db2sampl command. Key options are:

� -sql: Create SQL database objects and data
� -xml: Create XML database objects and data
� -v8: Create the SAMPLE database from DB2 UDB V8

Considerations for DB2 Express-C
The following constraints are present in DB2 Express-C:

� Maximum processors: 2

� Maximum addressable memory: 4 GB

� Database Partitioning Feature: N/A

� Connection Concentrator: N/A

� DB2 Geodetic Extender: N/A

� Query Patroller: N/A

� Net Search Extender: N/A
 Chapter 1. DB2 application development overview 23

� Exclude options such as HADR, DB2 Connect™ support, and Warehouse
Manager tools

� DB2 Express-C community assistance can be found at the following online
forum:

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=
19

1.3 DB2 Developer Workbench

DB2 Developer Workbench (DWB) is a comprehensive development
environment available for use with DB2 9. It is used to create, edit, debug, test,
and deploy DB2 stored procedures and user defined functions, along with SQL,
SQLJ, and XQuery APIs.

Available for Windows 32-bit and Linux 32-bit environments, it was formerly
packaged with DB2 as the Development Center. This new DB2 Developer
Workbench is based on Eclipse and features new XQuery Visual Builder.

You can download DB2 Developer Workbench from the following URL:

http://www.ibm.com/software/data/db2/udb/db2express/download.html#viper

Key features of DB2 Developer Workbench
DB2 Developer Workbench provides a universal toolset for DB2 solutions
development based on the Eclipse project. In addition to the functionality of the
previous Development Center, additional new features have been added. These
include:

� Addition of Developer Workbench information center and tutorials.
� Ability to migrate existing Development Center projects.
� Compare routines within a data development project.
� Ability to deploy routines to different servers on various platforms.
� Develop Java and SQL stored procedures.
� Develop SQLJ applications.
� Stored procedure debugger for SQL or Java stored procedures.
� XML support:

– XML functions
– XML data type
– XML schema registration
– XQuery builder
24 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.ibm.com/software/data/db2/udb/db2express/download.html#viper
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=805&cat=19

Creating New Project in DB2 Developer Workbench
You can start a new development project in DB2 Developer Workbench using
two methods.

� Select File → New, then select from a list of choices. Figure 1-11 shows the
resulting window output.

Figure 1-11 Selecting new data development project

� You can make these same choices by clicking New Project from the tool
menu (first button on the left). Figure 1-12 on page 26 shows window output
from selecting New Project.
 Chapter 1. DB2 application development overview 25

Figure 1-12 New Project drop-down menu
26 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Creating stored procedure
To create a stored procedure:

1. Start a new stored procedure project by selecting File → New → Stored
Procedure.

This prompts you for the project name. If new project creation is specified,
you can specify the current schema as shown in Figure 1-13.

Figure 1-13 Data development project for a stored procedure
 Chapter 1. DB2 application development overview 27

2. In the following window (Figure 1-14), choose Create a new connection or
Use an existing connection. Once your choice is made, click Finish to
return to the Specify a Project window.

Upon choosing the newly-created project name, the name of the stored
procedure and the language of the procedure need to be specified as shown
in Figure 1-14.

Figure 1-14 Specifying language type for stored procedure

3. Once selections are made, you are prompted for the password to connect to
the target database (if the connection does not already exist). The wizard
then steps you through the creation of the procedure.

Creating SQLJ
Before invoking the wizard, you need to create the Java project prior to the SQLJ
creation using the wizard (see Figure 1-15):

1. Click File → New → Other, or click New toolbar. Expand the Java folder and
select Java Project. Specify the new project name. Here you can specify
other options such as JDK™ compliance level. Click Finish to complete the
creation of the new Java Project as shown in Figure 1-15 on page 29.
28 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Figure 1-15 Creating a Java project

2. Using the newly created or the existing Java project (highlight the project),
click File → New → Other, or click New toolbar. In the New window, expand
the Data folder, and then expand the SQLJ Applications folder to show the
available SQLJ choices. Click SQLJ File, and then click Next.
 Chapter 1. DB2 application development overview 29

3. You can now specify Package name and SQLJ name as shown in
Figure 1-16. The SQLJ name should follow the Java type convention and
should start with an uppercase character.

Figure 1-16 Specifying package and SQLJ name

4. Complete the wizard steps.

Creating a user defined function (UDF)
Before creating UDFs, you need to create the data development project to store
the given database object:

1. Start the new Data Development project by selecting File → New → Data
development. This will prompt you for the project name. If new project
creation is specified, you can specify the current schema as shown in
Figure 1-13 on page 27.

2. In following window (Figure 1-17 on page 31), you can choose to Create a
new connection or Use an existing connection. Once the choice is made,
clicking Finish returns you to the workspace window.

The data development project now displays in the Data Project Explorer view.
30 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Now, you can use the New User Defined Function wizard to create DB2 user
defined functions (UDFs) in SQL.

3. Switch to the Data perspective using Window → Open Perspective →
Other, then select Data. Output of the Select Perspective window is shown in
Figure 1-17.

Figure 1-17 Switching to Data perspective
 Chapter 1. DB2 application development overview 31

4. In the Data Project Explorer, right-click the User Defined Functions folder in
a data development project, and click New → User Defined Function as
shown in Figure 1-18.

Figure 1-18 Selecting user defined function wizard

5. Complete the steps of the wizard.

By default, creating the user defined function does not register the user
defined function on the database. To register the user defined function on the
database, you must deploy it.

Creating XQuery using Visual Builder
DB2 9 allows you to write XQuery expressions directly rather than requiring that
you embed or wrap XQueries in SQL statements. This is possible because the

Note: The New User Defined Function (UDF) wizard does not support all
data types on all DB2 UDB servers. When creating a table UDF, the wizard
recommends SQL data types for the data returned for each column.
32 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

DB2 9 query engine processes XQueries natively. We cover more details
regarding XQuery in future chapters.

With native XML capabilities added to DB2 9, IBM has enhanced development
tools for use with DB2 9. One of the key development tools is DB2 Developer
Workbench, which utilizes XML Query Language (XQuery) to query the XML
data type.

You can use Visual Builder to piece together queries, then review the DB2
Developer Workbench generated syntax.

The following walkthrough demonstrates the use of Visual Builder for the XQuery
in DB2 Developer Workbench, which queries the name and city of the customer
who has the city element defined with the data Toronto:

1. First launch DB2 Developer Workbench.

2. Establish a database connection.

In the Workspace panel, enter the workspace directory. The workspace is the
Eclipse platform component that holds the development environment.

Select the Database Explorer tab in the workspace view (Figure 1-19 on
page 34). Expand the Connections folder. This should show SAMPLE[DB
Alias]. Right-click SAMPLE[DB Alias] then select Reconnect. The User ID
and password prompt window appears. Upon successful connect, the status
in the Properties should change from <Disconnected Connection>SAMPLE to
<Live Connection> SAMPLE [DB2 UDB V9.1].
 Chapter 1. DB2 application development overview 33

Figure 1-19 XQuery Visual Builder: connecting to database

3. Start a new data development project:

Use File → New → Data Development Project. You can make these same
choices by clicking the New Project drop down from the tool menu.
34 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Name the project. In our example, XQuery1 was used as the project name.
See Figure 1-20. Click Next.

Figure 1-20 DWB: creating new project

4. In the Select Connection panel (Figure 1-21), you can choose either Create a
new connection or Use an existing connection. Since connection has
already been established in step 2 on page 33, we select Use an existing
connection for our walkthrough. Click Finish.

Figure 1-21 XQuery Visual Builder: specifying the connection
 Chapter 1. DB2 application development overview 35

5. Create XML query.

Workbench can discover and generate the XML schema, but you can also
add XSDs, DTD, and schema to the XML Schema Documents folder (This
folder is located under the recently created project in the Data Project
Explorer pane).

Right-click XML Queries and choose New XML Query. Name the query.
Here we used Sample_XML_Query. Once you click Next, the Add
representative XML documents window appears. Click the Add button on the
right. On the Specify document location panel, choose Database. See
Figure 1-22. Select Next.

Figure 1-22 XQuery Visual Builder: specifying the document location

6. The XML column or Schema window displays (Figure 1-23 on page 37).

Select the schema, which contains the sample database, in this example, the
schema is CHUNJ. We use the CUSTOMER table, which contains two XML data
type columns (INFO and HISTORY). Choose the INFO column, and click Next.
36 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Figure 1-23 XQuery Visual Builder: specifying the document location

7. The Choose a document window shows you a list of XML documents found in
that column as well as their respective sizes.

The Schema navigation window can be seen on the left side. Here you can
specify the resulting XML file name (Document Name). In our walkthrough
scenario, we accept the default. Click Finish. See Figure 1-24 on page 38.
 Chapter 1. DB2 application development overview 37

Figure 1-24 XQuery Visual Builder: specifying XML file name

8. The Add representative XML documents window displays. Now, we have
successfully added data that we will query. See Figure 1-25. Click Next.

Figure 1-25 XQuery Visual Builder: adding representative XML documents
38 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

9. The Associate documents with XML columns window displays. This shows
the association between XML Schema and actual data (shown by the green
check mark in the Associated? column, see Figure 1-26). This association is
there by default because the XML document was generated from the data in
the specified XML column. The association between the XML document and
the XML column is required for the query. Click Finish.

Figure 1-26 XQuery Visual Builder: associating documents with XML columns
 Chapter 1. DB2 application development overview 39

10.This brings you to the workspace view with the Sample_XML_Query.xqm
view. See Figure 1-27.

Figure 1-27 XQuery Visual Builder: XQM tab

11.The Sample_XML_Query.xqm view has a navigation node tree with
Constructors, Expressions, Functions, and Variables syntax. We further
explain this syntax in Chapter 2, “Application development with DB2
pureXML” on page 49.

Now drag the name node from the navigation tree over to the XQuery designer
grid (right side of the XQM section). This node now serves as a
representative node, which means that the query is performed for all XML
data that has the name element. See Figure 1-28 on page 41.
40 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Figure 1-28 XQuery Visual Builder: adding element to XQuery

The Step Into icon appears when name is highlighted. Use this to specify
conditions and result sets for that node.

Click the Step Into icon to step into the For Logic (FLWOR) window. FLWOR
stands for FOR, LET, WHERE, ORDER BY, and RETURN, which represent
basic XQuery syntax.
 Chapter 1. DB2 application development overview 41

We limit the query to cities with the name Toronto. So we expand the
Functions, String functions, choose fn:matches and drag it to the Operand
1 column of the Where section. This populates the Operand 1 column in
Where with matches(…) and the Step Into icon appears next to matches(…).
See Figure 1-29. Click the Step into icon.

Figure 1-29 XQuery Visual Builder: For Logic (FLWOR) window
42 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

12.The matches window appears with arguments: source-string, pattern, and
flags. Drag the city node under addr from the explorer window on the left to
the source-string window. Enter Toronto for the pattern argument and i for
case insensitivity for the flags argument. See Figure 1-30.

Now, click the Step out icon on the top right corner of the matches
window and return to the For Logic (FLWOR) window.

The fn:matches function does not take a second operand (Operand 2), so we
leave that column empty (as well as Operator).

Figure 1-30 XQuery Visual Builder: matches window

13.In addition to the customer name of the customer who resides in Toronto, we
want to display the city in the resulting output to verify that resulting names
are those from Toronto.
 Chapter 1. DB2 application development overview 43

To do this, drag the city node from the navigation pane on the left to the
Return section of the For Logic (FLWOR) window. See Figure 1-31.

Figure 1-31 XQuery Visual Builder: For Logic (FLWOR) window with operand 1

14.There are two tabs, Design and source, representing two views in XQM
window. We have been exposed to the Design view up to now. You can view
the source generated by DB2 Developer Workbench by choosing the Source
tab. See Figure 1-32.

Figure 1-32 XQuery Visual Builder: source tab

You can execute the following source code that DB2 Developer Workbench
generated (shown in Example 1-1 on page 45) in Command Editor with minor
modification.
44 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 1-1 Generated source code

values(XMLQUERY('
declare boundary-space strip;
declare namespace def0="http://posample.org";
for $name0 in
db2-fn:xmlcolumn("CUSTOMER.INFO")/def0:customerinfo/def0:name
 where matches ($name0/../def0:addr/def0:city,"Toronto","i")
 return
 (
 $name0,
 $name0/../def0:addr/def0:city
)
' RETURNING SEQUENCE))

You can execute the same query from the script file as shown in Example 1-2.

Example 1-2 Query script

Values (XMLQUERY('
 declare boundary-space strip;
 declare namespace def0="http://posample.org";
 for $name0 in
db2-fn:xmlcolumn("CUSTOMER.INFO")/def0:customerinfo/def0:name where
matches ($name0/../def0:addr/def0:city,"Toronto","i")
 return
 (
 $name0,
 $name0/../def0:addr/def0:city

)
'
RETURNING SEQUENCE))
@

Example 1-2 is the syntax for the XMLQuery. We can modify the source for
XQuery as shown in Example 1-3.

Example 1-3 Modified source

xquery
 declare default element namespace "http://posample.org";
 for $name0 in
db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo/name where matches (
$name0/../addr/city,"Toronto","i")
 return
 (
 Chapter 1. DB2 application development overview 45

 $name0,
 $name0/../addr/city

)
@

Save the source in Example 1-3 on page 45 in a file (in this case, xquery.db2),
then issue the following command:

db2 -td@ -vf xquery.db2

15.Now, execute XQuery using XQuery → Run. Figure 1-33 shows the
successful execution of XQuery (see Data Output tab).

Figure 1-33 XQuery Visual Builder: Data Output tab
46 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

16.You can click the button in the Results tab to see the results output. See
Figure 1-34.

Figure 1-34 XQuery Visual Builder: XQuery results
 Chapter 1. DB2 application development overview 47

48 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Chapter 2. Application development
with DB2 pureXML

In this chapter, we discuss the technique of storing, managing, and querying
XML data. XML is quite different from relational data, and it offers its own
challenges and opportunities for the application developer. In this chapter, we
introduce you to the new pureXML technology in DB2 Express-C V9. Since XML
is everywhere, we have covered the application development topics for XML in
each chapter of this book. We point you to the appropriate chapter and section
for specific information throughout this chapter.

We provide practical examples to store and query XML data, which we
encourage you to apply to your own environment. We provide the example XML
data we use in this chapter in Appendix A, “Setup procedure and sample data”
on page 295.

We also encourage you to visit the following DB2 XML Technical Papers and
Articles Web site. Here you can find IBM white papers and links to the articles
published in various publications on different topics related to the pureXML
technology.

http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers
+and+Articles

2

© Copyright IBM Corp. August 2006. All rights reserved. 49

http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles
http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles
http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles
http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles

2.1 Web application: XML is the answer

Web applications are usually built by the following three tier model. These three
tiers are considered separate well-defined processes or components that run on
different platforms:

� The user interface or browser that runs on client machines

� The application programs that include the business logic runs on Web server

� The database management system or the back-end system that holds data

This application model has many advantages over the single or two tier model,
because the application is accessed by the browser and shares the same look
and feel, no matter where it is accessed from. Also, the application modularity
makes it easy to modify one component without affecting others. However, a
request to a Web application does not always need to originate from a human
being. It also can originate from another application sharing the same model and
same protocol. XML opens the door for connecting one Web application to
another. Consider a Web-based traffic warning application, which gets the
real-time traffic information from another Web-based application. A user
subscribes to the traffic warning Web site, which processes the real-time traffic
data and produces the warning result for its subscribers.

The architectural overview of such an application is shown in Figure 2-1 on
page 51. If this Web application is developed using the old Hypertext Markup
Language (HTML) technology, the traffic warning application would get an HTML
data for one of its subscribers, who commutes between San Jose and San
Francisco. The traffic warning application then would process the trouble spot as
represented in a particular HTML tag on a particular line number (line#) of the
HTML data. This would work fine for a very fixed format. However, needless to
say, that application will break with a slight change in data format, or even if a
blank line is inserted in the output generated by the real traffic application.

XML solves the problem; it directly represents the data. The real-time traffic data
is returned as XML, which is the logical representation of the traffic data. The
data representation is separate from page presentation. The fact that data is
separate from presentation makes serving different types of contents to different
types of client easier. The same traffic warning data can be accessed from a
Web browser on your laptop as well as from a thin personal digital assistant
(PDA) client on your cell phone.

Today, XML is the most common data interchange format on the Web. Any
modern application can interact with an existing application through the Web
50 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

services technology, which exchanges information as messages represented in
XML format. See Figure 2-1.

Figure 2-1 Web application XML: connecting each other

XML is so powerful and so flexible that people use it not only as a document but
widely use it to:

� Describe the meta content of the Web resources. Resource Description
Framework (RDF) is such an example, which is an XML representation of
resource described uniquely on Web. The popularity of semantic Web
technology is fueling the growth of rich metadata being defined on Web
contents.

� Publish and interchange database contents. Sharing data between
applications is a necessity. Finding a common ground and different parties
agreeing to it is only possible through XML and XML schema.

� Communicate with message format. Business-to-business (B2B) applications
use XML-based messaging to communicate.

So, why use XML? Well, for simplicity, richness for data structure, and its
versatility (handling of international characters). Today, database vendors

http://www.xtraffic.com

Traffic Warning Application

Real-Time Traffic ApplicationClient Application

XMLClient
Internet

Client

http://www.xtrafficwarning.com

http://www.xtraffic.com

Traffic Warning Application

Real-Time Traffic ApplicationClient Application

XMLClient
Internet

Client

http://www.xtrafficwarning.com
 Chapter 2. Application development with DB2 pureXML 51

support XML and hence your application can leverage the robustness and
scalability of database systems while maintaining flexibility using XML data.

2.2 pureXML in DB2

pureXML is the brand new technology introduced in DB2 9. pureXML enables
storage of well-formed XML documents in the DB2 column of XML data type. By
storing XML data in XML columns, the data is kept in its native hierarchical form,
rather than stored as text or mapped to a relational data model. Since the new
XML store is 100% integrated with DB2, it leverages the performance, scalability,
reliability, and availability of the DB2 engine.

The new XML data type is really a Structured Query Language (SQL) data type,
so querying XML data is easy and fast. You can access relational and XML data
in the same statement. The new pureXML is also integrated with application
programming interfaces (APIs) such as Java Database Connectivity (JDBC),
Open Database Connectivity (ODBC), .NET, embedded SQL, and PHP, which
open doors for a new breed of Web applications with hybrid access to the
relational and XML data. In this section, we discuss the application design
considerations and benefits of pureXML technology in DB2 with respect to
application development.

2.2.1 When to use DB2 pureXML

DB2 pureXML is suited for any application where some or all of the data
processed by the application is represented using XML. DB2 pureXML storage
provides for high performance ingestion, storage, processing, and retrieval of
XML data. Additionally, it also provides the ability to quickly and easily generate
XML from existing relational data.

The types of applications for which pureXML is particularly well suited include:

� Business-to-business and application-to-application (A2A) integration
� Internet applications
� Content-management applications
� Messaging-based applications
� Web Services

A typical XML-based application has one or more of the following requirements
and characteristics:

� XML documents need to be processed or generated.

� High performance querying, both within a document and across a large
collection of documents.
52 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� High levels of security and easy control over them.

� Usage of languages such as Java that support open standards such as SQL,
XML, XQuery, and Extensible Stylesheet Language Transformation (XSLT).

� Access to information using standard Internet protocols such as File Transfer
Protocol (FTP), HTTP/Web, or JDBC.

� Hybrid access to and ability to query relational and XML data.

� Validation of XML documents.

2.2.2 Designing pureXML-based applications

This section discusses the preliminary design criteria you can consider when
planning your DB2 pureXML-based application. Here are several questions to
ask and our recommendations:

� Will your data be mostly XML, a combination of relational and XML, or
non-XML?

Deciding how your data storage model will look mostly depends on the kind of
application you are developing and the kind of data it will use. Sometimes, it
might make more sense to store XML data in a relational table and query it
using standard SQL if your XML data is highly regular and queried the same
way over time. Often, you would want to store and represent data as XML
throughout its life.

� Will your tables be XML schema-based or non-schema-based?

If your data is XML schema-based, you need to register the schema with DB2
XML schema repository, so that applications can use them to validate the
data. You can experience performance issues if schema validation is used.

� How will other applications and users access your XML and other data?

The data access model really depends on the programming interface. DB2
supports the common application programming interfaces to access and
manage XML data in pureXML.

� What kind of indexing will best suit your application? Will you need to use
XML value index or full text search index? Or both?

You need to design indexes carefully for high performance data access.
Text-based search or fuzzy search implementation needs to use full text
indexes. This will depend on the nature of the application.

� In which languages will you program your application?

Java, .Net, and PHP are the most common languages a Web application
uses. However, you might consider the latest community-developed
 Chapter 2. Application development with DB2 pureXML 53

frameworks such as Ruby on Rails or Zend Framework to build Web
applications that leverage persistent XML store in DB2.

� Will you need to generate XML from relational data or vice versa?

Your application can leverage XML constructor functions to build XML from
relational data before applications can process it. In contrast, some use cases
require XML data to be shredded into relation columns before the data can be
accessed by an existing application.

� How often will XML documents be accessed, updated, and manipulated? Will
you need to update fragments or the whole document?

Choosing the right query and interface model depends on whether an
application is read only or both read and update. XQuery can limit your
application to read only, so you need to carefully decide if full document
update is reasonable.

� Will you need to transform the XML to HTML, WML, or other languages, and
how will your application transform the XML?

If your application needs to be accessed by different clients, XSLT may be
used to transform. While storing data in pureXML, you can make sure the
structure complies with the specific XML schema.

2.2.3 DB2 hybrid query engine

DB2 hybrid engine processes SQL or XML and XQuery queries in an integrated
manner. DB2 unifies XML storage, indexing, and query processing with existing
relational storage, indexing, and query processing. DB2 also provides an XML
schema repository (XSR) to register and maintain XML schemas and uses those
schemas to validate XML documents. The DB2 utilities such as IMPORT and
EXPORT have been enhanced to support XML data and the new graphical
XQuery builder lets you construct XQueries.

The hybrid engine allows existing client applications to access DB2 data through
relational APIs, yet it offers new SQL or XML APIs to publish relational data in
XML format and full document retrieval from pureXML storage. Additionally, the
new SQL or XML querying functions provide SQL applications with subdocument
level search and extract capabilities by embedding XQuery statements into SQL
statements.

An XML application can interact with the DB2 server via the XML interface by
using the XQuery language, which is supported as an stand-alone query
language independent of SQL. XQueries can optionally contain SQL statements
to combine and correlate XML data with relational data. A client application can
benefit immensely from this integration of the two languages supported by DB2.
54 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

DB2 has a separate parser for SQL and XQuery statements but uses a single
integrated query compiler for both languages. No translation from XQuery to
SQL is performed. DB2’s compiler and optimizer are extended to handle SQL
and XQuery in a single modelling framework. An overview of the hybrid engine is
shown in Figure 2-2.

Figure 2-2 Integrating XML and relational data

2.2.4 pureXML storage overview

In DB2 pureXML, the XML documents are stored on disk pages in tree structures
matching the XML data model. This avoids the mapping between XML and
relational structures, and the impedance (hindrance) mismatch. XML is a data
type in DB2, just like any other SQL type.

XML data type can be used in a CREATE TABLE statement to define one or
more columns of type XML. Since XML has no different status than any other
types, tables can contain any combination of XML and relational columns. A
column of type XML can hold one well-formed XML document for every row of
the table. The NULL value is used to indicate the absence of an XML document.
Even though every XML document is logically associated with a row of a table,
XML and relational columns are stored differently. XML schema is not required in
order to define an XML column or to insert or query XML data. An XML column
can hold schema-less documents as well as documents for many different or
evolving XML schemas.

Schema validation is optional on a per document basis. Thus, the association
between schemas and documents is per document and not per column, which
provides maximum flexibility. Unlike a varchar or a character large object (CLOB)
type, the XML type has no length associated with it. Currently, only the
client-server communication protocol limits XML bind-in and bind-out to two GB
 Chapter 2. Application development with DB2 pureXML 55

per document. With very few exceptions, this is acceptable for all XML
applications.

You can use the XML type not only as a column type but also as a data type for
host variables in languages such as C, Java, and COBOL. XML type is also
allowed for parameters and variables in SQL stored procedures, user defined
functions (UDFs), and externally stored procedures written in C and Java.

An application can manage XML documents in the best way suited for the
application. These ways include shredding XML data into relational tables or just
storing them as CLOBs. In DB2 pureXML, XML data is stored in a parsed,
annotated tree form, similar to (but distinct from) the Document Object Model
(DOM). The XML data is formatted to data pages, which are buffered. The
benefits of this format include faster navigation, which results in faster query
execution as well as simpler indexing of data. Figure 2-3 shows a DB2 CREATE
TABLE statement with XML data type, and how relational and XML data is stored
in DB2.

Figure 2-3 Creating table with XML data type

Throughout this chapter, we have used examples of XML data, relational data,
XQueries, SQL queries, and so on. These examples are based on Movie data.
The examples might not be entirely consistent because they were produced to
illustrate specific points made in the text and they might not be always complete.
The actual XML data and steps to create them in your environment have been
56 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

discussed in detail in Appendix A, “Setup procedure and sample data” on
page 295. In summary, we have used two database tables for our example as
shown in Table 2-1 and Table 2-2.

Table 2-1 Movie database table

Table 2-2 Moviereview database table

The sample XML data for Movie is shown in Example 2-1.

Example 2-1 Movie.xml

<?xml version="1.0" encoding="UTF-8"?>
<movie id = "345">
 <heading>
 <title>Crossroads</title>
 <rating>***</rating>
 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG</MPAArating>
 <country>US</country>
 <year>2006</year>
 <running-time>1 hr. 38 minutes</running-time>
 <production>
 <studio>RR Pictures</studio>
 </production>
 </movie-details>
 <synopsis>
 A grouchy old college professor who lived in a delapidated cabin near
 the lake takes an interest in a frustrated writer who suffers from
 habitual writer's block.
 </synopsis>
 <credits>
 <writer>David Anderson</writer>
 <director>Alex Ostern</director>
 <photography>Charles Govasky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Karl Thomas</actor>
 <actor type="lead" gender="F">Sandra Casper</actor>
 <actor type="lead" gender="M" special="yes">Peter Walsh</actor>

ID int NOT NULL PRIMARY KEY

INFO XML

REVIEWID int NOT NULL PRIMARY KEY

REVIEW XML
 Chapter 2. Application development with DB2 pureXML 57

 <actor gender="M">Sam Allen</actor>
 <actor gender="M">Chris Plummer</actor>
 <actor gender="F">Linda Collins</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>'

The sample data for Movie review is shown in Example 2-2.

Example 2-2 Moviereview.xml

<movie id = "345">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not enough stars
 to support this catastrophe.</user>
 <user name ="Linda">I really liked this movie.</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the year.
 </newspaper>
 <newspaper name="San Francisco Post">Its ok...movie.

 </newspaper>
 </CriticsReview>
 </reviews>
</movie>

You can find the complete data for Example 2-1 on page 57 and Example 2-2 in
Appendix A, “Setup procedure and sample data” on page 295.

All the example queries in this chapter have been tested against the movie and
moviereview data in the DB2 9 database. We advise you to follow the setup
steps mentioned in the Appendix A, “Setup procedure and sample data” on
page 295 to get the desired result from these example queries.

2.2.5 SQL support for XML data (INSERT, SELECT)

In DB2 9, SML is a new supported data type. In the CREATE TABLE statement,
the XML data type can be specified as a column data type. Just like other data
types, while inserting an XML value in the column of type XML, DB2 makes sure
that the data type of a value is XML.

XML value is made of nodes of different data types and can be represented and
stored in any of the character types, such as CHAR, VARCHAR, CLOB, BLOB,
58 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

and so on. Before inserting a value in the XML columns, DB2 makes sure that
the string representation contains a valid XML document.

Similarly, when selecting the XML value, it should be converted to any of the
character data types so that it can be presented or used in the application. DB2
provides functions to explicitly check the correctness of the XML value before
inserting and converting the XML value to a string representation while selecting.

An XML document can have the encoding information mentioned in the
document itself in the declaration section. Such documents are called internally
encoded documents. The encoding used for the documents, which do not contain
this information, depends on the application code page.

XMLPARSE
You can optionally use the XMLPARSE function to explicitly check the
correctness of the XML document in an SQL statement. The input to this function
can be any of the character types: CHAR, VARCHAR, and CLOB, or BLOB. The
function returns the parsed XML value if it is a valid XML document; otherwise, it
throws an error.

As only the valid XML values are allowed in an XML column, the XMLPARSE
function is mandatory to use when inserting the XML value either externally or
internally. If the XMLPARSE function is not used in an insert statement explicitly,
it is used implicitly to make sure that the value is correct XML. This type of
parsing is called implicit parsing.

Whenever a character type is passed to the XMLPARSE function, it has an
external encoding associated with it. It can be possible that the XML value stored
in the character type variable is also internally encoded. The internal code page
of the XML value in the character type variable and the external code page
associated with the variable should match. If these code pages do not match, a
run-time error is thrown. We recommend you not use the encoding attribute
whenever a character type is used to represent XML data. For binary data types,
there is no code page associated with the type, the XML value is treated as
encoded in the internal code page specified in the XML declaration. In case there
is not internal encoding associated with the value, XML is treated as unicode.

Example 2-3 gives an example of an INSERT statement where XMLPARSE is
used explicitly to make sure that the value is well formed XML.

Tip: Implicit parsing is the recommended way to work with XML data because
it takes care of any encoding conversion in the best possible manner.
 Chapter 2. Application development with DB2 pureXML 59

Example 2-3 XMLParse function

insert into moviereview(reviewid, review) values(765, xmlparse(
document '<movie id = "567">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there is not
 enough stars to support this catastrophe.</user>
 <user name ="Linda">Three is a crowd, yet there is not enough
 stars to support this catastrophe.</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller
 of the year. </newspaper>
 <newspaper name="San Francisco Post">The best mystery thriller
 of the year. </newspaper>
 </CriticsReview>
 </reviews>
</movie>'))

A host variable or parameter of type XML cannot be given as input to the
XMLPARSE function. They are implicitly parsed by the database.

XMLPARSE does not perform validation against a schema and only provides the
parsing functionality to check the correctness of the XML value and how
well-formed the XML value is.

The full syntax for the XMLPARSE is:

XMLPARSE (DOCUMENT <String Value> PRESERVE/STRIP WHITESPACE

XMLPARSE provides two options for extra whitespace processing while parsing
the string value:

� PRESERVE WHITESPACE: Preserve the whitespace in the string value.

� STRIP WHITEPACE: Remove the extra whitespace. This is the default action
if no option is provided.

The DOCUMENT keyword specifies that the string value is a well-formed XML
document which conforms to XML Version 1.0.

XMLVALIDATE
You can use the XMLVALIDATE function to validate the XML value against a
schema. The schema for an XML value defines the structure of the XML values
including node data types, occurrences, default values, and so on. The schema
document should be registered to the database before using it for the validation.
60 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 2-4 gives an example of the XMLVALIDATE function. This example
assumes that the schema is registered with the name review.

Read 2.2.6, “Schema support” on page 62 to see how to register the schema
used in Example 2-4.

Example 2-4 XMLVALIDATE function

insert into moviereview(reviewid, review) values(765,
xmlvalidate(xmlparse(document '<movie id = "567"
xmlns="http://movies.org">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not
 enough stars to support this catastrophe.</user>
 <user name ="Linda">Three is a crowd, yet there are not

enough stars to support this catastrophe.</user>
<UserReview>

 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller
 of the year. </newspaper>
 <newspaper name="San Francisco Post">The best mystery thriller
 of the year. </newspaper>
 </CriticsReview>
 </reviews>
</movie>') according to xmlschema id review));

XMLVALIDATE takes a well-formed XML value as an input. If a value of
character type is passed to this function, the value is implicitly parsed before
validation.

XMLSERIALIZE
When selecting an XML column from the database table, it should be serialized
to CHAR, VARCHAR, CLOB, or BLOB data types so that the value can be used
by the application. Use the XMLSERIALIZE function for this same purpose. It
serializes an XML value to its textual representation. XMLSERIALIZE takes an
XML value or XML column name as input in an SQL statement.

When serializing the XML value, the code page associated with the serialized
data depends on the target data type used. For character data types, the
encoding is application code page. For binary data types, the encoding
associated with the serialized data is UTF-8.

Example 2-5 gives an example of how to use the XMLSERIALIZE function when
selecting an XML column.
 Chapter 2. Application development with DB2 pureXML 61

Example 2-5 Using XMLSERIALIZE function

select xmlserialize(review as varchar(500)) from moviereview

If the SERIALIZE function is not used when selecting an XML column, the XML
value is serialized to BLOB value implicitly.

2.2.6 Schema support

XML schema defines the structure of the XML document, including the element
definition, attribute definition, namespaces, code pages, and so on. These
schemas can be used to validate the XML value before inserting these values
into the database table. Generally these schemas are stored in the file system
and need to be registered to the database before using them for validation.
Registering a schema to the database makes the schema a database entity and
removes the dependency of reading the content of the schema document from
the operating system. DB2 provides two ways of registering the schema to the
database.

Registration using CLP commands
DB2 introduced new CLP commands to register a schema to the database. To
register the database using the CLP commands, follow these steps:

1. Register the primary schema document.

The primary schema document is the one at the top of the import/include
hierarchy. Register the main schema document using the following
command:

register xmlschema <namespace URI> from <location URI> with
<property URI> as <relational id>

The terms in the command are as follows:

– Namespace Uniform Resource Identifier (URI): Namespace of the XML
document which will be referenced from XML documents.

– Location URI: Physical location of the schema file in the file system.

– Property URI: Physical location of the property document associated with
the schema document in the file system.

2. Add the secondary schemas document.

Add the XML schema document referenced (using the include or import tag)
in the main schema document or any of the already added secondary schema
documents:

add xmlschema document to <relation id of main schema> add <document
URI> from <location URI> with <property URI>
62 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

3. Complete the registration using:

complete xmlschema <relational id of main schema> with <property
URI> enable decomposition.

The complete XMLschema command throws an error in the case where all the
schema documents referenced in the primary or secondary schema documents
are not added to the main schema. For the include tag, the namespace of the
primary schema and the included schema should be the same. For the import
tag, it is different and should be mentioned in the add xmlschema command.

All the three steps can be combined in one command, register xmlschema, by
adding the add and complete clause.

Example 2-6 gives the schema example for the REVIEW column in the
MOVIEREVIEW table.

Example 2-6 Schema for review column

<?xml version="1.0"?>
<xs:schema targetNamespace="http://movies.org"
xmlns:xd="http://movies.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:complexType name="userreview">

 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="userreviewtype">
 <xs:sequence>
 <xs:element name="user" type="xd:userreview" minOccurs="1"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="criticsreviewtype">
 <xs:sequence>
 <xs:element name="newspaper" type="xd:userreview"
minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="reviewtype">
 Chapter 2. Application development with DB2 pureXML 63

 <xs:sequence>
 <xs:element name="UserReview" type="xd:userreviewtype"/>
 <xs:element name="CriticsReview" type="xd:criticsreviewtype"/>

 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="movietype">
 <xs:sequence>

<xs:element name="reviews" type="xd:reviewtype"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:integer"/>
 </xs:complexType>

 <xs:element name="movie" type="xd:movietype"/>
</xs:schema>

Example 2-7 gives the command to register this schema to the database.
Because we are not importing any schema within the main schema shown in
Example 2-6 on page 63, there is no need to use the add xmlschema CLP
command.

Example 2-7 Registering schema

register xmlschema http://movies.org from review.xsd as review
complete xmlschema review

Registration using stored procedures
You cannot use CLP commands in the higher programming languages. To
register an XML schema using an application program in one of the higher
programming languages, DB2 provides three stored procedures equivalent to
the three CLP commands:

� SYSPROC.XSR_REGISTER

This stored procedure can be used to register the primary XML schema:

XSR_REGISTER(rschema, name, schemalocation, content, docproperty)

The terms in the command are explained as follows:

– rschema: Relational schema name for the XML schema. This parameter is
of the type VARCHAR(128). NULL value for this argument specifies the
CURRENT SCHEMA.

– name: Relational identifier for the XML schema. This parameter is of the
type VARCHAR(128). The fully qualified name for the schema ID
becomes rschema.name.
64 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

– schemalocation: Namespace of the primary XML schema. This parameter
is of the type VARCHAR(1000).

– content: Content of the XML schema document. This parameter is of the
type BLOB(30M). This is a non-nullable parameter.

– docproperty: Content of the property document associated with the
schema. This parameter is of the type BLOB(5M).

� SYSPROC.XSR_ADDSCHEMADOC

Use this stored procedure to add the XML Schema documents to the primary
schema:

XSR_ADDSCHEMADOC (rschema, name, schemalocation, content,
docproperty)

The explanations for the terms in the command are:

– rschema: Relational schema for XML schema

– name: Relational Schema name for primary XML schema

– schemalocation: Namespace for the XML Document

– content: Content of the XML document as a BLOB variable

– docproperty: Property document associated with the XML schema
document

� SYSPROC.XSR_COMPLETE

Use this procedure to complete the registration:

XSR_COMPLETE(rschema, name, schemaproperty, isusedforshred)

The terms in the command are explained as follows:

– rschema: Relational schema for the XML schema.

– name: Relational identifier of the primary XML schema.

– schemaproperty: An input argument of type BLOB (5M) that specifies
properties, if any, associated with the XML schema. The value for this
argument is either NULL, if there are no associated properties, or an XML
document representing the properties for the XML schema.

– isusedforshred: The value for this parameter is true if the schema is used
for decomposition, otherwise, the value is false.

2.2.7 Annotated XML schema decomposition

XML decomposition or shredding is the process of breaking down an XML
document into columns of relational tables. Consider that your organization can
have an existing relational database repository and business applications built on
 Chapter 2. Application development with DB2 pureXML 65

top of this data, and you want to capture new data coming as XML and use it with
existing applications. Consider another case of a need to shred XML documents
conforming to different XML schemas in a single relational table. Using the new
XML decomposition feature of DB2 Express-C V9 is the right choice for both of
these situations.

XML decomposition
XML decomposition can be helpful because:

� It can break one large XML document into fragments that can be stored in
column types such as XML, CLOB, VARCHAR, BLOB, and so on.

� It can shred multiple items into the same tables-column pair.

� It can automatically detect one-to-many relationships between columns
mapped to the same table.

� It performs type conversions from an XML schema type to DB2 type.

� It can validate during shredding.

� It can specify custom expression on contents before insertion.

� It can specify path conditions, for example, shred only if the element is in
path /a/b.

� It can specify conditions on tuples.

Performing decomposition
To decompose an XML data, follow these steps:

1. Create the tables (relational schema) into which you decompose the XML
data.

2. Annotate your XML Schema with mapping information:

– Annotate manually.
– Use DB2 Developer Workbench.
– Migrate existing DADs to Annotated XML Schema using tool.

3. Register it in the XML Schema Repository via a CLP command.

REGISTER XMLSCHEMA ’http://myOrderSchema/order.xsd’ FROM
’file://c:/temp/order.xsd’ AS user1.myOrderSchema COMPLETE ENABLE
DECOMPOSITION

4. Register via the stored procedure.

a. Set the value of the “isusedforshred” to true.

5. Register via the JDBC function.

6. Decompose XML documents via the CLP command.
66 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

DECOMPOSE XML DOCUMENT c:\mydoc.xml XMLSCHEMA john.myschema

7. Decompose documents by calling the stored procedure.

Choose SP depending on the size of the document to be shredded:

< 1 MB, < 10 MB, <25 MB, 50 MB, <75 MB, < 100 MB
XDBDECOMPXML
XDBDECOMPXML10MB
XDBDECOMPXML25MB
XDBDECOMPXML50MB
XDBDECOMPXML75MB
XDBDECOMPXML100MB

We recommend the new Annotated schema decomposition feature of DB2 9
over the old XML Extender shipped with previous releases of DB2 because the
new technique is much faster if XML schema is used, and it has more mapping
constructs and other features. However, if you use old XML Extender to map and
shred documents into DB2, you might be interested in a migration document
published on the IBM developerWorks® Web site:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0604pradha
n/

This article also provides DAD mapping techniques and a schema conversion
utility. The DAD to annotated XML schema converter utility helps users convert
their XML schemas to annotated XML schemas based on the mapping rules
described in the DAD. The XML schema and DAD must describe the same set of
XML documents, although it is possible and acceptable that the XML schema
can describe a super set of documents described by the DAD. Users who do not
have an XML schema can easily generate XML schemas from corresponding
DTDs and even XML documents by using tools available freely on the Internet.
The DAD to annotated XML schema converter tool can then take the XML
schema and the DAD as input to produce an annotated XML schema.

The tool supports import, include, and redefine construct of the XML schema. In
other words, if an XML schema is spread across many XML schema documents
through import, include, or redefine, only the path for the primary schema
document, the document through which all XML schema documents can be

Tip: The tables and columns must preexist before the annotated XML schema
is enabled for decomposition. All missing objects (tables or columns) to which
the XML schema refers are reported as errors. Also the CLP command
automatically calls the correctly sized stored procedure depending on the size
of the XML document. If a stored procedure with 100 MB is called for
documents smaller than 1 MB, then the application’s performance might be
adversely affected due to high memory consumption.
 Chapter 2. Application development with DB2 pureXML 67

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan/

reached through either import, include, or redefine, is needed. The tool
annotates element or attribute declarations across schema documents. Note that
since DADs do not support namespaces, it is impossible to have the use of an
import construct in this scenario.

For more information about different annotation techniques for the new XML
decomposition, refer to DB2 XML Guide, SC10-4254.

2.2.8 XML query support

For querying XML values, DB2 supports XQuery language, which you can use in
conjunction with SQL to retrieve data from the XML columns. So, along with the
SQL interface, DB2 provides another interface, XQuery, to query the XML
values. These interfaces interact with each other using SQL or XML functions.
Using these functions, XQuery can be embedded into an SQL statement to fetch
the part of the XML document from each row of the SQL statement result.

To apply the pure XQuery on a sequence of XML documents fetched from the
database, DB2 provides resource functions to fetch the XML values.

This section discusses the following:

� Functions used to embed SQL statement in an XQuery (XML source
functions for XQuery)

� Writing XQuery

� Function used to embed XQuery statements in SQL (SQL or XML functions)

XML source function
DB2 XQuery can be applied either on the data stored in the XML column of the
tables or an XML-created document using the constructor functions. For applying
XQuery on XML column data, XML values must be fetched from the column to
create a sequence of XML values. DB2 provides the following function to create
a sequence of XML values by fetching the data from XML columns.

xmlcolumn
The xmlcolumn function takes the qualified name of the XML column and returns
the sequence of XML documents stored in the XML column.

The syntax for the xmlcolumn function is:

db2-fn:xmlcolumn(‘<schema name>.<table name>.<column name>’);

Default value for the schema is the current schema.
68 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 2-8 gives the example for an xmlcolumn applied on the info column of
the movie table.

Example 2-8 xmlcolumn applied on info column of the movie table

xquery db2-fn:xmlcolumn('MOVIES.INFO')

sqlquery
Instead of querying all the XML values in an XML column (as in the case of
xmlcolumn functions), we can only query a set of XML values based on a
condition in a SELECT statement using the sqlquery function, for example,
querying only the information regarding the movie with ID value 123. For this
purpose, the sqlquery function provides you with the option to give the SQL full
select as an input to the function instead of just the column name. If you give the
full select as an input to this function, you should select XML values only. The
function returns the concatenation of all the values selected by the full select.

Example 2-9 shows how to use the sqlquery functions to select the XML values.

Example 2-9 sqlquery

xquery db2-fn:sqlquery('select info from movies where id=123')

Writing XQuery
The XQuery language queries the XML data. XQuery works on a sequence of
XML documents generated by either using the resource functions.constructor
function or created as an intermediate result of another XQuery. Use XQuery,
along with SQL/XML functions, to query the XML documents stored in the DB2 9
database.

Tip: DB2 is case insensitive and treats all the table and column names in
capital letters while XML and XQuery are case sensitive. The resource
functions previously discussed are XQuery interface functions so all the table
names and column names should be passed to these functions using capital
characters or letters. Passing the object names in lower case letters can result
in an undefined object name error.

Tip: xmlcolumn and sqlquery are xquery interface functions and are case
sensitive. Trying to use these functions in upper case letters results in an
error.
 Chapter 2. Application development with DB2 pureXML 69

Paths and predicates
XQuery queries the XML data based on the path of the nodes in the XML
hierarchical structure. The nodes in the XML document relate to each other. The
relationships that are supported between two nodes are:

� Child
� Attribute
� Descendant
� Parent
� Self
� Descendant or self

You can query an XML node based on these relationships by providing the path
of the node in the XML value.

Example 2-10 shows a small query, which select all movies from the
MOVIES.INFO table. A path based on the previous relationship is used to reach
the title node in the XML value.

Example 2-10 Axis and path in XQuery

xquery db2-fn:xmlcolumn('MOVIES.INFO'))/movie/heading/title

The forward slash (/) in the query indicates the next step in the path followed by
the axis (relationship) to move and the node name.

The query in Example 2-10 uses the relationship name to indicate the next step
or direction in the path. This format is called the abbreviated version. There is
also the unabbreviated format, which uses the name of the relationship to
indicate the next step. Table 2-3 compares the syntax between the unabbreviated
and abbreviated formats. The abbreviated format that is defined for each
relationship reduces the size of the query and is the commonly used format.

Table 2-3 Abbreviated and unabbreviated syntax

Abbreviated syntax Unabbreviated syntax

dept
/dept/emp

child::dept
/child::dept/child::emp

/@id
/department/emp/@id

/attribute::id
/child::department/child::emp/attribute::id

//name
/child::dept//name

/descendant::name
/child::dept/descendant::name
70 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

So the default axis is the child axis. The attribute axis can be represented by the
at sign (@). Similarly, the descendant axis can be represented by two forward
slashes (//).

You can filter the values selected by the path in the Query by a condition in the
same way we filter the value using the WHERE clause of the SELECT
statement. You do this by using the predicate in XQuery. Let us select all the
US-based movies from our movies database. Example 2-11 gives you the query
to get the required result.

Example 2-11 Predicate in XQuery

xquery
db2-fn:xmlcolumn('MOVIES.INFO')/movie[movie-details/country='US']/headi
ng/title

The predicate in an XPath starts with a bracket ([) and ends with the closing
bracket (]). A predicate is evaluated for the given condition and returns true if it
satisfies the condition. The nodes for which the predicate returns true are
returned as a result of the current step. The predicate can start from the root
node or from the relative path with respect to the current node. Putting (/) at the
start of the predicate makes it start from the root node. A predicate can go up to
any level in the XML value using the paths and return back to the original node
after evaluating the condition. The following comparison expressions are
supported in the predicate:

� Value comparison (ne, eq, gt, ge, lt, le)

These operators are used to compare the values of the same data types. For
example:

A ne B

A and B should be of the same data type.

� General comparison (!=, =, >, <, <=, >=)

These operators are used to compare the sequence. If any of the sequence
members satisfy the operator with the corresponding value in the other
sequence, the operator returns true:

– (1,2)=(2,3) returns true.
– (1,2)=(3,4) returns false.

Similarly:

– (1,2)!=(2,3) returns true because at least one set is satisfying the
operator.

– (1,1)!=(1,1) returns false.

Apart from these, you can use the logical operators AND and OR.
 Chapter 2. Application development with DB2 pureXML 71

Constructors and FLWOR expressions
DB2 XQuery allows us to create our own XML structure from the existing XML
values. To do so, it allows XML style constructors to create the XML document.

Example 2-12 shows a simple query that will get all of the five star movie titles
(with rating as “*****”) from the table and put into a new tag movie-list.

Example 2-12 Constructors in XQuery

xquery <movie-list rating='*****'>
{db2-fn:xmlcolumn('MOVIES.INFO')/movie/heading[rating='*****']/ti
tle} </movie-list>

DB2 supports FLWOR expressions to allow you more flexibility to restructure the
existing XML values. FLWOR means for, let, where, order by, and return.

FLWOR expression syntax is:

FLWORExpr ::= (ForClause | LetClause)+ WhereClause? OrderByClause?
"return" ExprSingle

The for and let clauses in a FLWOR expression generate an ordered sequence
of tuples of bound variables. While for iterates over the different values in the
sequence, the let clause makes one binding with the value of full sequence.

The optional where clause serves to filter the tuple stream, retaining some tuples
and discarding others.

Use the optional order by clause to reorder the tuple stream.

The return clause constructs the result of the FLWOR expression. The return
clause is evaluated once for every tuple in the tuple stream, after filtering by the
where clause and ordered by order by clause, using the variable bindings in the
respective tuples.

Tip: When putting an XQuery inside the XML tag, enclose it in braces ({}) to
indicate that DB2 puts the result of the XQuery in the output; otherwise, DB2
takes the XQuery as a normal string and we see the normal XQuery text in the
output.
72 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 2-13 shows a simple FLWOR expression, which selects the five star
(rating is “*****”) movie’s name.

Example 2-13 Using FLWOR expression

xquery for $i in db2-fn:xmlcolumn("MOVIES.INFO")/movie/heading where
$i/rating="*****" return $i/title @

You can nest the for and let clauses of the FLWOR expression to any level. The
nesting of these clauses lets us combine different parts of the XML value.

Example 2-14 shows the nesting of these clauses in conjunction with the
constructors. The query selects the movies based on their MPAA rating,
MPAArating.

Example 2-14 Nesting FLOWOR expression

xquery for $ratings in
fn:distinct-values(db2-fn:xmlcolumn("MOVIES.INFO")/movie/movie-details/
MPAArating)
let $title:=db2-fn:xmlcolumn("MOVIES.INFO")/movie[movie-details/
MPAArating=$ratings]/heading/title
return <rating type='{$ratings}'>
{$title}
</rating>

Use the order by clause to order the tuples based on the path expression. These
ordered tuples are then processed by the return clause.

Example 2-15 gives an example of the order by clause. The query selects the
movie name with the production studio order by the rating and the year of
production.

Example 2-15 Using order by clause

xquery for $i in db2-fn:xmlcolumn("MOVIES.INFO")/movie order by
$i/movie-details/year
return
<movie>
{$i/heading/title}
{$i/movie-details/production/studio}
</movie>;

Tip: When nesting the for and let clauses, keep in mind that the for clause
creates one binding for each XML value in the sequence, and the let clause
creates only one binding for the full sequence.
 Chapter 2. Application development with DB2 pureXML 73

The FLWOR expression can be used to join XML values from different columns,
too. Example 2-16 gives an example query, which selects the reviews from the
MOVIEREVIEW table for all the movies from RR Pictures production.

Example 2-16 Joining two XML column values

Xquery for $id in
db2-fn:xmlcolumn('MOVIES.INFO')/movie[movie-details/production='RR
Pictures']/@id
let
$title:=db2-fn:xmlcolumn('MOVIES.INFO')/movie[@id=$id]/heading/title
 return
 <movie title = '{$title}'>
 {

for $review in
db2-fn:xmlcolumn('MOVIEREVIEW.REVIEW')/movie[@id=$id]/reviews
 return $review
 }
</movie>@

SQL/XML functions
The XQuery and SQL interfaces interact with each other using SQL/XML
functions. Use these functions to embed the XQuery in the SQL/XML statement
or SQL in the XQuery statement.

xmlquery function
You typically use this function in the column list of the SELECT statement to
select a part of the document instead of the full value. This function is useful
when you need to select the part of the XML value based on the condition on a
rational column. Another significant advantage of this function is that it allows
passing the relational column to the XQuery via its passing by clause. The table
name for the column, to which the passing by clause refers, should be present in
the FROM clause of the SELECT query.

Example 2-17 on page 74 gives an example for xmlquery function. The function
selects the movie title with id=123.

Example 2-17 Using xmlquery function

select xmlquery('$d/movie/heading/title' passing movies.info as "d")
from movies where id=123

xmlquery function returns the single XML value for each row selected by the
SELECT statement. The result of the xmlquery function should be a single XML
74 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

value per row of the result set (xmlquery function throws an error when the result
is a sequence of XML values for a single row in the result set).

xmltable function
Use this function generally in the FROM clause of the SELECT statement to
create a table from the XML value. Similar to the xmlquery function, you can use
the passing by clause here to pass any XML value or relational value to the
function.

Example 2-18 shows an example that uses the xmltable function to create the
relational table.

Example 2-18 Creating relational table using xmltable

select movie, writer, director from movies,
xmltable('$d/movie' passing movies.info as "d"

columns
movie varchar(20) PATH './heading/title',
writer varchar(50) PATH './credits/writer',
director varchar(50) PATH './credits/director'

) as T;

The xmltable function is useful when you want to move the data from an XML
document to the relational table and you do not have the schema for the
documents (or when you do not have annotated schema to do the same).

xmlexists predicate
xmlexists tests whether an XQuery expression returns a sequence of one or
more items. xmlexists is similar to the xmlquery function except the return type.
When xmlquery function returns the XML value, xmlexists returns the Boolean
value. It returns true if the result of the xquery used in the function is not empty,

Tip: Use xmlcolumn and sqlquery resource functions inside the xmlquery
function. But because these functions are applied to all the rows to
concatenate the values first before applying the xquery path expression, the
result of the xmlquery function might remain the same for all the rows selected
by the SELECT clause.

To apply the XQuery on each individual row selected by the SELECT
statement separately, use the passing by clause. The passing by clause
passes the XML column value to the xquery for each row and returns the
value along with other column values selected. All the tables to which the
passing by clause refers should be there in the FROM clause of the SELECT
statement.
 Chapter 2. Application development with DB2 pureXML 75

otherwise, it returns false. xmlexists also uses the passing by clause to pass the
relational and XML column to the xquery and is useful when the filter condition is
based on the comparison of the relational column with the XML node value.
xmlexists is generally used in the WHERE clause of the SELECT statement.

Example 2-19 shows you a query, which returns the IDs for all the movies with
genres Drama, Romance, and Remake.

Example 2-19 Using xmlexists

select id from movies where
xmlexists('$movie/movie/movie-details[genres="Drama, Romance and
Remake"]' passing movies.info as "movie")@

Use xmlexists in conjuction with the xmlquery function to select the part of the
XML document based on a comparison between a node value and relation
column value.

Example 2-20 shows you a query, which selects the movie name and the
corresponding reviews as two separate columns of the result set.

Example 2-20 Using xmlexists in conjuction with xmlquery

select xmlquery('$d/movie/heading/title' passing movies.info as "d"),
xmlquery('$d/movie/reviews' passing moviereview.review as "d") from
moviereview, movies where
xmlexists('$d/movie[@id=$p]' passing moviereview.review as "d",
movies.id as "p")

xmlcast function
The xmlcast function is used to cast the XML value to other relational data types.
It is equivalent to the existing cast function for relational data. xmlcast first
resolves the XML value to an XQuery atomic data type and then does the
conversion to the relational data type. Example 2-21 shows the usage of the
xmlcast function. The resulting columns in Example 2-20 are of XML type. Using
xmlcast function, the values can be casted to other data types.

Example 2-21 Using xmlcast

select xmlcast(xmlquery('$d/movie/heading/title' passing movies.info as
"d") as varchar(20)),
xmlcast(xmlquery('$d/movie/reviews' passing moviereview.review as "d")
as varchar(1000)) from moviereview, movies where
xmlexists('$d/movie[@id=$p]' passing moviereview.review as "d",
movies.id as "p");
76 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

xmlcast might throw an error if it is not possible to cast an XML value to the target
data type.

2.2.9 Constructor function (publishing functions)

An XML value to be inserted into the XML type column can either be retrieved
from the application or can be created from the other relational columns. DB2
provides publishing functions to create a new XML value from the existing
relational columns.

Functions provided by DB2 to create a single node for an XML value include:

� XMLELEMENT

XMLELEMENT function can be used to create a new element node for an
XML value. This function takes inputs, the name of the element, any attribute
or namespace declaration, and the value of the node. The value of the node
can be a complex type (concatenation of other elements) or a value of a
relational column.

� XMLATTRIBUTES

XMLATTRIBUTES function is used to create the attributes of an element
node. Because an attribute is always tied with the element, this function can
be used only inside the XMLELEMENT function to create the attribute. This
function takes input, the name of the attribute, and the value (any relational
column).

� XMLNAMESPACE

XMLNAMESPACE is used to declare a namespace for an XML value.

� XMLCOMMENT

XMLCOMMENT function is used to create the comment node for the XML
value. As a comment node can occur anywhere in the XML document, this
function can be used anywhere to create the comment node.

� XMLDOCUMENT

XMLDOCUMENT function creates a document node for an XML value. Each
XML value stored in the XML column must have a document node. A
document node is associated with the XML value with a single root node. It is
a logical way of making sure that the XML value has a single root node and
not a sequence of XML nodes.

� XMLPI

XMLPI function creates a processing instruction node for the XML value.
 Chapter 2. Application development with DB2 pureXML 77

� XMLTEXT

XMLTEXT function can be used to create a text node in an XML value. The
input to this function is the value of the text node.

Functions to concatenate or aggregate more than one node include:

� XMLCONCAT

XMLCONCAT function concatenates the multiple XML nodes and returns the
sequence of the nodes as a result. XMLCONCAT is a scalar function and only
returns one XML value per row of the input expression. It takes only the
existing XML value or column as input.

� XMLFOREST

XMLFOREST function creates a new list of element nodes. It takes the values
of any data type as input and creates an element for each value given.

� XMLAGG

XMLAGG is an aggregate function. It takes a set of rows of XML values and
produces a single XML result.

Example 2-22 shows how to use these functions to create an XML value from
relational and XML columns. The example combines the information and reviews
for a movie in a single XML value.

Example 2-22 Using publishing functions

select XMLELEMENT(NAME "moviereview",
XMLCONCAT(movies.info,
XMLELEMENT(NAME "reviews",XMLATTRIBUTES

(moviereview.reviewid as "id"),
XMLCONCAT(T.UserReview, T.CriticsReview))))

from movies, moviereview,xmltable('$d/movie/reviews' passing
moviereview.review as "d"

columns
UserReview XML PATH './UserReview',
CriticsReview XML PATH './CriticsReview') as T

where XMLEXISTS('$d/movie[@id=$id]' passing movies.id as
"id",moviereview.review as "d")
78 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

2.2.10 XML indexing

Indexes over XML data can improve the performance of queries on XML
columns. Similar to relational index, an XML index over XML data indexes an
entire column; however, there are some externally visible differences between
relational indexes and XML indexes as follows:

� Indexes are created on columns of type XML based on path expressions
(xmlpattern): a subset of XPath that does not contain predicates among other
things.

� When creating an index, it is possible to specify what paths to index and what
types. Use the type that you want to use in your queries.

� You can only index on a single XML column, composite indexes are not
allowed at this time. Elements and attributes inside the document frequently
used in predicates and cross-document joins can be indexed.

� If a node matches the xmlpattern but fails to cast to the specified index type,
then no index entry is created for the node without raising an error.

� There could be zero, one, or multiple index entries per document (row) based
on how many nodes match an xmlpattern.

� A single document can contain zero, one, or multiple nodes that match the
xmlpattern. Thus, there can be zero, one, or multiple index entries for a single
row in a table (significantly different than indexes on relational columns).

� Any nodes that match the path expression or the set of path expressions in
XML that is stored in that column are indexed, and the index points to the
node in storage that is linked to its parent and children for fast navigation.

XML values index
XML values index is a new type of index that can be created when users want
efficient evaluation of xmlpattern expressions to improve performance during
queries on XML documents. Unlike the traditional relational indexes where index
keys are composed of one or more table columns specified by the user, the XML
values index uses a particular XML pattern expression to index paths and values
in XML documents stored in a single XML column.

You can also refer to an IBM white paper about XML indexing at the following
Web site:

http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers
+and+Articles
 Chapter 2. Application development with DB2 pureXML 79

http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles
http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles
http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles
http://www.ibm.com/developerworks/wikis/display/db2xml/Technical+Papers+and+Articles

The following example shows the statement to create an XML index on XML
data, which defines an index on all movie titles in all documents in the XML
column movieDetails as shown:

CREATE INDEX title_idx on movies(moviedetails) generate key using
xmlpattern '/movie/title' as sql varchar(50);

The xmlpattern is a path, which identifies the XML nodes to be indexed. It is
called xmlpattern and not xpath because only a subset of the XPath language is
allowed in index definitions. (Wildcards //,*, and namespaces are allowed, but
XPath predicates such as /a/b[c=5] are not supported).

Since we do not require a single XML schema for all documents in an XML
column, DB2 might not know which data type to use in the index for a given
xmlpattern. Thus, you must specify the data type explicitly in the as sql <type>
clause. The following types can be used:

� VARCHAR(n)

For nodes with values of a known maximum length.

� VARCHAR HASHED

For nodes with values of arbitrary length. In this case, the index contains hash
values of the actual strings. Such an index can be used for equality
predicates but not for range predicates.

The length of the data type VARCHAR specified when creating the index on
an XML node value imposes a restriction on the length of the node value for
XML data, which can be inserted into the table.

For example, if the index is created on a node with the data type as
VARCHAR(5), inserting the XML data with the same node value with more
than 5 characters throws an error.

� DOUBLE

For nodes with any numeric type.

� DATE and TIMESTAMP

For nodes with corresponding XML values.

Tip: Creating an index with the data type VARCHAR HASHED does not
impose any restriction on the node value.
80 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

The following example defines a unique index on all movie ID attributes.
Uniqueness is enforced within a document and across all documents in the XML
column:

CREATE UNIQUE INDEX movie_id on movies(movieDetails) generate key using
xmlpattern '/movie/@id' atomic as sql double;

If an index definition contains the /text() in the XMLPATTERN as shown in the
following example, then the query must also use the /text() in the predicate or the
index does not match and cannot be used. Likewise, if the index definition does
not contain the /text() in the XMLPATTERN, then the query should not use the
/text() in the predicate. See the following example:

CREATE INDEX ratingidx on movies(movieDetails) generate key using
xmlpattern '/movie/movie-details/MPAARating/text()' atomic as sql
varchar(5)

XML full-text indexes
DB2 9 provides text search capability on both relational and XML data through
Net Search Extender (NSE). NSE is enabled to support the new XML data type
in DB2. You can follow the steps we outline to enable and use full text search
with XML data:

1. The database itself needs to be enabled for full text search capability using
the following command:

db2text enable database for text connect to dbname;

2. Create the full text index using the default or custom document model. A
document model specifies a model for parsing and indexing structured
documents of format HTML or XML:

db2text create index movietext for text on movies(movieDetails)
connect to dbname; (OR)
db2text create index movietext for text on movies(movieDetails)
format XML documentmodel XMLModel in file connect to dbname;

Specifying a model file allows you to limit indexing and search to subparts of the
documents. Remember, full text search is not ready to use until the index is
updated:

db2text update index movietext for text connect to dbname;

After creating and updating the text index the first time, the index needs to be
kept up-to-date; that is, you must keep the content of the index in sync with the
content of the base table. Indexes can be manually or automatically updated.
 Chapter 2. Application development with DB2 pureXML 81

You can set an automatic update frequency for text indexes based on either or
both the time of update and the minimum number of changes picked up from the
log table (incremental changes are stored in the log table):

db2text ALTER INDEX movietext FOR TEXT UPDATE FREQUENCY d(1,2,3,4,5)
h(12,15) m(00) UPDATE MINIMUM 100

There are three types of full-text search supported by NSE:

� SQL scalar search function: SQL function for general text search application.

� SQL table-valued function: This supports general text search on presorted
indexes and views.

� Text search stored procedure: This can be used for a high performance
dedicated text search.

Among these three methods, we recommend SQL scalar function search for
your search method and it is useful for most situations. You can integrate SQL
search functions with DB2 optimizer for excellent performance where JOIN of
data is needed. The basic syntax is:

SELECT column FROM table WHERE CONTAINS(column-name,
‘search-criteria’)=1

The following query exploits the index created in step 2 previously but restricts it
to a specific element. The query retrieves all documents where the element
/movie/movie-details/genres contains the word Comedy:

select movieDetails from movies where contains(movieDetails, ‘sections
(“/movie/movie-details/genres”) “Comedy”’) =1

The following example shows the use of full-text search function with xquery:

for $i in db2-fn:sqlquery(‘
SELECT movieDetails FROM movies
WHERE CONTAINS(‘movieDetails,
SECTION(“movie/title") “Dupree”)=1’)//movie/title

return $i

The following example shows the use of full-text search function with SQL or
XML:

SELECT XMLQUERY('$t//movie/title' PASSING T.TITLE AS \"t\")
FROM movies AS t
WHERE CONTAINS(‘movieDetails,
SECTION(“movie/title") “Dupree”)=1

To summarize, DB2 full-text search can help your application find relevant data
based on structural and full-text search parameters. You can create and maintain
82 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

the text indexes easily either using command line tools or through DB2 control
center.

2.2.11 Application support (interfaces)

The new XML data type requires existing application interfaces to recognize it.
The major database programming interfaces, including Java and PHP, have
been enabled and optimized to make use of DB2 XML data type. The XML is
stored natively in pure hierarchical form; however, the data type has been
externalized to the application interfaces as a serialized XML string. By default,
all XML data accessed through the application interfaces is returned with an XML
declaration, including an encoding attribute. The application can override this
default code set if required. All of the major database interfaces support the XML
data type as XML, not as a character type. This also avoids unwanted and
unnecessary code page conversion. In this section, we briefly discuss various
database programming interfaces supported by XML. This book is all about
application development using various interfaces, so you can select a chapter of
your interest for further reading.

JDBC
.JDBC or Java database connectivity layer has been enhanced to make XML
data compatible with strings, byte arrays, and streams, so that columns and
parameters can be bound to any of these types. Standardizing a JDBC XML type
is a work in progress, but a proprietary XML type com.ibm.db2.DB2Xml is
available right now. This interface provides a number of methods that make
application development with XML easy. Look at the code in Example 2-23.

Example 2-23 JDBC with XML

String sql = "SELECT ID, MOVIEDETAILS from MOVIES where ID = ?";
PreparedStatement stmt = connection.prepareStatement(sql);
stmt.setString(1, "345”);
ResultSet resultSet = stmt.executeQuery();
String xml = resultSet.getString("MOVIEDETAILS"); // or
InputStream inputStream = resultSet.getBinaryStream("MOVIEDETAILS");
// or
Reader reader = resultSet.getCharacterStream("MOVIEDETAILS"); // or
DB2Xml db2xml = (DB2Xml) resultSet.getObject("MOVIEDETAILS");
 Chapter 2. Application development with DB2 pureXML 83

As you can see, the API provides various convenience methods to retrieve XML
data, so that the application can process it as desired. Here is a list of DB2Xml
methods for the JDBC API and a short description of their usage:

� getDB2String():

Retrieves the value of the designated column in the current row of this
ResultSet object as a string.

� getDB2XmlString():

Retrieves the value of the designated column in the current row of this
ResultSet object as a string with added XML declaration with encoding tag
ISO-10646-UCS-2.

� getDB2Bytes():

Retrieves the value of the designated column in the current row of this
ResultSet object as UTF-8 encoded bytes.

� getDB2XmlBytes(String targetEncoding):

Retrieves the value of the designated column in the current row of this
ResultSet object as a byte array with the XML declaration with encoding tag.

� getDB2AsciiStream():

Retrieves the value of the designated column in the current row of this
ResultSet object as a stream of ASCII characters.

� getDB2XmlAsciiStream():

Retrieves the value of the designated column in the current row of this
ResultSet object as a stream of ASCII characters with encoding tag.

� getDB2CharacterStream():

Retrieves the value of the designated column in the current row of this
ResultSet object as a java.io.Reader object.

� getDB2XmlCharacterStream():

Retrieves the value of the designated column in the current row of this
ResultSet object as a java.io.Reader object with XML declaration with
encoding tag ISO-10646-UCS-2.

� getDB2BinaryStream():

Retrieves the value of the designated column in the current row of this
ResultSet object as a UTF-8 encoded binary stream.

� getDB2XmlBinaryStream(String targetEncoding):

Retrieves the value of the designated column in the current row of this
ResultSet object as a binary stream. The driver converts the bytes to the
targetEncoding and adds XML declaration with the encoding tag.
84 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

All XML APIs supported by Java language, including SAX (Simple API for XML),
DOM (Document Object Model), and StAX (Streaming API for XML) are
discussed in detail in the Java chapter. You can also refer to the DB2 information
center for specific topics regarding application development with Java.

.NET data provider
The DB2 9 .NET interface supports the Microsoft .NET API and ADO.net data
access APIs thoroughly. There is a chapter about application development using
.NET in this book.

Call Level Interface
The DB2 Call Level Interface (CLI), a superset of ODBC, has been enhanced to
support XML by providing a new SQL type, SQL_XML. Because there is no
native XML type in C, the new SQL type can only be used in CLI/ODBC calls to
mark XML values as XML type. In all other ways, access to serialized XML string
data is identical to using a character array. The advantage is that the DB2 client
and sever know that this is XML data and can avoid unnecessary or unwanted
code page conversions. Example 2-24 shows how to retrieve and update XML
data using the CLI interface.

Example 2-24 Retrieving and updating XML data using CLI

char buf[10240];
integer length;
// retrieve XML
SQLExecute(hStmt, "Select movieDetails from movies where id = '345'",
SQL_NTS);
SQLBindCol(hStmt, 1, SQL_C_BINARY, buf, &length);
SQLFetch(hStmt);
SQLClose(hStmt);

// update as XML
SQLPrepare(hStmt, "update movies set movieDetails = ? where id =
'345'", SQL_NTS);
SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,

 SQL_XML, buf, &length);
SQLExecute(hStmt);

Please note that data is fetched and inserted as SQL_C_BINARY.

Embedded SQL interface
The SQL standard defines new host variable declarations for XML types, and
DB2 is using this in its implementation. Example 2-25 on page 86 shows the
embedded SQL with XML.
 Chapter 2. Application development with DB2 pureXML 85

Example 2-25 Using XML in embedded SQL

EXEC SQL BEGIN DECLARE;
SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS CLOB(10K) clobBuf;

EXEC SQL END DECLARE SECTION;

// as XML
EXEC SQL SELECT movieDetails INTO :xmlBuf from movies where id = ‘345’;
EXEC SQL UPDATE movies SET movieDetails = :xmlBuf where id = ‘345’;

// as CLOB
EXEC SQL SELECT XMLSerialize(movieDetails) INTO :clobBuf from movies
where id = ‘345’;
EXEC SQL UPDATE movies SET movieDetails = XMLParse(:clobBuf) where id =
‘345’;

2.2.12 Utilities and XML support

In DB2 9, DB2 utilities and commands are modified for XML support.

XML import and export
IMPORT and EXPORT commands are updated for XML options. The IMPORT
and EXPORT command treats the XML value similar to the LOBs. Equivalent to
the LOB’s options LOBFILE, LOBS TO and LOBS FROM, XMLFILE, XML TO
and XML FROM options are added for the XML values. The only difference
between the LOBs and XML export is that unlike LOBS, an inline XML value in
the exported data file is not possible. So the XML values are exported to the
separate files always. Similar to LOB location specifier (LLS) for LOB data, an
XML data specifier (XDS) is introduced to define the XML value in data files. The
attributes of the XDS are FIL, OFF, LEN, and SCH, which we explain as follows:

� FIL

This attribute gives the file name where the XML values are exported.

� OFF

This attribute specifies the offset of the XML value in the file in case XML
values are concatenated in a single file.

� LEN

This attribute specifies the length of the XML value.

� SCH

For IMPORT, this attribute gives the XML schema relational name, which is
used to validate the XML schema while importing the data to the table. To
86 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

export this attribute, give the schema relational name, which was used to
validate this XML value when it was inserted.

IMPORT syntax
We explain the new options for the IMPORT command using the following
command:

IMPORT FROM export.del OF DEL XML FROM xmlpath MODIFIED BY XMLCHAR
XMLPARSE PRESERVE WHITESPACE XMLVALIDATE USING XDS DEFAULT SCHEMA_A,
IGNORE (SCHEMA_B, SCHEMA_C, SCHEMA_D) MAP ((SCHEMA_E, SCHEMA_F),
(SCHEMA_G, SCHEMA_H)) INSERT INTO T1

The explanations for the terms in the command are:

� XML FROM option

Specify one or more paths where the XML files are stored.

� MODIFIED BY XMLCHAR option

Specify that the XML data in the files is in application character code page.

� MODIFIED BY XMLGRAPHIC option

Specify that the XML data in the files are in application graphic code page.

� XMLPARSE option

Indicate that the whitespace in the XML values would be removed or not.
STRIP WHITESPACE removes the whitespaces and the PRESERVE
WHITEPACE option preserves the whitespaces in the XML value.

� XMLVALIDATE option

Specify how to validate the XML values before importing them in the table
column. There are three options to validate an XML value:

– XMLVALIDATE USING XDS option

Specify that the XML value is validated using XDS’s SCH attribute. Use
the DEFAULT clause of this option to specify the default schema name in
case XDS does not contain the SCH attribute. Use the IGNORE clause to
ignore some schemas. In case the SCH attribute value is any, the
schema mentioned in the IGNORE clause, validation is ignored and the
value is imported without any validation.

Use the MAP clause to map a schema to other schema. The MAP clause
has a set of schemas for each entry. If the SCH attribute value is any of
the schema mentioned in the first schema name in the set of schema
values in the MAP clause, the schema is mapped to the second schema
entry in the same set and the validation is done against the mapped
schema.
 Chapter 2. Application development with DB2 pureXML 87

– XMLVALIDATE USING SCHEMA option

Specify that the XML value should be validated against the schema
specified here. The SCH attribute is ignored in every case.

– XMLVALIDATE USING SCHEMALOCATION HINTS option

Specify that XML values are validated using the schemalocation hints
present in the XML value itself. The SCH attribute is ignored.

EXPORT syntax
We explain the new option for the EXPORT command using the following
command:

EXPORT TO export.del OF DEL XML TO /xmlpath XMLFILE xmldocs MODIFIED BY
XMLINSEPFILES XMLCHAR XMLSAVESCHEMA SELECT * FROM T1

The explanations of the terms in the command are:

� XML TO clause

This clause provides the paths where the XML data is stored. The default
value for this clause is the path where the data file is written. Multiple values
can be given for this clause. If the multiple values are provided, export will
cycle between the paths to write each column value to the appropriate XML
file.

� XMLFILE option

This option supplies the base name of the XML file where the XML values are
written.The default value for the base name is the name of the data file. The
full name of the file consists of the base name followed by a number, which is
padded to three digits and then the three letter identifier (XML). For the
previous command, the file name is xmldocs.001.xml.

Tip: For a particular row, you can only apply one of the DEFAULT,
IGNORE, or MAP clauses. The priority of these clauses is DEFAULT,
IGNORE, and MAP. This means that if the XDS does not contain the
SCH attribute, the schema in the DEFAULT clause is used and cannot
be further mapped or ignored. Similarly, a schema, which is already
mapped, cannot be ignored. It might be possible that the SCH attribute
for rows has the same value as the DEFAULT clause. In that case, the
schema can be ignored or mapped because the DEFAULT clause is
not applicable to that.
88 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� MODIFIED BY clause

Use this to change the behavior of exported files, and this is called a file type
modifier. We introduce the following new file type modifiers.

� MODIFIED BY XMLINSEPFILES option

This option specifies that the XML value for each column should be stored on
the separate files instead of storing it in a single file. By default, all the values
are concatenated in a single file. If you specify this option, a separate file
name is generated for each column to store the XML value. For the previous
command, the file names are xmldocs.001.xml, xmldocs.002.xml, and so on.

� MODIFIED BY XMLGRAPHIC option

This option specifies that the XML data should be written in the application
graphics code page.

� MODIFIED XMLCHAR

This option specifies that the XML data should be written in the application
character code page.

� MODIFIED BY XMLNODECLARATION

This option specifies that no XML declaration tag should be added to the XML
value. By default, every XML value written to the file has a declaration tag
with encoding information.

� XMLSAVESCHEMA

This option specifies that the schema name should be saved for all XML
columns. The fully qualified name of the schema is stored as XDS’s SCH
attribute.

XML RUNSTATS
The RUNSTATS command supports XML value and collects information regarding
the XML data in the tables and indexes created on an XML value. The RUNSTATS
command for an XML value runs in the same way it runs for the relational
columns. The XML column supports the following RUNSTATS commands:

RUNSTATS on table <schemaname.tablename>
RUNSTATS on table <schemaname.tablename> on columns <column list>
RUNSTATS on table <schemaname.tablename> on columns <column list> with
distribution on columns <column list>

RUNSTATS collects the information regarding the XML columns if either
RUNSTATS is run on the full table or the name of the XML column appears in
<column list>.
 Chapter 2. Application development with DB2 pureXML 89

2.2.13 XML type support in stored procedures

Stored procedures are enabled to accept the XML parameter values.

SQL stored procedures
In SQL, stored procedure parameters of type XML look just like the variables of
other data type.

Example 2-26 shows a simple SQL stored procedure, which takes three input
parameters. The first parameter is of XML type and the other two are of integer
type. The procedure checks if the ID value in the XML parameter review is equal
to the ID values passed as the argument ID. If yes, the procedure inserts the
review in the MOVIEREVIEW table with the review ID equal to the value of the
reviewid parameter.

Example 2-26 Stored procedure with XML data type input

create procedure proc1 (IN review XML, IN id int, IN reviewid int)
language SQL
BEGIN
DECLARE var1 XML;
if(XMLEXISTS('$x/movie[@id=$d]' passing review as "x", id as "d"))
then
insert into moviereview values(reviewid, review);
end if;
end

Example 2-27 calls the procedure that was created in Example 2-26.

Example 2-27 Call stored procedure passing XML parameter

call proc1(XMLPARSE(DOCUMENT('<movie id="111">
<reviews>
<UserReview>
<user name="Andy">Three is a crowd, yet there are not enough stars to support
this catastrophe.</user>
<user name="Linda">Three is a crowd, yet there are not enough stars to support
this catastrophe.</user>
</UserReview>
<CriticsReview>
<newspaper name="ABC Times">The best mystery thriller of the year. </newspaper>
<newspaper name="San Francisco Post"> The best mystery thriller of the year.
</newspaper>
</CriticsReview>
</reviews></movie>')),111,222)@
90 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Because XQuery does not support static cursors, in SQL stored procedures, it is
not possible to declare the cursor for the XQuery statement using the DECLARE
CURSOR statement, which means the following command gives an error.

DECLARE cur1 CURSOR for XQUERY

To create a cursor for an XQuery statement in an SQL stored procedure, do this:

DECLARE stmt_text VARCHAR (1024);
DECLARE stmt STATEMENT;
DECLARE cur1 CURSOR FOR stmt;
SET stmt_text = <xquery statement>;
PREPARE stmt FROM stmt_text;

XML type in external routine
You can use the XML data type in externally stored procedures and user defined
functions. You declare the parameters in the same manner that you declare the
host variable for the programming language used for the external routine. For
details about how to declare the host variables in different programming
languages, refer to 2.2.11, “Application support (interfaces)” on page 83.

Example 2-28 gives the command, which registers a stored procedure written in
C language.

Example 2-28 Registering a stored procedure

CREATE PROCEDURE proc2(IN review XML AS CLOB(2M), IN id int, IN
reviewid int)
LANGUAGE C
FENCED
PARAMETER STYLE SQL
PARAMETER CCSID UNICODE
EXTERNAL NAME 'proclib!proc1';

In external routines, you should serialize XML values before sending the value to
the user’s code. To avoid the code page conversion, XML values should be
passed in unicode format. To specify that, routines with the XML type parameter
should be declared as PARAMETER CCSID UNICODE.

C routines only support the XML AS CLOB type parameter.

For more details about how to handle XML variables, refer to the respective
chapter.
 Chapter 2. Application development with DB2 pureXML 91

92 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Chapter 3. Application development
with PHP

The PHP language has been a darling of the open source software development
community for years for reasons such as performance, the power of the
language itself, and ease of use. Now, PHP language with the frameworks being
built around it, seems to be ready for enterprise software development. This
chapter provides you concept and hands-on with Zend Framework for building
enterprise Web applications that require database and application integration
support. When deciding to build an On Demand1 Web application, there are
many products and technologies that you can use. In most of the cases, you
need to choose the following:

� Web server software
� An operating system
� A database management system
� A programming or scripting language

In this chapter, we do not address the hardware, operating system, or Web
server software much. In fact, we do not need to. One of the strengths of PHP is
that it is available on all of today’s popular operating systems, including many
versions of UNIX and Linux operating systems. Similarly, IBM’s flagship

3

1 An On Demand Business is an enterprise whose business processes, integrated end-to-end across
the company and with key partners, suppliers and customers, can respond with flexibility and
speed to customer demand, market opportunity, or external threat.
© Copyright IBM Corp. August 2006. All rights reserved. 93

database product, DB2, is also versatile and runs on Microsoft Windows, UNIX,
Solaris, and many flavors of Linux. We have used the two most popular and
widely used setups to showcase the application development steps in this
chapter:

� SUSE Linux Professional with Apache Web Server
� Microsoft Windows XP Professional using Apache Web Server

Irrespective of the Web server software and operating system you choose, you
should seriously consider using PHP with DB2 Express-C for the following
reasons:

� No charge

Both PHP and DB2 Express-C are free. You can download the latest versions
of DB2 Express-C and PHP from the following Web sites absolutely free of
charge:

– http://www.ibm.com/db2/express
– http://www.php.net

Alternatively, you can use Zend Core for IBM, which packages the Apache
Web Server, PHP libraries, and DB2 in one bundle. Currently, Zend Core
include DB2 V8.2, so we recommend that you install DB2 9 first and then try
to install Zend Core for IBM. Zend Core is supposed to find the DB2 already
installed on your system and use it unless you choose to replace it.
Remember that in order to take advantage of DB2 pureXML technologies and
the XCS (discussed in this chapter), you must use DB2 9. We expect that
Zend Core for IBM will be available with DB2 9 by the time this book is
published. Currently, Zend Core for IBM is available for free download at the
following Web site:

http://www.zend.com/products/zend_core/zend_core_for_ibm

� Ease of development

DB2 Express-C supports a full range of APIs for application development and
simplifies the server side development with stored procedures and SQL
functions. For PHP developers, DB2 Express-C comes bundled with Zend
Core for IBM, a seamless, ready to use, easy-to-use PHP development
environment.

� Support for XML

DB2 Express-C includes leading edge technology for storing, managing, and
searching XML data in a secure scalable environment. With its pureXML
technology, your PHP application makes use of standard XQUERY and
SQL/XML to build the latest applications.
94 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.ibm.com/db2/express
http://www.php.net
http://www.zend.com/products/zend_core/zend_core_for_ibm

� Performance

Both PHP and DB2 Express-C are very fast and efficient. PHP Web pages
can serve millions of hits per day using a single inexpensive server. DB2
Express-C is proven to be faster than its competition in most of the
application development scenarios.

� Portability

Both PHP and DB2 Express-C are available on many platforms. Your code
usually works without modifications on different systems that run PHP and
DB2.

� Information on demand

Information on demand is about getting the right information to the right
people at the right time to take advantage of the business opportunities. Both
PHP and DB2 Express-C are extremely flexible in supporting the varying
demand of business requirements. Also since Express C has been enabled to
tightly integrate with other IBM Express products, you can leverage this to
build scalable and resilient on demand solutions very quickly.

3.1 Application environment

In the true spirit of the open source movement, we decided to build our sample
application using Web Development Framework.

In software development, a framework is defined as a support structure in which
other software projects can be organized and developed. A framework might
include support programs, code libraries, a scripting language, or other software
to develop and glue together the different components of a software project.
 Chapter 3. Application development with PHP 95

Here are few examples of application development framework. You can find
more than 20 frameworks on the Web, written in PHP alone:

� Apache Cocoon and Apache Struts from Apache software foundation

� CakePHP, an open source framework written in PHP

� Zend Framework, an open source framework in PHP (preview release)

� Eclipse framework from Eclipse foundation

� .Net framework from Microsoft

� Ruby on Rails, an open source framework written in Ruby

� Net Beans, a Java-based Web application development framework by Sun
Microsystems™, Inc.

� Catalyst, an open source development framework written in Perl

� Django, an open source Web application framework written in Python

� Cocoa from Apple computer

Why framework?
A framework provides a skeleton on which you can build a software solution
using different components. A framework also allows developers to focus on
business logic and not the tedious part of software integration. Some people may
argue that using a framework can add code bloat (unnecessary long and slow
code) and also usually involves a steep learning curve. But the increasing
popularity of PHP for database-driven Web applications is enough good reason
for us to consider use of a framework for PHP development in this book. We
decided to use an open source framework called Zend Framework for PHP. We
divide this chapter into two parts.

Part I gives an overview of PHP application development using Zend Framework
preview release, followed by a sample database application using Zend DB
Adapter for access to DB2 Express-C.

Part II focuses on development of a PHP application using the new XCS (XML
Content Store) technology, which is part of Zend Framework. This section is also
followed by a sample, Social Network Application, which you can build and
deploy very quickly using XCS and new DB2 Express-C XML pureXML
technology.

Again, in the spirit of open source, we decided to use the Eclipse application
development environment (with a PHP plug-in) to write PHP code. Zend also
offers a trial version of its development environment called Zend Studio, but we
chose Eclipse because it is free and easy to use.
96 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

3.1.1 Zend Framework overview

The PHP language has been around for a long time, but it was not adopted in
large enterprise environments. It began as a scripting language and was
considered as a glue to integrate processes quickly and flexibly. PHP is also
popular for building database driven Web applications. With the development of
application development frameworks, PHP is well prepared for enterprise
applications because it should be capable of integrating components and
services in the enterprise. Zend Framework is this type of framework developed
by Zend and its partners for designing PHP5-based enterprise grade Web
applications quickly. The framework is based on MVC (Model-View-Controller)
architecture. The primary benefits of using a MVC architecture for your next Web
application are:

� The same enterprise data can be accessed using different views. It accesses
enterprise data through the model and specifies how that data should be
presented. It is the view's responsibility to maintain consistency in its
presentation when the model changes.

� The same enterprise data can be updated using different views.

� Core business logic is separated from the presentation layer and control
logic. The controller translates interactions with the view into actions for the
model to perform.

Zend Framework aims to provide an architecture for developing entire Web
applications with no other library dependencies. Zend and its partner companies
are committed to actively develop and support the framework code. Zend also
supports a community Wiki page as a developer zone. This Web site contains
recent committed code and also issues problem (bug) tracking and other
developer resources. Zend Framework also enforces a strict PHP coding
standard to maintain uniformity among the framework and application code.
Refer to the complete PHP coding standard at the Zend Web site:

http://framework.zend.com/manual/en/coding-standard.html
 Chapter 3. Application development with PHP 97

http://framework.zend.com/manual/en/coding-standard.html

The core of Zend Framework is the Zend_Controller. The Zend_Controller is
designed to be lightweight, modular, and extensible. The Zend_Controller
workflow is implemented by several components. Understanding the
underpinnings of all components is not necessary to build an application, but
knowing how they work and interact with each other is definitely helpful:

� Zend_Controller_Front

This component processes all the requests received by the server and is
responsible for delegating requests to action controllers.

� Zend_Controller_Router

This process takes the URI endpoint and decomposes it to determine which
controller and action of that controller should receive the request.

� Zend_Controller_Dispatcher

The dispatcher process takes the dispatcher token, finds the appropriate
controller, instantiates the controller class, and finally runs the action method
in that controller object.

In summary, this is how Zend_Controller works:

1. A request is received by Zend_Controller_Front, which in turn calls
Zend_Controller_Router to determine which controller (and action in that
controller) to dispatch.

2. Zend_Controller_Router decomposes the URI into a
Zend_Controller_Dispatcher_Token object that describes where to dispatch.

3. Zend_Controller_Front then enters a dispatch loop. It calls
Zend_Controller_Dispatcher, passing it the token, to dispatch to the actual
controller and action.

4. After the controller has finished, control returns to Zend_Controller_Front.

If the controller has indicated that another controller should be dispatched by
returning a new token, the loop continues and another dispatch is performed.
Otherwise, the process ends.

We discuss more about these objects whenever needed, but for now, let us go
through the setup required for using Zend Framework.
98 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

3.1.2 Setting up Zend Framework

Setting up Zend Framework is quite easy. This section assumes that you have
PHP up and running with some supported Web server in your environment. Our
example uses:

� Apache HTTP server 2.0.58 and assumes it is installed in the C:\Program
Files\Apache Group\Apache2 directory.

� PHP 5.1.4 with the latest IBM DB2 driver for PHP.

If you need help with setting up Apache HTTP server with PHP, we provide the
setup procedures in Appendix A, “Setup procedure and sample data” on
page 295.

You need to download and save the preview version of Zend Framework from
the following Web site:

http://framework.zend.com/download

In order to get started with our first Web application, let us follow these steps
carefully:

� Directory structure

One very important goal of any framework is to simplify the common code
structure. We recommend this directory structure:

a. Save and unzip the Zend Framework preview code in the directory of your
choice. When unzipped, it saves itself in ZendFramework-0.1.4 directory
and contains demos, documentation, incubator, library, and tests
directories along with a readme, news, and license files.

b. Create a directory called zframework in the Apache Web server htdocs
directory as follows:

C:\Program Files\Apache Group\Apache2\htdocs\zframework

c. Copy the entire library directory from your Zend Framework directory to
the zframework directory you just created. Rename this directory to lib.

Note: Zend Framework is currently released as preview 0.1.4 and at the time
of writing this book, this was the release available to use. Check the Web site
and use the latest version as it becomes available. You can also connect to
their Subversion Repository for anonymous checkout of the latest code and
report bugs. Zend Framework Developer Web site has plenty of information
for PHP developer.
 Chapter 3. Application development with PHP 99

http://framework.zend.com/download

d. Create additional directories in zframework directory to organize your
code. The directory structure should look as shown in Example 3-1.

Example 3-1 zframework directory structure

/app
 /models
 /views
 /controllers
/www
 /images
 /styles
 .htaccess
 index.php
/lib
 /Zend

� Web server configuration

One important goal of modern Web applications (Web sites) is to have clean
URIs (without any attached query parameters). This kind of URI rewrite
support is required from Web server. Zend Framework currently depends on
Apache’s mod_rewrite module to redirect all requests to a single file called
index.php that resides in Web server’s document root directory and contains
the bootstrap function (in this case, Zend_Controller_Front). The
configuration of the server requires a few steps:

a. The first step is to enable mod_rewrite function of Apache Web server. By
default, this function is not enabled. To enable it:

• Uncomment LoadModule for mod_rewrite function in the Apache
configuration file httpd.conf.

• You would also need to set the Document Root to .../zframework/www
and change AllowOverride value from NONE to ALL.

After these changes, restarting Web server should enable the
mod_rewrite.

Note: Zend is currently looking for a solution, which does not require
mod_rewrite, for the future. There is a good chance that the final
release of this framework will not require you to perform this setup.
100 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

b. Next, we need to set the rule to redirect all incoming Web requests to
www/index.php. You can easily do this by creating a .htaccess file in the
www directory with the contents as shown in Example 3-2.

Example 3-2 .htaccess file

RewriteEngine on
RewriteRule !\.(js|ico|gif|jpg|png|css)$ index.php

The above file redirects all requests not containing one of the previous file
extensions to index.php bootstrap file.

Alternatively, you can modify httpd.conf also for the rewrite rules, but that
requires you to restart the Web server. Adding to .htaccess file does not
require you to restart Web server.

You also need to include the include_path to the framework library
directory (zframework/lib). You can add this to the php.ini file or simply add
it into .htaccess as shown in Example 3-3.

Example 3-3 include_path

php_value include_path "C:\Program Files\Apache
Group\Apache2\htdocs\zframework\lib"

� Zend class

The Zend class (zend.php) contains static methods that are used by many
classes. This is the only class you need to include manually, so we add it to
our bootstrap file index.php.

After adding it to the bootstrap file, we now have access to all static methods.
You can load other classes with the loadClass() method. For example, to load
Zend_Controller_Front:

Zend::loadClass(‘Zend_Controller_Front’);

Note: This is the only php file required to exist within the Web server
document root directory. Also for security reasons, it makes sense not
to store the php files in the directories that are accessible by the Web
server.
 Chapter 3. Application development with PHP 101

Now, to understand the framework flow and make sure setup is working, let
us do this exercise:

a. Edit your index.php to look as shown in Example 3-4.

Example 3-4 index.php

<?php
include 'Zend.php';
function __autoload($class)
{
 Zend::loadClass($class);
}
$dbuser = "db2admin";
$dbpass = "db2admin";
$dbname = "CONTACTS";
$params = array('username' => $dbuser,

 'password' => $dbpass,
 'dbname' => $dbname);

$conn = Zend_Db::factory('Db2', $params);
$db = new Database($conn);
Zend::register('db', $db);
$view = new Zend_View;
$view → setScriptPath('../app/views');
Zend::register('view', $view);
$controller = Zend_Controller_Front::getInstance()
 → setControllerDirectory('../app/controllers')
 → dispatch();
?>

Let us discuss the different parts here:

i. First we include the zend.php.

ii. Next, we are using PHP5’s autoloader function to load the necessary
controller classes.

In PHP5 and above, you can define an autoloader function
(__autoload) which is automatically called in case you are trying to use
a class which has not been defined yet. The scripting engine is given a
last chance to load the class with the __autoload function before PHP
fails with an error.
102 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

iii. Next we create and instantiate a database connection.
Zend_Db_Adapter provides the database API abstraction layer, which
supports many SQL databases including DB2. You need to call
Zend_Db::factory() with the adapter name (DB2 in this case) and a list
of parameters with connection information. We now save this db
adapter $db in the Zend registry variable so that we can access it in our
application anywhere.

iv. Next we create an instance of Zend_View and set the path to the
instance to tell where to look for view template files. Zend_View is a
class for working with the "view" portion of the model-view-controller
pattern. That is, it exists to help keep the view script separate from the
model and controller scripts.

v. The last section of index.php creates the instance of the front controller
and specifies the directory where actual controller files are found. The
framework wants you to create controller classes in app/controllers
directory.

b. Now let us try to point your Web browser to the Web server with some
random path such as http://localhost:81/redbook/toc. In our case, you
should see an error. We expect the error and here is why. Since we
requested for redbook/toc, the framework looks for a controller called
RedbookController.php in the app/controllers directory. Since it did not
find any, it then looked for default IndexController.php. It did not find it
either. Remember, every request is treated as controller/action in the
framework. Index is the default for both the controller and the action. So
now, let us create IndexController.php as shown in Example 3-5 to get
going.

Example 3-5 IndexController.php

<?php
Zend::loadClass('Zend_Controller_Action');
class IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {
 echo 'what should I do?';
 }
}
?>

There is another useful method called noRouteAction(). You can specify
a _redirect() call to redirect the requests for nonexistent pages to the
desired page. For example, as shown in Example 3-6 on page 104, if you
 Chapter 3. Application development with PHP 103

add the noRouteAction() method to the IndexController.php, it redirects
our request of redbook/toc to the main page.

Example 3-6 Redirect request

<?php
Zend::loadClass('Zend_Controller_Action');
class IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {
 echo 'what should I do?';
 }

 public function noRouteAction()
 {
 $this → _redirect('/');
 }
}
?>

c. Now, let us create the RedbookController.php as shown in Example 3-7.
We have an indexAction() method for non-existent action request and
tocAction() for our redbook/toc request.

Example 3-7 RedbookController.php

<?php
Zend::loadClass('Zend_Controller_Action');
class FooController extends Zend_Controller_Action
{
 public function indexAction()
 {
 echo 'What should I do?';
 }

 public function tocAction()
 {
 echo 'TOC of this book follows';
 }

 public function __call($action, $arguments)
 {
 echo 'RedbookController:__call()';
 }
}
?>
104 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Now, our request for http://localhost/redbook/toc should echo the text TOC
of this book follows. Notice there is another function, __call(), to
handle undefined actions such as redbook/appendix.

You can see that the controller/action mechanism allows you to have friendly
URIs for your Web application and also allows you to organize them properly.
This completes our basic test of mod_rewrite and the framework setup. We
discuss other controller objects in detail when we build our sample application
but for now we move on with the Eclipse environment setup.

3.2 DB2 Interface with PHP

There are three main extensions of PHP that you can use to develop applications
with DB2:

� ibm_db2
� PDO_ODBC
� Unified ODBC

IBM recommends using ibm_db2 or PDO _ODBC to get best results out of DB2
database.

IBM_DB2

ibm_db2 extension of PHP provides an interface to connect from PHP to IBM
DB2 database. ibm_db2 provides a mechanism to connect to both cataloged and
non-cataloged databases. This extension provides mechanisms for application
developers to issue SQL queries, work with large objects, call stored procedures,
use persistent connections, and use prepared SQL statements. It also works on
PHP releases below Version 5. Unlike PDO_ODBC, ibm_db2 is based on
traditional procedural programming and performs better compared to Unified
ODBC functions. ibm_db2 provides built-in functions for getting details about the
DB2 database server and client by querying system catalog tables, which
provide lots of information about the DB2 database management system. The
latest ibm_db2 extension for PHP has been enhanced to support the new XML
data type in DB2 V9. We highly recommend that you download the latest
ibm_db2 extension from the following Web site:

http://www.pecl.php.net/package/ibm_db2

You can download the library(dll) for Windows from the following Web site:

http://pecl4win.php.net/ext.php/php_ibm_db2.dll
 Chapter 3. Application development with PHP 105

http://www.pecl.php.net/package/ibm_db2
http://pecl4win.php.net/ext.php/php_ibm_db2.dll

PDO_ODBC

PDO (PHP Data Objects) is an object-oriented, standards-based data access
method in PHP, where you can use the same methodology to query the
database and fetch data from the supported databases. PDO_ODBC extension
is the implementation of the PDO specification. When compiled with DB2
libraries, you can use it to access DB2, Cloudscape™, and Apache Derby
databases. This extension provides a mechanism to connect to both local
cataloged and non-local (remote) cataloged databases. For a local cataloged
database, PDO_ODBC obtains the database server details from the client
machine. For a non-local cataloged database, the full details of the remote
database are specified in the connection URL. PDO_ODBC also provides
access to advanced features of DB2, such as persistent connections, prepared
SQL statements, large objects, and stored procedures. It provides better
performance compared to Unified ODBC functions.

Unified ODBC

Unified ODBC was the only method for PHP to talk with DB2, Cloudscape, and
Apache Derby databases before ibm_db2 or PDO_ODBC was released. Like
ibm_db2 and PDO_ODBC, this extension also interacts with DB2 using native
CLI calls. It uses the same PHP methods to interact with different databases
even if the underlying mechanism is different. But you cannot use this API to call
a stored procedure in DB2. Unified ODBC does not use the Object-Oriented
methodology.

The source code for all the extensions is available for free download in the PECL
Web site:

http://pecl.php.net/

3.3 Setting up Eclipse with PHP

Eclipse is an open source application development tool that you can download at
no charge from the following Web site:

http://www.eclipse.org

This tool is ready to use once you download and unzip it in a folder of your
choice. There is no setup required. We advise you to make a desktop shortcut of
eclipse.exe to make the launch easy. After launching Eclipse from the desktop, it
takes you to the Welcome window where you can navigate the built-in help and
samples. The core Eclipse tool does not come with a PHP plug-in.
106 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.eclipse.org
http://pecl.php.net/

You need to configure it as follows:

1. From the Eclipse menu, select Help → Software Updates → Find & Install.

2. Select Search for New Feature to install, then click Next.

3. Click New Remote Site.

4. In the window that appears, enter the following information and click OK:

a. In the Name field, type PHP Plug-in
b. In the URL field, type:

http://phpeclipse.sourceforge.net/update/releases

5. Make sure the PHP Plug-in is checked, and then click Finish.

6. On the next window, accept the license agreement and click Next.

7. Click Finish.

The Eclipse Update Manager downloads and prompts you to select the
component and confirm installation. Once installed, you need to restart
Eclipse to be able to use PHP features.

The Eclipse window in Figure 3-1 on page 108 shows the tool with the PHP
menu and functions. You can also switch the Eclipse window perspective to
switch to another development environment, such as Java. For more information
about using the Eclipse tool, see the Eclipse documentation. The major
advantage of using Eclipse with the PHP plug-in is that it provides better
organization of your code with color-coded text for errors and warnings. It also
includes the PHP Debug environment to debug the code and a PHP browser to
view the result.
 Chapter 3. Application development with PHP 107

Figure 3-1 Eclipse

3.4 Sample Web application

In order to showcase the features of DB2 Express-C, PHP, and the brand new
Zend Framework, we built a couple of sample Web-based database applications.
The first application is a “Movie of the week” survey application, where using a
simple Web interface, you can add a movie name to the database and vote for
the movie of the week. Your suggestion for a new name or your vote instantly
updates the Web site. The application demonstrates the framework’s simplistic
MVC model to build database driven applications using Zend db adapters.

While designing any Web-based application, we start by designing interfaces. A
Web application is a collection of Web pages where each page is a unique URL.
This simple survey application consists of two URLs:

� /index/vote
� /add/movie
108 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

You need to think of these URLs in terms of controller/action. The
IndexController fetches the existing movies’ names and the respective votes
from the database and AddController handles adding new suggestions and
updating votes. You can have multiple presentation layers created in the views
directory, but for simplicity, we have a single presentation layer vote.php which
manipulates and presents the survey results.

Table 3-1 lists the files created for our movie example. You can download the
complete zip file from the redbook Web site. For download details, see
Appendix C, “Additional material” on page 319.

Table 3-1 Files for example application

Let us look at the IndexController.php (Example 3-8) first. We have intentionally
left indexAction method untouched and created a voteAction() method. As a
result of this, the main URL to launch this application is:

http://localhost/index/vote

You can alternatively not have the voteAction() method and move the code
inside the indexAction method(). In that case, you launch the application with this
URL:

http://localhost/

Example 3-8 IndexController.php

<?php
Zend::loadClass('Zend_Controller_Action');
Zend::loadClass('Zend_View');
class IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {

 }
 public function noRouteAction()

 {
 $this → _redirect('/');

 echo 'norouteaction';
 }
 public function voteAction()

Name Type Description

IndexController.php Controller Main controller

AddController.php Controller Contains add/update logic

vote.php View Presentation HTML
 Chapter 3. Application development with PHP 109

http://localhost/index/vote

 {
 $db = Zend::registry('db');
 $view = Zend::registry('view');

 $view → title = 'Please Vote for this week’s movie';
 $view → sum = $db → showVote();
 $view → result = $db → showData();
 echo $view → render('vote.php');

}
}
?>

We would like to display the survey results currently in the database on the main
page. To do that, we created a voteAction() method, where we initialized the
database and view registries. Then, we call a database method db → showVote()
which queries the movie_names table and gets the sum of the votes. Then, we
used the sum to create the percentage of the votes and called another database
method db → showData() to get the movie names. Finally, we rendered the page
to display the movie names along with the percentage of votes. We also allowed
users to add a new movie name and vote for the new suggestions. We handled
the database insert for the new movie suggestion in AddController.php. We
created a movieAction(), which uses dbAdapter method insert() to add movie into
the db2 table. The code in Example 3-9 shows AddController.php. The
movieAction() method calls database functions to perform insertions and
updates.

Example 3-9 AddController.php

<?php
Zend::loadClass('Zend_Controller_Action');
class AddController extends Zend_Controller_Action
{
 function indexAction()
 {
 $this → _redirect('/');
 }
function __call($action, $arguments)
 {
 $this → _redirect('/');
 }
 function movieAction()
 {
 $view → title = 'Name your favorite movie of the week';
 $movie_name = $_POST['movie_name'];
 $votevalue = $_POST['vote'];
 $db = Zend::registry('db');
110 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 $view = Zend::registry('view');
 if ($movie_name)
 $db → addMovie($movie_name);
 if ($votevalue)
 $db → updateVote($votevalue);
 $view → sum = $db → showVote();
 $view → result = $db → showData();
 echo $view → render('vote.php');

 }
}
?>

3.4.1 Integrating with databases: Zend_Db_Adapter

Zend_Db_Adapter is the database API abstraction layer for the Zend
Framework. You can use same Zend_Db_Adapter to connect to and work with
many databases, including MySQL, DB2, Sybase, SQL Server, and others. You
first need to create an instance of your database server. The code shown in
Example 3-10 shows how to create the instance of DB2 database.

Example 3-10 Creating instance of DB2 database using Zend_Db_Adapter

$params = array('host' => '9.30.76.201',
'port' => '50000',
'username' => 'db2admin',
'password' => '********',
'dbname' => 'movie');

$conn = Zend_Db::factory('Db2', $params);

You can ignore the host and port parameters if the DB2 server is local to the
framework. Once a DB2 instance is created, it can be passed to the database
class being initialized. For our sample application, we create a Database class
database.php. The code shown in Example 3-11 on page 112 creates an
instance of the database class and makes our database object available through
the registry variable. A registry is a Zend framework object that can save

Note: indexAction() in the controllers other than indexController should never
be called. Because you do not have any control over the user being creative
and modifying the URL to access anything, you should always redirect the
URL appropriately. Also, in order to support dynamic actions, such as
add/123, you must implement __call() functions.
 Chapter 3. Application development with PHP 111

information (for example, a database connection or view) and be made available
in your Web application when required.

Example 3-11 Registering database

$db = new Database($conn);
Zend::register('db', $db);

For a database driven application, the database registration code as shown in
Example 3-11 should be placed in the bootstrap file located under framework’s
www directory. Once registered, the database object can be accessed anywhere
just by making it available through the registry:

$db = Zend::registry('db');

Now, our simple database class implements the utility methods to add, update,
and query the movie database as shown in Example 3-12.

Example 3-12 Database class

<?php
class Database
{
 private $_db;

 public function __construct($conn)

{
$this → _db = $conn;

}

 public function addMovie($movie_name)
 {
 $row = array('name' => $movie_name);
 $table = 'movie_names';
 $rows_affected = $this → _db → insert($table, $row);

 }
 public function updateVote($vote)
 {

 $sql = "UPDATE movie_names set vote = vote+1 where name='$vote'";
 $this → _db → query($sql);
 }
 public function showVote()
 {
 $sql = "SELECT sum(vote) as sum from movie_names";
 return $this → _db → fetchRow($sql);
112 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 }
 public function showData()
 {
 $sql = "SELECT * from movie_names order by vote DESC";
 return $this → _db → fetchAll($sql);
 }
 }
?>

The important part of the database class in Example 3-12 on page 112 is the
constructor function, which expects the instance of the db adapter class. It
assumes that the database and tables exist already. We have created our movie
table manually, but you can certainly construct the CREATE TABLE statement
and use framework’s direct query() function to create the table for the first time.

As you can see in the Database.php we have used the fetchRow() function in the
showVote() method and the fetchAll() function in the showData() method. Zend
Framework provides the fetch*() series of methods, which executes the supplied
query and process result. You can also pass the placeholder and an array of bind
values to be quoted and replaced into the statement for you. These are the
fetch() methods available for you to use:

� fetchAll()
� fetchAssoc()
� fetchCol()
� fetchOne()
� fetchPairs()
� fetchRow()

The framework user manual shows sample code snippets on their usage. In
addition to the convenience methods we have already discussed, the framework
also provides some tools, which help you construct SQL statements and
manipulate database objects:

� Zend_Db_Select

This tool provides built-in functions to construct the SELECT statement with
various clauses. Look at Example 3-13.

Example 3-13 Constructing SELECT using Zend_Db_Select

<?php
//
// SELECT *
// FROM movie_names
// WHERE vote > 2
 Chapter 3. Application development with PHP 113

// ORDER BY name
$select = $db->select() // to create object
// you can use an iterative style...
$select → from('movie_names', '*');
$select → where('vote > ?', 2);
$select → order('name');

// ...or object chaining:
$select → from('movie_names', '*');

→ where('vote > ?', 2);
→ order('name');

// regardless, fetch the results
$sql = $select → __toString();
$result = $db → fetchAll($sql);

// alternatively, you can pass the $select object itself;
// Zend_Db_Adapter is smart enough to call __toString() on the
// Zend_Db_Select objects to get the query string.
$result = $db → fetchAll($select);
?>

� Zend_Db_Table

It is a Zend_Db_Adapter class, which lets you examine the table schema and
then aids you in manipulating and fetching rows from the table. You need to
create a class with the same name as the table name (camelized), which
extends Zend_Db_Table class. By default, the camelized class name maps to
the underscored table name, but you can also override this by redefining the
$_name property.

For more information, refer to the Zend online documentation at:

http://framework.zend.com/manual/en/zend.db.table.html

Note: The database components of the Zend Framework are relatively
unstable and new features and functionalities are being added. Some of the
database object features might not work in the preview release, but the good
news is that you are free to manipulate the code and design the function your
own way. For example, we have used the adapter’s insert() method to add
movie names to the database. Alternatively, your application can construct the
INSERT statement and use adapter’s direct query() function to execute and
achieve the same result. The actual implementation of these API methods
available for your use are in Db2.php located under the lib/Zend/Db/Adapter
directory.
114 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://framework.zend.com/manual/en/zend.db.table.html

Integrating the components
To put this all together, we create database.php in lib directory. The __autoload()
function in our bootstrap file, www/index.php, is able to load it when needed. The
bootstrap file also instantiates $db and $view and loads them in registry
variables. Finally, we create a template to display the result. In the case of our
small survey application, we create an HTML template embedded with some php
code. Typically, we recommend that you create different templates for different
URLs supported by the application, and one index.php exists as an initial
template. vote.php is our only template and displays both initial movie
information and modified survey results, because this is the most appropriate
way of displaying results for this application. The code in Example 3-14 shows
the app/view/vote.php.

Example 3-14 vote.php

<html><head>
 <title><?php echo $this → escape($this → title); ?></title>
</head><body>
<h1>Name your favorite movie of the week</h1>
<form action="/add/movie" method="POST">
Suggestion: <input type=text name=movie_name><P>
<INPUT type=submit value="Submit new movie and/or vote">
<?php
$movie_name = $_POST_['movie_name'];
$vote = $_POST['vote'];
 echo "<table border=0><tr><th>Vote</th>";
 echo "<th>Idea</th><th colspan=2>Votes</th>";
 echo "</tr>\n";
$sum = $this → escape($this → sum['SUM']);
foreach ($this → result as $row) { ?>
<TR><TD align=center>
<input type=radio name=vote value='<?php echo
$row['NAME'];?>'></td><td>
<?php
 echo $row['NAME']."</td><td ALIGN=right>";
 echo $row['VOTE']."</td><td>";
 if($sum && (int)$row['VOTE']) {
 $per = (int)(100 * $row['VOTE']/$sum);
 echo "<img src=/images/logo.jpg height=12 ";
 echo "width=$per> $per %</TD>";
 }
 echo "</tr>\n";
 }
 echo "</table>\n";
 ?>
 Chapter 3. Application development with PHP 115

<input type=submit value="Submit idea and/or vote">
<input type=reset>
</form></body></html>

With everything in place, you can see that the presentation layer is separate from
the business logic layer, and adding more business logic and presentation is
extremely easy. The code looks clean; it is flexible and extensible. The end result
is the Web site shown in Figure 3-2.

Figure 3-2 Movie of the Week initial page

3.4.2 Zend framework: XCS

One of the major advantages of using a Web framework is that it provides the
abstraction to the database layer to create a database driven Web site easily.
The developer can concentrate on the behavior of data rather than the details of
database access and manipulation. With the amount of proliferation of XML data
over the Web and elsewhere, there is a need to abstract the persistence access
of XML data. DB2 Express-C V9 provides pureXML storage to store and manage
XML data in its native structure. XML Content Store (XCS) has been created to
help simplify the development of XML-centric Web applications. XCS is an
116 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

incubator technology in Zend Framework and provides both a persistence data
access layer as well as an API for managing XML data easily.

In this section, we provide an architectural overview of the XCS. We describe
each of the components that makes up the XCS, and we explain how they work
together. Figure 3-3 illustrates the XCS architecture.

Figure 3-3 XCS architecture overview

XMLContent (Zend_Db_Xml_Content)
As a developer, you can encounter XML data in many forms, such as Web
services messages, RSS/Atom feeds, and configuration files. Once you decide
that this XML data needs to be saved somewhere, we can assume several things
about this data:

� First, we need a way to uniquely identify it, so that once it is saved, it can
easily be programmatically found and retrieved. The unique name can be a
numeric ID or a user-provided name.

� The second assumption is that the XML data will be stored “as is”. It will not
be modified or changed in any way. Any modifications that are required will
be made by the application outside of the XCS. Internally, the XML data is
stored as a DOM document, but an application is free to access the data as a
file stream, string, or several other convenient access methods which can or
cannot be implementation-dependent.

� Third, the capability is provided to add additional metadata about the XML
data that is saved. For example, if the XML data is a blog entry, perhaps the
 Chapter 3. Application development with PHP 117

application would care to know the date and title of the entry, or the hostname
where the entry originated. This metadata is saved in an about property and
is also XML.

� Finally, often XML data is accompanied by binary data, such as .jpeg, .pdf, or
.doc files. An attachment property associates this binary data with the XML
data. In the current implementation of Zend_Db_Xml_Content, the
attachment property can contain either zero or at most one item, though
optionally, a future version can contain any number of items.

These properties of the XML data are encapsulated in an object called
Zend_Db_Xml_Content. Zend_Db_Xml_Content objects are the fundamental
components of the XCS because they are the XCS representation of XML data.
As we will see, the Zend_Db_Xml_ContentStore component needs to know
about the persistence technology (for example, a relational database) and how to
access it, but Zend_Db_Xml_Content objects do not need to know anything
about it.

Zend_Db_Xml_ContentStore
Zend_Db_Xml_ContentStore is an abstract class that represents a repository of
XML documents. It is responsible for updating the data source based on changes
made to a Zend_Db_Xml_Content object in the repository as well as retrieving
Zend_Db_Xml_Content objects from the data source based on search or ID
criteria. A data source is defined very generally as the persistence layer where
the XML data is saved. It can be a relational database, an XML database, or a
file system, and it stores the XML data in its own format. When an
Zend_Db_Xml_ContentStore object is instantiated, it receives a connection
handle, which describes in a meaningful way what the data source is.
Example 3-15 shows how to create an XML ContentStore using DB2 dbAdapter.

Example 3-15 Creating an XML ContentStore

// Create a DBAdapter using database connection properties
$dbuser = ‘db2admin’;
$dbpass = ‘db2admin’;
$dbname = ‘contacts’;

$params = array(‘username’ => $dbuser,
 ‘password’ => $dbpass,
 ‘dbname’ => $$dbname);

$conn = Zend_Db::factory(‘Db2’, $params);
$xcs = new Zend_Db_Xml_XmlContentStore_Db2($conn, ‘blogs’);
118 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

In Example 3-15 on page 118, XML ContentStore $xcs has been given a name,
so $xcs only manages XML data related to specific application blogs. Other
content stores can be created to manage other types of XML data.

Zend_Db_Xml_ContentStore knows how to access the persistence layer to
perform Create, Read, Update, and Delete (CRUD) operations and abstracts
these operations by using convenience methods. For example, if the persistence
layer is a relational database, a call to the method insert() builds an appropriate
SQL insert statement based on the structure of the underlying tables used and
the content of the Zend_Db_Xml_Content object. It connects to the database
and executes the statement. Other CRUD methods work in a similar fashion and
include update(), delete(), deleteById(), and selectAll(). Example 3-16 shows
how to save XML data in the XML ContentStore.

Example 3-16 Saving XML data in the XML ContentStore

// create an Zend_Db_Xml_Content object from a file
// using a utility method
$xmldoc = Zend_Db_Xml_XmlUtil::createDocument();
$xmldoc = Zend_Db_Xml_XmlUtil::importXmlFile(‘data.xml’);

//save the XML document to the persistence layer

$xcs → insert($xmldoc);

Similar functions exist for update and delete. In addition,
Zend_Db_Xml_ContentStore also contains a simple search facility that retrieves
Zend_Db_Xml_Content by its ID or by searching within the XML data or the
metadata in Zend_Db_Xml_Content. The search on XML data is done using
XPath expressions. Some of these methods are find() and findById().

Zend_Db_Xml_ContentStore_DB2
The class XMLContentStoreDB2 is implemented using the DB2 adapter which in
turn uses the ibm_db2 CLI driver. For example, to insert, the application gives
the XCS an XMLContent object and the XMLContentStoreDB2 takes care of the
underlying details. Because DB2 9 supports a native XML data type, one
Zend_Db_Xml_ContentStore_DB2 object maps to one table with four columns
named as ID, DATA, ABOUT, and ATTACHMENT. The table columns are defined as
follows:

� ID is a unique integer and is used as the primary key of the table.
� DATA is defined as an XML column.
� ABOUT is defined as an XML column.
� ATTACHMENT is defined as a BLOB column.
 Chapter 3. Application development with PHP 119

Using DB2, each row in the table represents one Zend_Db_Xml_XmlContent
object.

Zend_Db_Xml_XmlIterator
It is possible that a search returns one Zend_Db_Xml_Content or a set of
Zend_Db_Xml_Content objects. In the case where a set is returned, the
Zend_Db_Xml_XmlIterator class is used to iterate over the set of XML
documents that meets the search criteria. Zend_Db_Xml_XmlIterator
implements the Iterator interface so it knows several essential things about the
set of Zend_Db_Xml_Content objects over which it is iterating. These include its
current location in the set, how to retrieve the next object in the set, how to go
back to the beginning of the set, and when it has reached the last item in the set.
This allows the developer to assign behavior on the XML data at each iteration
without having to worry about the details of loop control. An example of
XMLIterator is shown along with the example of other utility functions in the next
section.

Zend_Db_Xml_XmlUtil
Zend_Db_Xml_XmlUtil is a utility class that provides static convenience
methods for passing XML data back and forth from the application to
Zend_Db_Xml_XmlContent, either for the raw XML data or for the about XML
metadata. Though the XML is stored internally as a DOM,
Zend_Db_Xml_XmlUtil can allow an application to use strings, file streams, or
any other implementation-specific object representation of XML data, such as
PHP’s SimpleXML. Convenience methods for converting between these different
types of representations and DOM are provided. Let us assume the following
document is already saved in the persistence layer as shown in Example 3-17.

Example 3-17 Sample XML document

<?xml version="1.0" encoding=“UTF-8"?>
<book>

<title>Mom, Dad, and The Rainbow House</title>
<author>Mary Staple</author>
<date>2006-05-09</date>
<body>Another fantastic children’s book from bestseller Mary Staple.

</body>
</book>

To search anywhere for the keyword “Rainbow”, see Example 3-18.

Example 3-18 Searching keyword

keyword = ‘Rainbow’;
120 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

$found = $xcs → findAnywhere($keyword, Zend_Db_Xml_XmlUtil::DATA);

To be more specific about case and where exactly in the document to search,
see Example 3-19.

Example 3-19 Detail searching

$search = array(‘title’ => ‘Rainbow’,
 ‘author’ => ‘Staple’);

$options = array(‘caseSensitive’ => true,
 ‘exactMatch’ => false,

 ‘logic’ => ‘or;
$found = $xcs → find($search,
 Zend_Db_Xml_XmlUtil::DATA,
 $options);

find() returns an XML iterator, which represents a set of XML documents as
shown in Example 3-20.

Example 3-20 Get XML iterator

foreach($found as $current) {
// get a SimplXML object and do something with it
$sxml = Zend_Db_Xml_XmlUtil::exportToSimpleXML(

$current,
Zend_Db_Xml_XmlUtil::DATA);

// prints the contents of the <title> element
echo $sxml → title;
}

We can also use a simple XPath expression to search as shown in
Example 3-21.

Example 3-21 Search using XPath expression

$xml = $xcs → executeXPathPredicateQuery("/book[date=’2004-12-21’]",
 Zend_Db_Xml_Xml_Util::DATA);

foreach ($xml as $current) {
 $sxml = Zend_Db_Xml_XmlUtil::exportToSimpleXML($current,
Zend_Db_Xml_XmlUtil::DATA);

echo '<p>Title: ' . $sxml → title;
 }

This will output Mom, Dad, and The Rainbow house.
 Chapter 3. Application development with PHP 121

Parameters are also accepted in XPath searches using an associative array. It is
important to match XPath variable names with the keys of the associative array.
Otherwise, the XPath search fails. Example 3-22 shows the XPath search.

Example 3-22 Xpath search

$param = array();
$param['d'] = '2006-05-09';
$param['t'] = 'Mom, Dad, and the Rainbow House';

$xml = $xcs → executeXPathPredicateQuery(
"/book[date=\$d or title=\$t]",$param);

foreach ($xml as $current) {
 $sxml = Zend_Db_Xml_XmlUtil::exportToSimpleXML($current,
Zend_Db_Xml_XmlUtil::DATA);

echo '<p>Author: ' . $sxml → author;
 }

This will output “Author: Mary Staple”.

3.4.3 myContacts.com: An XCS application

In any application environment, there are two types of data used, data for
persistent storage and data for message flows. XML is undoubtedly suited for
both types of data: XML for messages and XML for persistent storage of data.
XML for messages possesses fewer design problems, because each message is
self-contained and the application process usually decides what should be
included in a message. Contrary to this, while designing the persistent XML data,
its static model is very important. The real design challenge is to decide the
granularity of data and the size of the XML documents and whether to keep
everything in one large document or create a large number of small documents.
Irrespective of the size of the XML data, finding information is always a two step
process, finding the right document and then finding the desired information
within the document. The architecture of XCS makes the XML persistence model
easy. Several types of applications benefit from XCS.
122 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Here are few examples:

� RSS Feed/Blogging Application

Users can specify feeds, applications can pull feed data and store it in XCS.
Applications can then search and display feeds. Blogs can also be created
and stored in XCS. Blogs then can be searched, sorted, and displayed.

� XML-based Content Management system

All types of content can be used to store data in the XCS DATA column.
ATTACHMENT can be used to store binary objects such as image data. ABOUT
can store the metadata which can drive the application process flow.

� Web services

Web services are the applications that utilize XML messages for interaction
between components. Applications can utilize XCS to store, search, and
retrieve XML data.

Essentially, any application that requires XML data interchange can benefit from
XCS. We have created one application to demonstrate the capability of XCS. Our
sample application is a social network application. We named it
myContacts.com.

This application enables users to:

� Create and maintain a profile for social and professional networking.
� Search for people within networks.
� Make contacts with the people and collaborate with them.

Solution components
This application can be divided into the following functional components:

� Create and maintain member profile

We need a persistent XML storage to store all of our member profiles and
relationships between them. We also need to build user interfaces for new
members to create profiles and log in to the system. We need to track user
inputs, build XML with it, and then store it in XCS.

� Track logged in users

We need to track logged in users so that the application knows if a user is
viewing the user’s own profile or another user’s profile. This is required to
allow users to make contact with other members. We used PHP’s built-in
session tracking methods to track the status of logged-in users.

� Update contacts and relationships

We need user interfaces and controller functions to perform the updates on
XML data. Luckily, we have XCS implementations of Create, Remove,
 Chapter 3. Application development with PHP 123

Update, and Delete (CRUD), so we do not need to worry about underlying
database calls. We use XMLContent’s ABOUT property to store members’
relationships.

� Search

We need to implement search, so that users can look for members they want
to contact. We utilize XCS’s find functions to implement the search without
knowing any XQuery implementation programming.

Solution overview
Figure 3-4 shows the navigation path of the proposed application. In the
framework design, the Web page navigation flow should decide how the
Controllers and Views should be created.

Figure 3-4 Navigation diagram for MyContacts.com application

As you can see, we give the user a choice of options. The user can either log in
or search for someone who is already using this Web site. A user can search for
a member, but the user cannot view a member’s detailed profile until the user
logs in. If the user is new, the user is able to create and save the user’s profile in
the system. We also give the user the option to find a particular member and
124 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

make contact with a user-selected relationship. The user also is able to contact
others directly via e-mail. The member’s contact information is displayed along
with the profile.

A summary of the files we use in the myContacts application is shown in
Table 3-2.

Table 3-2 Files used in myContacts

Let us go ahead and look at the application.

Setting up the database
The database for the myContacts application is fairly simple, because users are
able to add new members and relationships using the application itself. We need
to store user names and passwords in a DB2 table DB2ADMIN.MEMBER. We also
need to create a table required by XCS. You can set up the database for this
application by running the SQL on the DB2 Command Line as shown in
Example 3-23.

Example 3-23 Database setup script

create database contacts using codeset utf-8 territory us;
connect to contacts;
create table db2admin.member(xmlid BIGINT, email VARCHAR(50) NOT NULL
PRIMARY KEY, passwd VARCHAR(10), fname VARCHAR(30), lname VARCHAR(30));

Name Type Description

index.php bootstrap Any call to the main URL calls this bootstrap file

style1.css CSS Style sheet for HTML presentation

IndexController.php Controller Main controller

AddController.php Controller Contains add/delete/update actions

ViewController.php Controller Contains navigation/output functions

index.php View Initial view of the application

member.php View Displays member profile data

searchResult.php View Displays search result

view.php View Interface to get new user profile data

thanks.php View Acknowledgement of successful user action

error.php View Displays error messages

Database.php Adapter Contains database functions
 Chapter 3. Application development with PHP 125

db2 create table db2admin.xmldata(
 id BIGINT NOT NULL generated always as identity primary key,
 data XML,
 attachment BLOB(100m),
 about XML);

The XML data type is available on any UTF-8 database in the DB2 9 release.
With the creation of these database objects, DB2 is now ready for use as an XML
Content Store. There are no other DB2 administrative tasks necessary.
However, to improve performance when searching, we suggest that you create
indexes for the XML data as shown in Example 3-24.

Example 3-24 Creating index script

create index datatext on xmldata(data) generate key using xmlpattern
'//*' as sql varchar(800)
create index dataattr on xmldata(data) generate key using xmlpattern
'//@*' as sql varchar(800)

create index abouttext on xmldata(about) generate key using xmlpattern
'//*' as sql varchar(800)
create index aboutattr on xmldata(about) generate key using xmlpattern
'//@*' as sql varchar(800)

These are very general indexes on all text nodes and attributes on both DATA
and ABOUT. The developer might decide to create indexes on elements or
attributes for application-specific data, such as a product ID or a last name
element where searches might occur often.

Remember that you can run these commands individually or run the script
setupdb.sql:

db2 -tvf setupdb.sql

This script is also part of the zip file for the entire application which is
downloadable at the redbook Web site.

Tip: The XCS table creation is optional. The XCS is capable of creating the
table and indexes on first use.
126 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Getting Started
When a user loads the URL http://localhost/, the user sees the page shown
in Figure 3-5.

Figure 3-5 MyContacts.com Index page

Controllers
MyContacts.com has the following controllers:

� IndexController

Our IndexController is as clean as it should be. It has a indexAction() method
to serve the main Web page (Home page) and a noRouteAction() method to
reroute users to the home page in case users become creative and modify
the links. Example 3-25 shows the IndexController.php.

Example 3-25 MyContacts.com: IndexController.php

<?php
class IndexController extends Zend_Controller_Action
{

public function indexAction()
 {
 Chapter 3. Application development with PHP 127

 /* show the login page. */
 $db = Zend::registry('db');
 $view = Zend::registry('view');
 $view → title = 'Welcome to myContacts.com';
 echo $view → render('index.php');
 }
 public function noRouteAction()
 {
 $this → _redirect('/');

echo 'norouteaction';
 }
}

When a user tries to log in, a database query is issued and the member’s
profile displays. If the member ID is found and the password is validated, the
session variable is updated with the user’s ID. The view/member action is
invoked and the output looks like Figure 3-6.

Figure 3-6 My Profile page showing logged-in user and his contacts
128 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� AddController

Our AddController contains the following action methods (we discuss these
action methods later to explain important concepts):

– indexAction() to reroute users to the home page
– memberAction() to add new member data
– contactAction() to add a relationship between members
– __call() to handle the calls not defined by any action methods

� viewController

Our viewController contains the following action methods:

– indexAction() to reroute users to the home page
– searchAction() to implement existing member searches
– displayAction() to present the detailed member profile
– __call() to handle the calls not defined by any action methods such as

other database action controls

Views
The application has the following major views:

� index.php

This template presents the home page with two interfaces. The search allows
users to find members already in the database. The login window is also
provided on this page.

� member.php

This template presents the logged in member’s profile data and also a
searched member’s profile data. This also presents the relationship
information under the member’s contacts or my contacts.

� searchResult.php

This template displays the search result for a member. The return search
result is clickable to get the detailed profile, if the user is logged in.

� view.php

This template provides the interface to the user to create a new profile.

The other views, such as thanks.php and error.php, assist users with useful
information. There might also exist some views to display the user
agreement, privacy policy, customer support information, and other relevant
information as shown by the link in the footer.

Note: These might not be necessarily implemented in the code either
because they are not important conceptually or beyond the scope of this
chapter.
 Chapter 3. Application development with PHP 129

Database class
We created a database class, Database.php, where we implemented the
following functions:

� __construct()

This is the database class constructor function to initialize both the dbAdapter
connection object and the XMLContentStore connection object.

Example 3-26 shows __construct().

Example 3-26 Database class: constructor method

 private $_db;
 private $_db1;

public function __construct($conn)
{

$this → _db = $conn; // for dbAdapter
// for XML Content store

$this → _db1 = new Zend_Db_Xml_XmlContentStore_Db2($conn);
}

� login()

This method provides the SQL query to go against the member database to
check if the user profile exists. Also, it returns a member’s ID so that the
member’s detailed profile can be fetched from XCS. Example 3-27 shows the
login() method.

Example 3-27 Database class: login method

public function login($email, $passwd)
 {
 $sql = "SELECT xmlid, fname, lname from member where email=
? and passwd= ?";
 $param = array(); // an array is created for parameters
 $param[]= $email;
 $param[]= $passwd;

 if ($result = $this → _db → fetchAssoc($sql, $param)) {
 return $result;
 }
 return FALSE;
 }

Note: $conn is the connection object of the DB2 database we created in
our bootstrap file www/index.php.
130 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� getMember()

This method implements a database convenience method to retrieve member
information from the member table when given the member ID. It uses the
simple dbAdapter function to fetch data in a similar way to the login function.

� search()

This method provides some validation and posts an SQL/XML query to get a
member’s profile. It provides fuzzy search capability on first and last names.
As you can see, we needed to join on the MEMBER table and XMLDATA and use
SQL/XML function to get the search result we want. Example 3-28 shows an
example of the flexibility of the XCS. If the existing API methods are not
sufficient for your needs, you can take control of the database by writing your
own SQL queries, SQL/XML queries, or XQueries directly.

Example 3-28 Database class: search method

public function search($fname, $lname)
 {

$sql = "SELECT m.xmlid, m.fname, m.lname, m.email,";
$sql .= "xmlserialize(xmlquery('\$data/member/org/text()' ";
$sql .= "passing x.data as \"data\") as varchar(120)) as

company,";
$sql .= "xmlserialize(xmlquery('\$data/member/title/text()' ";
$sql .= "passing x.data as \"data\") as varchar(120)) as title ";
$sql .= "from db2admin.member m, db2admin.xmldata x where ";

if ($fname && $lname) {
$param = array();
$sql .= "(upper(m.fname) like ? or upper(m.lname) like ?)

AND ";
$param[]= strtoupper("%$fname%");

 $param[]= strtoupper("%$lname%");
} else if ($fname && !$lname) {

$param = array();
$sql .= "(upper(m.fname) like ?) AND ";
$param[]= strtoupper("%$fname%");

} else if (!$fname && $lname) {
$param = array();
$sql .= "(upper(m.lname) like ?) AND ";

 $param[]= strtoupper("%$lname%");
}

$sql .= "m.xmlid = x.id";
 if ($param && $result = $this → _db → fetchAssoc($sql,
$param)) {
 return $result;
 }
 Chapter 3. Application development with PHP 131

 return false;
 }

This application allows users to create and save their profiles. A user
interface is provided as shown in Figure 3-7. Once a user fills in the required
text and clicks Join Now, a new member profile is added into the DOC
column of the XCS database. This profile is saved as XML. An empty contact
data of XML type is also constructed for this profile. When this user updates
the user’s contacts, this XML document is updated. With the new profile
created, the authentication table is also updated.

Figure 3-7 Create a new member profile

� addMember()

This method adds member data into the relational table when a new member
profile is created. The member ID is auto-generated for XML detailed profile
data, which is, in turn, used for inserting into the member table. Example 3-29
on page 133 shows the addMember() function.
132 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 3-29 Database class: addMember method

public function addMember($xmlid, $email, $passwd, $fname, $lname)
 {
 $row = array (
 'xmlid'=> $xmlid,

 'email' => $email,
 'passwd' => $passwd,
 'fname'=> $fname,
 'lname'=> $lname
);
$table = 'member';
// insert the row and get the row ID
$rows_affected = $this → _db → insert($table, $row);
}

� saveNew()

This method inserts a new XML record into XMLDATA, using XCS’s
convenience method insert(). Example 3-30 shows the saveNew() function.

Example 3-30 Database class: Insert profile

public function saveNew($entry)
 {
 return $this → _db1 → insert($entry);
}

� getProfile()

This method uses XCS’s convenience method findById() that takes docid as
input and returns the XML record as an array. Example 3-31 shows the
getProfile() function.

Example 3-31 Database class: Retrieve profile

public function getProfile($xmlid)
 {
 $result = $this → _db1 → findById($xmlid);

 if(!is_null($result)) {
 return $result;
 }
 return false;
 }

The Add Contact/relationship feature allows a member to make contacts with
other members and create the chain of professional relationships. The user
 Chapter 3. Application development with PHP 133

must log in to view a member’s detailed profile and make the member a
contact. The user can select a relationship name from the drop-down box.
When the user clicks Make Contact, a XCS update is issued to update XML
data in the about column which holds the member contact data. If a duplicate
relationship with the same person is found in the database, the application
ignores the request and does not make the update. If a user tries to add the
user as a contact, an error message is thrown and database update does not
occur. Finally, if there is no error, database update succeeds and the user is
taken to that user’s own profile page which reflects the currently added
contacts. Alternatively, a logged-in user can at any time, click the My Profile
menu bar to view that user’s own profile and contact information.

Figure 3-8 shows the Web page where a user can define a relationship and
make contacts as we discussed.

Figure 3-8 Define relationship and make contact

� addContact()

This implements a method to add a contact/relationship with an existing
myContacts member. From the application point of view, a logged-in member
can search for other members by first name and/or last name and then view
134 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

another member’s detailed profile. The authorized user can add the result
member as a contact. It is worth explaining here how XCS makes creation
and manipulation of xml data easier. XCS’s Zend_Db_Xml_XmlUtil class
provides a convenience method to create a simpleXML representation of the
DOM object, which is easy to handle programmatically. Let us discuss the
flow here:

– We get XML data using XCS’s findById() method, passing the $id of
authorized user as shown in Example 3-32.

Example 3-32 XCS convenience method findById()

$result = $this → _db1 → findById($id);
$xmlContent = $result → current();

– xmlContent object now has the XML data. Remember our XML data
consists of two XML columns and two non-XML columns. Using the XCS
accessor’s method, you can access the data or about contents easily as
shown in Example 3-33, the first parameter is input DOM object and the
second parameter is what to retrieve.

Example 3-33 XCS convenience method exportToSimpleXml()

$sxml = Zend_Db_Xml_XmlUtil::exportToSimpleXML($xmlContent,
Zend_Db_Xml_XmlUtil::ABOUT);

– Now, since you have a simpleXML representation of your DOM data, you
can use any XPath expression to traverse into it and create an array to
access the data elements. In this application, we prohibit a user from
creating duplicate relationships with the same member and also from
creating any relationship with the actual user. Example 3-34 shows how to
build XML data for contact.

Example 3-34 Building XML data for contact

foreach ($sxml → xpath('//entry') as $curr) {
if ((int)$curr['id'] == $idToAdd) {
$relExists = false;
foreach ($curr → relationship as $currRel) {

if ((string) $currRel == $relationship) {
$relExists = true;
$exists = true;
break;
}

}
if (!$relExists) {
$curr → addChild('relationship');
$curr → relationship[++$count] = $relationship;
 Chapter 3. Application development with PHP 135

$exists = true;
break;
}
if ($exists) {

 break;
 }
 }
 $count++;
 }

– When we are ready to manipulate the XML and put it back into the
xmlContent store, we can simply use XCS’s importSimpleXML() method to
build the document and the call update() method to store it in XCS, as
shown in Example 3-35.

Example 3-35 XCS update

$entry = $sxml → addChild('entry');
$entry → addAttribute('id', $idToAdd);
$entry → addChild('relationship');
$entry → relationship = $relationship;
$xmlContent → about =
Zend_Db_Xml_XmlUtil::importSimpleXML($sxml);
$this → _db1 → update($xmlContent);

� processContact()

We created the method to get contact/relationship information from XCS and
keep in an array variable for easy manipulation and display on the form. It
also uses the exportToSimpleXml() convenience method.

Add Controller
Following the framework coding convention, we created controller functions
related to update and insert into addController.php. We walk you through the
important concepts, while discussing the action methods of addController.php.

In any Web application processing, the user inputs via Web pages and validating
them for further processing is not only important but also cumbersome. We do
this in the memberAction() method of addController. Zend_Filter_Input is a
framework component, which provides simple facilities to promote a structured
and rigid approach to input filtering of user data. PHP developers use various
types of input filtering techniques, including whitelist filtering, blacklist filtering,
regular expressions, conditional statements, and so on, but the good thing about
Zend_Filter_Input is that it combines all of these techniques into a single API with
consistent behavior and strict naming convention. Zend_Filter_Input is designed
primarily with arrays in mind. Many sources of input are already covered by
136 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

PHP's superglobal arrays ($_GET, $_POST, $_COOKIE, and so on.), and arrays
are a common construct used to store input from other sources. If you need to
filter a scalar, you can use Zend_Filter component. Zend_Filter_Input supports
both a strict and a non-strict approach. In a strict approach, a single array of post
variable to be processed is passed into the constructor as shown in
Example 3-36.

Example 3-36 Zend_Filter_Input

$filterPost = new Zend_Filter_Input($_POST);
$email = $filterPost → testEmail('email');

Zend_Filter_Input sets the array that is passed ($_POST) to NULL, so direct
access is no longer possible. If you need to access it directly and do not want
Zend_Filter_Input to set the $_POST array to null, you can use a non-strict
approach and pass FALSE as the second parameter. See Example 3-37.

Example 3-37 Zend_Filter_Input non-strict call

$filterPost = new Zend_Filter_Input($_POST, FALSE);
$email = $filterPost → testAlpha('name');

Saving Input data into XCS
After we filter and validate the input, we need to save it into persistent store. As
shown in Example 3-38, we construct the xml from the $_POST array, create a
DOM document, create an XMLContent object, and save it into XCS. Depending
on your skill level or the need of the application, you can also construct XML
using string concatenation or the PHP’s simpleXML object. You can add these
into XMLContent via an XMLContentUtil method call.

Example 3-38 Saving data to XCS

$doc = new DOMDocument();
$root = $doc → createElement("member");
$doc → appendChild($root);
foreach ($_POST as $key => $value) {

$elem = $doc → createElement($key);

Note: The testEmail() function is not available in Zend Framework as of
writing this book. You can write your own validation function for e-mail filtering
or for our application, we used testAlpha() to validate e-mail. Consider this as
an opportunity to get involved with framework community development and
contribute to the framework code. Also, for a complete list of available input
filtering facilities, refer to the online developers guide at the Zend framework
Web site.
 Chapter 3. Application development with PHP 137

$root → appendChild($elem);
$elemtext = $doc → createTextNode($value);
$elem → appendChild($elemtext);
}

$myDoc = new Zend_Db_Xml_XmlContent($doc);
$about = new DOMDocument();
$abtRoot = $about → createElement("contacts");
$about → appendChild($abtRoot);
$myDoc → about = $about;
$db → saveNew($myDoc);

Since the php array objects are associative, that is, stored as a $key → $value
pair, you can see it is easy to create XML elements and attributes by just looping
through the $_POST array.

Modifying data in XCS
If you notice in the previous example, the add/member action adds a member’s
profile into data and constructs an empty XML for ABOUT column. An empty
element </contacts> is created and stored in XCS. When a logged-in user
browses a myContacts member and adds the member as a contact, the
add/contact action is invoked. The contactAction invokes the database method
addContact, which calls XCS’s update function to update the entire xml
document. The db → addContact() method is explained in detail in the previous
database section.

ViewController
Similar to AddController, ViewController must not implement index action.
However, this controller should implement a __call() to handle dynamic actions
such as the following URL. This makes sure that any URL typing by the user is
handled appropriately.

http://localhost/view/123.

We discussed other actions such as search and display in detail in the previous
database section.

You can download the social network application called myContacts.com
application from the IBM Redbooks Web site at:

http://www.redbooks.ibm.com

Appendix C, “Additional material” on page 319” describes the download
instructions.
138 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.redbooks.ibm.com

3.4.4 Other Zend Framework components

We have discussed so far only a small portion of the functionalities Zend
Framework provides. As mentioned previously, the framework fulfills the
promises and provides a rich set of components to build today’s applications
quickly. In this section, we briefly go through some of these components. We
recommend that you refer to the Zend online manual for the details and
examples.

Zend_Feed
RSS & Atom feeds are hot technologies today and many applications are being
built to support them. RSS/Atom is a technology and syndication is a process.
Feed is about getting content regularly and sequentially. The core technology is
XML on which both are built, and hence, DB2 9 pureXML can be used to store
RSS/Atom feeds. XCS makes this job even easier. Zend_Feed provides a natural
syntax for accessing elements of feeds, feed attributes, and entry attributes.
Zend_Feed also has extensive support for modifying the feed and entry structure
with the same natural syntax and turning the result back into XML. In the future,
this modification support could provide support for the Atom Publishing Protocol.
The Zend online documentation shows an example to demonstrate a simple use
case of retrieving an RSS feed and saving relevant portions of the feed data to a
simple PHP array, which you could then use for printing the data, storing to a
database, and so on.

Zend_Mail
Zend_Mail provides generalized functionality to compose and send both text and
MIME-compliant e-mail messages.You can send mail with Zend_Mail via the php
built-in mail() function or via direct SMTP connection. Different options can also
be used such as sending HTML e-mail or sending attachments with e-mail. A
simple e-mail consists of some recipients, a subject, a body, and a sender. To
send mail using the Zend_Mail API, follow Example 3-39.

Example 3-39 Using Zend_Mail API to send e-mail

<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();
$mail → setBodyText('DB2 Express-C ROCKS with PHP !!');
//to send html email use setBodyHtml() instead of setBodytext()
//the MIME content type will be automatically set to html
$mail → setBodyHtml('DB2 Express-C ROCKS with PHP !!');
//to send attachment use addAttachment()
//by default it assume binary attachment, but second argument
//can override this to image
$mail → addAttachment($someBinaryString);
 Chapter 3. Application development with PHP 139

$mail → addAttachment($myImage, 'image/gif',
Zend_Mime::DISPOSITION_INLINE, Zend_Mime::ENCODING_8BIT);
$mail → setFrom('ranjanr@us.ibm.com', 'Rakesh');
$mail → addTo('geeks@zend.com', 'Geek #1');
$mail → setSubject('DB2Rocks......');
$mail → send();
?>

For more information about using Zend_Mail, refer Zend Framework’s online
manual.

Zend_PDF
The Zend_Pdf module is a PDF (Portable Document Format) manipulation
engine written entirely in PHP 5. It can load existing documents, create new
documents, modify documents, and save modified documents. Thus, it can help
any PHP-driven application dynamically prepare documents in a PDF by
modifying an existing template or generating a document from scratch. The
Zend_Pdf module supports the following features:

� Create new document or load existing one

� Retrieve specified revision of the document

� Manipulate pages within document

� Change page order, add new pages, and remove pages from a document

� Use different drawing primitives (lines, rectangles, polygons, circles, ellipses,
and sectors)

� Allow text drawing using any of the 14 standard (built-in) fonts or your own
custom TrueType fonts

� Handle rotations

� Perform image drawing

� Do incremental PDF file update

To see the code example about how to use Zend_PDF, refer to the Zend
Framework online manual.

3.4.5 Creating Web services with Zend Framework

Web services are Web-based enterprise applications that use open, XML-based
standards and transport protocols to exchange data with calling clients. Many
vendors including Amazon, Yahoo, and eBay offer numerous Web services that
you can use for free. This section describes the Web services components of
140 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Zend Framework. You can create a simple Web service using
Zend_Service_Flickr to search a Flickr (a Yahoo company) image.

Zend Framework preview release 0.1.4 comes with these Web services
components, which you can use to build a Web services application. We
anticipate that more Web service APIs will be added as the Framework matures
toward a 1.0 release.

Zend_Service_Amazon
Zend_Service_Amazon is a simple API for using Amazon Web services.
Zend_Service_Amazon has two APIs: A more traditional one that follows
Amazon's own API, and a simpler “Query API” for constructing even complex
search queries easily. Zend_Service_Amazon enables developers to retrieve
information appearing throughout Amazon.com Web sites directly through the
Amazon Web Services API. Some of the examples are:

� Store item information, such as images, descriptions, pricing, and more
� Customer and editorial reviews
� Similar products and accessories
� Amazon.com offers
� ListMania lists

You need to acquire a developer API key to access Amazon Web services. Visit
the following Web site to acquire the key:

http://www.amazon.com/b/102-3922921-6259314?ie=UTF8&node=3435361

Also, you can refer to the Zend Framework online manual for more information
about how to use these Web services.

Zend_Service_Yahoo
Zend_Service_Yahoo is a simple API for using many of the Yahoo REST APIs.
Zend_Service_Yahoo allows you to search Yahoo! Web search, Yahoo! News,
Yahoo! Local, Yahoo! Images, and more.

Zend_Service_Yahoo enables you to search the Web with Yahoo! using the
webSearch() method, which accepts a string query parameter and an optional
second parameter as an array of search options. For full details and an option
list, visit the Yahoo! Web Search Documentation at:

http://developer.yahoo.com/search/web/V1/webSearch.html
 Chapter 3. Application development with PHP 141

http://www.amazon.com/b/102-3922921-6259314?ie=UTF8&node=3435361
http://developer.yahoo.com/search/web/V1/webSearch.html

You can search for Images with Yahoo using Zend_Service_Yahoo's
imageSearch() method. This method accepts a string query parameter and an
optional array of search options. similar to the webSearch() method. For full
details and an option list, visit the Yahoo! Image Search Documentation at:

http://developer.yahoo.com/search/image/V1/imageSearch.html

In order to use the Yahoo Web services API, you must acquire a Web services
application ID. To acquire the application ID, submit the form at this Web site:

http://api.search.yahoo.com/webservices/register_application

Zend_Service_Flickr
Flickr is a Yahoo company that offers free services for managing and sharing
pictures. Flickr also provides Web services APIs for developers to build Web
applications using these APIs.

Zend_Service_Flickr is a simple API for using the Flickr REST Web Service. In
order to use the Flickr Web services, you must have an API key. To obtain a key
and for more information about the Flickr REST Web Service, visit the Flickr API
Documentation at:

http://www.flickr.com/services/api/

In order to show you the simplicity of the Web service API, we chose to create a
Web service application that searches for images for a user given keyword at
Flickr Web site and brings the links to the images. The user can click on the links
and display the images. In the Zend Framework MVC architecture, you ideally
create a separate controller and templates to build this Web service code, but for
simplicity, we created a photoAction() method in the existing
IndexController.php. The code for photoAction() is shown in Example 3-40.

Example 3-40 photoAction() method

public function photoAction()
 {

 //create the Flickr service object
 $flickr = new Zend_Service_Flickr('YOUR_API_KEY');

 $view = Zend::registry('view');
 echo $view → render('flickr.php');
 $keyword = $_POST['keyword'];
 $view→ results = $flickr→ tagSearch($keyword);
 foreach ($view → results as $entry)
 {
 echo "
 . $entry → title .
";
 $imageId = $entry → id;
 $view→ image = $flickr→ getImageDetails($imageId);
142 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://api.search.yahoo.com/webservices/register_application
http://www.flickr.com/services/api/
http://developer.yahoo.com/search/image/V1/imageSearch.html

 foreach ($view → image as $curr)
 {
 echo "Click for Image\n";
 }
 }
 }

As you can see in Example 3-40 on page 142, the first step is to create a Flickr
Web service object. In order to do this, you should have your Flickr Web services
key ready. For non-commercial use, you obtain this key easily from the Web site
just mentioned in the previous section. We render a page for the user to enter a
keyword. Each image on Flickr Web site is tagged with a keyword or title. We use
a tagSearch() function, which takes the keyword as an argument and returns the
resultset having the keyword in the tag name. You can also use the userSearch()
function to return result image information by userId or userEmail. The following
classes are all returned by tagSearch() and userSearch():

� Zend_Service_Flickr_ResultSet
� Zend_Service_Flickr_Result
� Zend_Service_Flickr_Image

Once you have a resultset available, you can loop through it and access its
properties. In Example 3-40 on page 142, we access the ID and title of an image.
We then use the getImageDetails() function to access the image location (URI)
by its ID. The same Web page shows the image URL with links to different
presentations of the same images. Example 3-41 shows the view flickr.php.

Example 3-41 Template for displaying flickr Web services output images

<html><head>
 <title>Zend Framework Web Services example</title>
</head><body>
<h1>Search for the Flickr Image using Zend Framework web services</h1>
<form action="/index/photo" method="POST">
Type your search keyword: <input type=text name="keyword"><P>
<INPUT type=submit value="Submit your search keyword">
</form></body></html>
 Chapter 3. Application development with PHP 143

Finally, the Web page (Figure 3-9) accepts the keyword search from the user and
gets the images through Flickr Web services and displays them. Similar to the
controller design, the URL to access the Web site is:

http://localhost/index/photo

Figure 3-9 Search for Flickr image
144 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://localhost/index/photo

3.5 Conclusion

PHP allows rapid Web application development and DB2 9 allows easy
manipulation and storage of XML data, plus the capability to perform traditional
relational database operations as well.

There are simply far too many interesting PHP application development topics to
discuss in this chapter. We hope that the various references and working
application examples provided in this chapter have given you some ideas about
using the framework with DB2 Express-C to develop your next database driven
Web application.

As the volume of XML data generated and used continues to grow in the years to
come, easy interoperability between disparate systems seems closer than ever.
The XCS will be available to enable developers of all skill levels to quickly and
easily create the applications that will allow these systems to talk the common
language of XML. An IBM DB2 9 implementation of the XCS further combines
powerful XML storage and XQuery technologies with a world-class relational
database management system.

Be sure to consult “Related publications” on page 321 for additional reading
material, and also be sure to download and try the application code discussed in
this chapter.
 Chapter 3. Application development with PHP 145

146 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Chapter 4. Application development
with C/C++

In this chapter, we discuss:

� How to set up the environment to build a C/C++ application
� The fundamentals of using embedded SQL
� How to set up the environment to build a CLI application
� The fundamentals of using the Call Level Interface (CLI)
� Using XML

4

© Copyright IBM Corp. August 2006. All rights reserved. 147

4.1 Overview

Applications written in the C/C++ programming language can access and
manipulate data in a DB2 database using embedded SQL or through the DB2
Call Level Interface (CLI).

Embedded SQL statements in an application can either be of static or dynamic
type. If the complete SQL statement and all database objects accessed within
the statement are known prior to compile time, then it can be written as a static
SQL statement. Otherwise, if the complete SQL statement or any database
objects accessed within the statement are not known until runtime, then it must
be written as a dynamic SQL statement. Using embedded SQL in an application
requires a precompiler to create its associated package in the database. A
package is a database object and is needed for processing because it holds the
optimized form of an SQL statement.

The DB2 Call Level Interface is an SQL interface that C/C++ applications can
use to interact with DB2. The interface follows the ISO CLI and Microsoft's Open
Database Connectivity (ODBC) standard. In addition, it provides some useful
DB2 Application Programming Interfaces (APIs). Writing C/C++ code to make
use of the CLI interface is an alternative to using embedded dynamic SQL.

Whether a C/C++ application uses embedded static SQL, embedded dynamic
SQL, or the CLI interface is dependent on several factors. If database statistics
do not change much, programs can run faster using embedded static SQL
because source files are precompiled and SQL statements do not need to be
prepared at runtime. However, if database statistics change often, programs can
run faster using embedded dynamic SQL because it uses current database
statistics during runtime. If the application wants to make use of dynamic SQL
processing, or the application will run against different database products, then
using the CLI interface to access DB2 can be the best approach. This is because
you do not need to precompile CLI applications, and, hence, there are no
application bind files that need to be bound to the database. Note that it is
possible for an application to use both embedded static SQL and the CLI
interface (which runs dynamic SQL) by writing a CLI application with static SQL
modules. You need to take all these factors into consideration when coding a
C/C++ application to interact with DB2.

4.1.1 C/C++ development environment setup

Developing C/C++ applications with the DB2 product family requires the DB2
Application Development Client (which is part of the DB2 Client in V9) and a
supported C/C++ compiler.
148 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Supported compilers
DB2 Express-C is currently supported on Linux and Windows platforms. At the
time of writing, the following C/C++ compilers are supported.

Table 4-1 Supported C/C++ Compiler versions

For the latest information about the supported C/C++ compiler versions, refer to
the DB2 Application Development Web site at:

http://www.ibm.com/software/data/db2/udb/ad/

Setting up the C/C++ environment
To set up the C/C++ environment, follow these steps:

1. Check C/C++ compiler

Ensure a supported C/C++ compiler is installed on a DB2 Express-C
supported platform. Check Table 4-1 for a list of supported compiler versions.
Refer to the compiler documentation for installation and usage instructions.

2. Check DB2 installation

Ensure the development machine has either DB2 Express-C installed (if the
database will be accessed locally) or at least the DB2 Application
Development Client (if accessing the database remotely). This ensures you
have the necessary precompilers and static libraries to develop C/C++
programs. If a DB2 client is installed, ensure that the client machine can
connect successfully to the remote server.

3. Check Windows environment (if applicable)

On Windows development machines, ensure that the INCLUDE environment
variable contains %DB2PATH%\INCLUDE as the first directory ahead of any
Microsoft Platform SDK include directories. If this is not the case, you can do
the following:

a. Modify the INCLUDE variable at a command prompt by running the
command: set INCLUDE=%DB2PATH%\include;%INCLUDE%

Platform Language Supported compiler versions

Linux C GNU/Linux gcc Versions 2.95.3 and 2.96

Linux C++ GNU/Linux g++ Versions 2.95.3 and 2.96

Windows C/C++ Microsoft Visual C++® Version 6.0
Microsoft Visual C++ .NET
Intel® C++ Compiler for 32-bit applications Version 6 or
later
 Chapter 4. Application development with C/C++ 149

http://www-306.ibm.com/software/data/db2/udb/ad/

b. For development using Visual C++, modify the INCLUDE environment
variable in the vcvars32.bat file. Move the %INCLUDE% portion to the
beginning of the list of Visual C++ directories.

4.2 Building a C/C++ application using embedded SQL

The steps involved in building a C/C++ application with embedded SQL are:

1. Create C/C++ source files containing programs with embedded SQL
statements. The extension of a source file is dependent on the platform and
host language (C or C++). The possible file extensions are discussed in 4.3.2,
“Precompiler source file extensions” on page 153.

2. Connect to the database, and precompile each source file using the DB2
PREP or PRECOMPILE command.

Depending on the file extension, either the C or C++ precompiler is invoked.
The precompiler generates modified source files containing C/C++ language
calls for the SQL statements. Depending on the options specified, packages
corresponding to the embedded SQL statements in the source files can be
created in the database, or bind files containing information about how to
create the packages can be produced.

3. Compile the modified source files (and other files without SQL statements)
using the C compiler.

4. Using the object files created from the compilation, link the files with DB2
UDB and C libraries to produce an executable program.

5. If packages were not created at precompile time (or if a different database is
to be accessed) and bind files were created, the bind files are bound against
the database.

6. Run the application.

For our example, assume we finished our C inventory program named
inventory.sqc on a Windows system using Visual C++. To precompile the
program, we can run the following statement shown in Example 4-1.

Example 4-1 Output from running the PREP command

db2 prep inventory.sqc

LINE MESSAGES FOR inventory.sqc

 SQL0060W The "C" precompiler is in progress.
 SQL0091W Precompilation or binding was ended with "0"
 errors and "0" warnings.
150 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

This will produce a modified source file named inventory.c and a package in the
database.

Alternatively, we can create a bind file and later bind the file to manually create a
package. This is known as deferred binding. We can accomplish this by using
the BINDFILE option in the PRECOMPILE command.

Example 4-2 Basic statements to create a bind file and package

db2 prep inventory.sqc BINDFILE
db2 bind inventory.bnd

After precompiling, we need to compile the modified source file. We can do this
on the Windows system by running the command:

cl -Zi -Od -c -W2 inventory.c

This produces an object file named inventory.obj. We can then create an
executable file named inventory.exe by running the command:

link -debug -out:inventory.exe inventory.obj db2api.lib

Depending on your compiler and the options you set, the commands for
compiling and linking will be different.

4.2.1 Host variables and parameter markers

In a static SQL statement, the complete SQL statement along with the type and
length of the data requested is known at precompile time. The only missing
information is the actual data values for the SQL statement. Acting as
placeholders for the missing data, host variables need to be defined by the
application to represent the remaining information in the SQL statement. Host
variables are represented by prefixing a colon (:) in front of the variable name.

For a dynamic SQL statement, parameter markers are represented as a question
mark (?) for any variable information in an SQL statement.

4.3 A simple C inventory program using embedded SQL

To illustrate the basic fundamentals of building a C/C++ application, let us
develop a simple C inventory program for a company to store inventory
information about its products, and the associated quantity and location of each
product.
 Chapter 4. Application development with C/C++ 151

For simplicity, we work with a single table to manage the inventory for the
company. You need to create the SAMPLE database provided with DB2
Express-C for this program, because it will interact with the INVENTORY table. If
the database does not exist, refer to Chapter 1, “DB2 application development
overview” on page 1 for steps about how to create the database.

The application interacts with the user to perform the following operations:

� Enter a new product:

– New products need to be entered into the database. For a new product, its
product ID/barcode, quantity on hand, and location information need to be
added to the INVENTORY table.

– An error will occur if the product already exists in the database.

� Update quantity/Update location:

– Any changes in the quantity or location of a product need to be reflected in
the table.

– An error will occur if the product does not exist in the database.

� Get information about a part:

– The user can query the database for a product to get information about the
quantity at hand or its location.

– An error will occur if the product does not exist in the database.

4.3.1 The INVENTORY table

The INVENTORY table in the SAMPLE database consists of three columns named
PID, QUANTITY, and LOCATION. They store the ID/barcode, quantity on hand,
and the location of a product. The PID column is the unique identifier for a
product and must be distinct within the table. By default, the INVENTORY table
in the SAMPLE database is populated with the records shown in Example 4-3.

Example 4-3 Sample data from the INVENTORY table

PID QUANTITY LOCATION
---------- ----------- -----------
100-100-01 5 -
100-101-01 25 Store
100-103-01 55 Store
100-201-01 99 Warehouse
152 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

4.3.2 Precompiler source file extensions

To start off, we need to give the C program the appropriate file extension, which
the precompiler can recognize. C/C++ precompilers are needed to convert
embedded SQL statements in each C/C++ source file to DB2 Runtime API calls
to the DB2 engine.

Unless otherwise specified by the BINDFILE option, a package is generated in
the target database during precompile time and is needed for SQL to be
executed. A package is a database object containing sections, which correspond
to embedded SQL statements in a source program module. A section contains a
compiled/optimized SQL statement.

The precompiler can optionally defer the creation of a package and create a bind
file, which contains all the information needed to create a package. To create a
package, the bind file will need to later be manually bound to the database. This
is known as deferred binding. Deferred binding provides more flexibility because
applications only need to be precompiled once (without a package being
created), but can be bound against multiple databases later to create a package
using the one bind file. This means the same application can access several
databases, instead of just the one database it was precompiled against.

Once a package is created, optimizer access plans are created for static
embedded SQL statements from the current database statistics during bind time.
Dynamic embedded SQL statements will get an access plan created during
runtime.

Table 4-2 lists the C/C++ source file extensions required by the precompiler,
along with the file extensions given to the modified source output files.

Table 4-2 Precompiler file extensions

If we name our example C program inventory.sqc, and precompile the program
once it is finished, this produces a modified source file with the file extension of
.c. The OUTPUT option can be specified in the PREP/PRECOMPILE command
to override the name of the modified source file.

Source file extension
(input)

Modified source file
extension (output)

C (Windows/Linux) .sqc .c

C++ (Linux) .sqC .C

C++ (Windows) .sqx .cxx
 Chapter 4. Application development with C/C++ 153

4.3.3 Inventory program code template

We start off with a simple code skeleton of the application (see Example 4-5 on
page 155). This C program prompts the user for an inventory operation and calls
the appropriate functions to insert (add_product()), update (update_product()),
or perform queries (query_update()) against the INVENTORY table in the SAMPLE
database. Applications can be written to contain both static and dynamic
embedded SQL statements. For demonstration purposes, this application
contains both types.

Example 4-4 Code template of inventory.sqc

/**
** Source File Name: inventory.sqc
**
** This simple C program will manage the inventory of
** products for a company.
**
***/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void add_product(void);
void update_product(void);
void query_product(void);

main()
{

int option;

while(1){
printf("---\n");
printf(" SIMPLE INVENTORY MANAGEMENT SYSTEM \n\n");
printf(" 1. Add New Product \n");
printf(" 2. Update Product Info (Quantity or Location) \n");
printf(" 3. Query Product \n");
printf(" 4. Exit \n\n");
printf(" Enter option: ");
scanf("%d", &option);

switch(option) {
case 1:add_product();

break;
case 2:update_product();
154 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

break;
case 3:query_product();

break;
case 4:return 0;
default : printf(" Error: Option not recognized\n");

break;
}

printf ("\n");
}

}

void add_product(void){…}
void update_product(void){…}
void query_product(void){…}

Dynamic embedded SQL is used to update information about a product. The
user can choose to update the quantity or location of a particular product. The
application will prompt the user to specify which piece of information about a
product they wish to update. The complete SQL statement will not be known at
precompile time because the column of the table (either QUANTITY or
LOCATION) to be updated is not known. The column of the table to be updated
will only be known at runtime once the user supplies the data. Only at that time
can the SQL statement be built and submitted to the database for processing.

Static embedded SQL is used in adding a new product and querying for
information about a product, because the complete SQL statement will exist at
precompile time.

The system will provide a menu of basic inventory operations to the user, and
look like Example 4-5.

Example 4-5 Menu of inventory operations

 SIMPLE INVENTORY MANAGEMENT SYSTEM

 1. Add New Product
 2. Update Product Info (Quantity or Location)
 3. Query Product
 4. Exit

 Enter option:
 Chapter 4. Application development with C/C++ 155

4.3.4 Host variable declarations

Host variables used in static SQL statements are declared in a DECLARE
SECTION. For example, let us declare the static host variables needed for our
program, see Example 4-6.

Example 4-6 Host variable declarations

EXEC SQL BEGIN DECLARE SECTION;
char PID[11];
sqlint32 quantity;
char location[129];

EXEC SQL END DECLARE SECTION;

The EXEC SQL portion of the declaration is needed to indicate the beginning of
an embedded SQL statement and must be terminated by a semicolon. The
normal form is:

EXEC SQL <Standard SQL statement>;

In the INVENTORY table in the SAMPLE database, the PID and LOCATION columns are
of type VARCHAR(10) and VARCHAR(128), respectively. In the above
declaration, we have defined the size of those columns to be of one more
character to take into account the null terminator. This will ensure that returned
data values from the database do not get truncated. It is permissible to have
more than one DECLARE section in a source file, although all host variables
declared must be distinct within the source file.

After declaring the host variables, we have the option of using them as input or
output variables in an SQL statement. Example 4-7 shows the permissible usage
of host variables within an SQL statement.

Example 4-7 SQL Statement with both input and output host variables

SELECT quantity, location into :quantity, :location from inventory
where PID=:PID;

The input host variable for the above statement is PID and a value for it will be
supplied to the database by the application. The output host variables are
QUANTITY and LOCATION, and its data values will be returned from the
database to the application. In both cases, a colon (:) must precede the host
variable name.
156 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

4.3.5 Using db2bfd to display host variable declarations

If a bind file is created during precompile time, we can use a DB2 bind file
description tool named db2bfd to look at the contents of the bind file. This may be
useful for debugging and can display information such as SQL statements or
host variables declared. Table 4-3 lists the db2bfd command options.

Table 4-3 db2bfd command options

For example, let us precompile the source file and add the option to create a bind
file by running the command:

db2 prep inventory.sqc bindfile

This will produce a bind file named inventory.bnd.

Running the command db2bfd -v inventory.bnd provides CLP output as shown
in Example 4-8.

Example 4-8 db2bfd sample output

inventory.bnd: Host Variables = 3

Type SQL Data Type Length Alias Name_Len Name UDT Name
---- -------------- ------ ------ -------- ---------------

 460 C STRING 11 H00001 3 PID
 496 INTEGER 4 H00002 8 quantity
 460 C STRING 128 H00003 8 location

4.3.6 Using db2dclgn to generate host variable declarations

DB2 can simplify development by automatically generating host variable
declarations for a specified database table.

In Example 4-9 on page 158, the command will generate an .h output file with the
same name as the table. It will contain the host variable declarations.

db2bfd option Information

-s SQL statements

-b Bind file header

-v Host variables declared

-h Help
 Chapter 4. Application development with C/C++ 157

Example 4-9 db2dclgn example

db2dclgn -d sample -t inventory

inventory.h:

struct
{
 struct
 {
 short length;
 char data[10];
 } pid;
 sqlint32 quantity;
 struct
 {
 short length;
 char data[128];
 } location;
} inventory;

4.3.7 Connecting to a database

Let us connect to the database within the application and start implementing the
operations in our application. To connect to the database, we use the CONNECT
TO statement. We add the following SQL statement into the main function of our
program.

EXEC SQL CONNECT TO sample;

Alternatively, we can choose to connect to the database using a particular user
ID and password:

EXEC SQL CONNECT TO sample USER :uid USING :pwd;

If this method is chosen, host variables for the user ID and password need to be
declared for use in the CONNECT statement. In our simple inventory application,
we just connect to the SAMPLE database using the default user ID.

4.3.8 Disconnecting from a database

To disconnect from the database, we can add the following statement at the end
of our program.

EXEC SQL CONNECT RESET;
158 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

4.3.9 The SQL Communications Area (SQLCA)

The SQL Communications Area (SQLCA) is a DB2 data structure useful in
obtaining information pertaining to the processing of an SQL statement or an API
call.

As the SQLCA is updated by the database manager after each SQL statement, it
is important we examine the structure to ensure that any unexpected errors will
be handled by the application.

The SQLCA structure provides important information such as:

� SQLCODE:

This is an integer return code indicating whether the most recent SQL
statement processed was successful or not. The value is 0 if successful, 100
if a query yields no results, positive if a warning occurred, and negative if the
processing was unsuccessful and an error was returned.

� SQLSTATE:

This is a five digit character length field that contains a return code from the
last SQL statement processed. The return code is consistent with the SQL
Standard.

� SQLERRD:

This is an integer array containing six pieces of information related to the last
SQL statement processed that can be useful when an error occurs.

To define the SQLCA, we can add the following statement to our program:

EXEC SQL INCLUDE SQLCA;

Alternatively, we can include the SQLCA header file and use it to declare an
application variable:

#include <sqlca.h>
struct sqlca mySqlca;

If we had additional source files, we can add the following lines to the other
source files:

#include <sqlca.h>
extern struct sqlca sqlca
 Chapter 4. Application development with C/C++ 159

4.3.10 Quick SQLCA example

Let us see a quick example of how we can use the SQLCA to get information
related to the processing of an SQL statement. Let us connect to the database
with an incorrect database name using the following statement:

EXEC SQL CONNECT TO sampsle;

Let us also add the following lines in the code to check whether the database
connection was successful using the SQLCA:

if (sqlca.sqlcode!=0){
printf("Database connection error occurred.

Sqlcode=%d\n",sqlca.sqlcode);
return;

}

We then precompile, compile, link, and run the program. The following is
returned by the application:

Database connection error occurred. Sqlcode=-1013

For debugging and illustrative purposes, we can check out the fields of the
SQLCA to see what information is provided. Normally, not all SQLCA fields are
needed to diagnose an application problem. We print the fields of the SQLCA as
shown in Example 4-10.

Example 4-10 Code to print the SQLCA fields

printf("sqlcabc: %d\n", sqlca.sqlcabc); // Length of SQLCA
printf("sqlcode: %d\n", sqlca.sqlcode); // SQL Return Code
printf("sqlerrml: %d\n", sqlca.sqlerrml); // Length of sqlerrmc
printf("sqlerrmc: %s\n", sqlca.sqlerrmc); // Message tokens
printf("sqlerrd[0]: %d\n", sqlca.sqlerrd[0]);
printf("sqlerrd[1]: %d\n", sqlca.sqlerrd[1]);
printf("sqlerrd[2]: %d\n", sqlca.sqlerrd[2]);
printf("sqlerrd[3]: %d\n", sqlca.sqlerrd[3]);
printf("sqlerrd[4]: %d\n", sqlca.sqlerrd[4]);
printf("sqlerrd[5]: %d\n", sqlca.sqlerrd[5]);
printf("sqlwarn: %s\n", sqlca.sqlwarn); // Warning indicators
printf("sqlstate: %s\n", sqlca.sqlstate); // Return Code

This produces the output shown in Example 4-11 on page 161.
160 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 4-11 Sample output of values stored in the SQLCA

sqlcaid: SQLCA ê
sqlcabc: 136
sqlcode: -1013
sqlerrml: 7
sqlerrmc: SAMPSLE
sqlerrd[0]: 0
sqlerrd[1]: 0
sqlerrd[2]: 0
sqlerrd[3]: 0
sqlerrd[4]: 0
sqlerrd[5]: 0
sqlwarn: 42705
sqlstate: 42705

Looking up the SQLCODE and SQLSTATE, we discover that the problem
resulted because the database manager could not find the database specified in
the application.

Alternatively, we can use a DB2 API called sqlaintp defined in sql.h to help get
more information about the error. This function will return the error text for an
SQLCODE in the SQLCA. An example of using this function is shown in
Example 4-12.

Example 4-12 Using the sqlaintp API to get error info

char errText[1000];
….
sqlaintp(errText,999,0,&sqlca);
printf("%s\n",errText);

The function call above retrieves the SQLCODE error message and stores it in a
buffer named errText. As input to the function, we provide the string buffer,
which stores the error message (errText), the size of the string buffer (999), the
maximum width of each line of the message text ('0' means no line breaks
needed in the text), and the pointer to the SQLCA structure (sqlca).

The function call will generate the following message:

SQL1013N The database alias name or database name "SAMPSLE" could not
be found. SQLSTATE=42705

After all this debugging, it appears the name of the database specified in our
code was incorrect. The line needs to be corrected to:

EXEC SQL CONNECT TO sample;
 Chapter 4. Application development with C/C++ 161

4.3.11 Inserting data

The users of the inventory system in our example need to be able to add a new
product into the database. The user might have the session shown in
Example 4-13.

Example 4-13 Sample session adding a product into inventory program

 SIMPLE INVENTORY MANAGEMENT SYSTEM

 1. Add New Product
 2. Update Product Info (Quantity or Location)
 3. Query Product
 4. Exit

 Enter option: 1

 Add A Product

 Enter Product ID : 101-101-10
 Enter Quantity : 50
 Enter Location : Warehouse

 Product successfully added.

When the user chooses the option to add a new product, this will invoke the
add_product() function within the application. We need to write an INSERT
statement to add a record to the INVENTORY table using the values supplied by
the user.

The complete definition of the add_product() function is shown in Example 4-14.

Example 4-14 Complete definition of the add_product() function

void add_product(void)
{

printf("---\n");
printf(" Add A Product \n\n");
printf(" Enter Product ID : ");
scanf("%s", &PID);
printf(" Enter Quantity : ");
scanf("%d", &quantity);
printf(" Enter Location : ");
scanf("%s", &location);
162 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

EXEC SQL INSERT INTO inventory (PID, quantity, location) VALUES
(:PID, :quantity, :location);

if (sqlca.sqlcode!=0) {
if (sqlca.sqlcode == -803)

printf("\n Error: Product already exists in the database.\n");
else

printf("\n Error: Problem occurred when adding a new product.
Sqlcode: %d Sqlstate: %s\n",sqlca.sqlcode, sqlca.sqlstate);

return;
}

EXEC SQL COMMIT;
printf("\n Product successfully added.");

}

In Example 4-14 on page 162, we prompt the user for information on the product
to be added and populate the host variables with the supplied values. We then
use the host variables in the INSERT statement and check whether the
processing was successful.

Note that we add a COMMIT after the execution of the INSERT. This is because
when a database connection is initially established, the application starts a
transaction with any executable SQL statement such as SELECT, INSERT,
CREATE, GRANT, and so on. Within the transaction, any number of SQL
statements can be issued. This transaction is considered to be an atomic unit of
work where either all or none of the changes within a transaction are made. To
end the transaction, a COMMIT or a ROLLBACK must be issued. Issuing a
COMMIT will apply all the changes to the database, whereas issuing a
ROLLBACK cancels any changes to be made to the database.

4.3.12 Retrieving data

There are multiple ways to retrieve data from a database. Depending on whether
a single row or multiple row result set is returned, this determines whether a
cursor will be used. A cursor is a mechanism that is used to process each row of
a result set.

For example, assume we want to find all the products available at the store in our
INVENTORY table. Because it is possible that more than one row is returned from
the query, we use a cursor to retrieve and process the rows. Example 4-15 on
page 164 shows how to use a cursor.
 Chapter 4. Application development with C/C++ 163

Example 4-15 Using a cursor

EXEC SQL DECLARE c1 CURSOR FOR SELECT PID from inventory where
location='Store';

EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO :PID;
printf("%s\n",PID);
…
EXEC SQL CLOSE c1;
EXEC SQL COMMIT;

In Example 4-15, a cursor named c1 is declared to hold a resultset of product
IDs. To use the cursor, the cursor is opened and data is retrieved into the PID
host variable. Once we are finished processing the resultset, the cursor should
be closed and a COMMIT executed to release any resources held.

In the inventory program we are developing, we need to retrieve information
about a single product. Because products are unique within the INVENTORY
table, we will only be retrieving one row back from the database (if the product
exists). This means that instead of a cursor, we can use a SELECT INTO
statement which will directly populate the host variables. A sample session from
querying a product is shown in Example 4-16. The complete definition of the
query_product() function is shown in Example 4-17 on page 165.

Example 4-16 Sample session querying a product in the inventory program

 SIMPLE INVENTORY MANAGEMENT SYSTEM

 1. Add New Product
 2. Update Product Info (Quantity or Location)
 3. Query Product
 4. Exit

 Enter option: 3

 Query A Product

 Enter Product ID : 101-101-10
 Found Quantity : 50
 Location : Warehouse

164 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 4-17 Complete definition of the query_product() function

void query_product(void)
{

printf("---\n");
printf(" Query A Product \n\n");
printf(" Enter Product ID : ");
scanf("%s", &PID);

EXEC SQL WHENEVER SQLERROR GOTO errorFound;
EXEC SQL WHENEVER NOT FOUND GOTO PIDNotFound;

EXEC SQL SELECT quantity, location INTO :quantity, :location from
inventory where PID=:PID;

printf(" Found Quantity : %d\n",quantity);
printf(" Location : %s\n",location);
EXEC SQL COMMIT;

return;

errorFound: {
printf("\n Error: Problem occurred. Sqlcode: %d Sqlstate:

%s\n",sqlca.sqlcode, sqlca.sqlstate);
return;

}
PIDNotFound: {

printf("\n Error: Product ID was not found. \n");
return;

}

}

4.3.13 Indicator variables

When a value is nullable, an application needs to check whether the value of a
column returned is null or not. To do this using embedded SQL, we can use
indicator variables. For example, if we want to check whether the quantity and
location data value returned from the database is null, we can modify the
statement in Example 4-17 to the one shown in Example 4-18 on page 166.
 Chapter 4. Application development with C/C++ 165

Example 4-18 Using indicator values to check nullability

EXEC SQL SELECT quantity, location INTO :quantity INDICATOR :ind1,
:location INDICATOR :ind2 from inventory where PID=:PID;

The INDICATOR keyword and the indicator host variable are added after each
host variable to be checked. We need to ensure that the indicator host variables
ind1 and ind2 are declared in the DECLARE section of the program. As the
indicator variable is of SMALLINT data type, the C data type can be declared to
be short. An indicator host variable with a value of -1 is null, any other value is
considered not-NULL. The INDICATOR keyword is optional. Example 4-19
shows the same SQL statement without the INDICATOR keyword.

Example 4-19 Using indicator without INDICATOR keyword

EXEC SQL SELECT quantity, location INTO :quantity :ind1, :location :ind2 FROM
inventory where PID=:PID;

4.3.14 The WHENEVER Statement

Within an application, we can specify how to handle certain SQL conditions such
as if an SQL error, warning, or a not found condition (SQLCODE of +100) is
returned from the database.

There are three main types of the WHENEVER clause that can be in an
embedded SQL statement:

EXEC SQL WHENEVER NOT FOUND <action>
EXEC SQL WHENEVER SQLERROR <action>
EXEC SQL WHENEVER SQLWARNING <action>

The possible actions are CONTINUE, GOTO <label>, or GO TO <label>.

In Example 4-17 on page 165, we added WHENEVER clauses into our
query_product() function. If a NOT FOUND condition occurs, we will print out the
appropriate error message. Otherwise, we print a more generic error message.

4.3.15 Preparing SQL statements

We have been working with embedded static SQL statements in the
add_product() and query_product() functions in our sample inventory program.
However, for the inventory operation where a column is to be updated, we need
to use embedded dynamic SQL and dynamically prepare the SQL statement.

Note: There is no comma between a host variable and its indicator.
166 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

This will finally generate an executable access plan in the package. Once that is
done, we can execute the prepared SQL statement or declare a cursor to handle
the result set.

For example, let us say we wanted to delete a record from the INVENTORY
table. Once we prepare the SQL statement, we can execute the statement
multiple times using different parameter marker values but the same application
package.

Example 4-20 Preparing a DELETE statement

strncpy(deleteStmt,"delete from inventory where PID=?",
sizeof(deleteStmt));
EXEC SQL PREPARE stmt FROM :deleteStmt;
strncpy(value," 100-100-01",sizeof(value));
EXEC SQL EXECUTE stmt USING :value;
strncpy(value," 100-101-01",sizeof(value));
EXEC SQL EXECUTE stmt USING :value;
EXEC SQL COMMIT;

Assuming we have declared the deleteStmt and value host variables in a
DECLARE section, the code fragment in Example 4-20 prepares a statement
with a single parameter marker. The prepared statement then gets executed
multiple times using different data values. It is important to remember that a
COMMIT must be issued in order for the changes to the database to occur.

You might notice that preparing the DELETE statement in Example 4-20 is quite
unnecessary, because it can be done using static embedded SQL and host
variables since we know the complete SQL statement. It can be rewritten as
Example 4-21.

Example 4-21 Rewriting Example 4-22 as a static SQL statement

strncpy(value," 100-100-01",sizeof(value));
EXEC SQL DELETE FROM INVENTORY WHERE PID=:value;
strncpy(value," 100-101-01",sizeof(value));
EXEC SQL DELETE FROM INVENTORY WHERE PID=:value;
EXEC SQL COMMIT;

If a statement can be written as static SQL, you might want to consider avoiding
preparing a statement dynamically using parameter maker to avoid run-time
costs incurred with a PREPARE. However, if static SQL is run on databases,
which are continuously changing (which means the statistics keep changing),
dynamic SQL might be more suitable. Also, dynamic SQL offers more flexibility
than static SQL has to offer. In your application development, you need to keep
these things in mind and choose your approaches wisely.
 Chapter 4. Application development with C/C++ 167

If an SQL statement does not contain host variables, nor parameter markers, and
it does not return a result set, then the EXECUTE IMMEDIATE statement can be
used. This statement prepares and executes a statement in one step. For
example, in our inventory program, we need to update information about a
product in the INVENTORY table as specified by the user. Because the column
to be updated is unknown prior to precompile time, dynamic SQL must be used
and we need to prepare the statement. Once we get the column to be updated
and its value from the user, we can build the SQL string and then use the
EXECUTE IMMEDIATE statement to prepare and execute in one step. This is
shown in Example 4-22. A sample user session is shown in Example 4-23 on
page 169. The completed update_product() function can be found in the
complete program definition shown in Example 4-24 on page 169.

Example 4-22 Updating a column using EXECUTE IMMEDIATE

if (option==UPDATE_LOCATION) // Ensure single quotes enclose the
location value

sprintf(updateStmt,"update inventory set %s='%s' where PID='%s'",
updateField, updateValue, PID);
else

sprintf(updateStmt,"update inventory set %s=%s where PID='%s'",
updateField, updateValue, PID);

EXEC SQL EXECUTE IMMEDIATE :updateStmt;
EXEC SQL COMMIT;
168 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 4-23 Sample session updating a product in the inventory program

 SIMPLE INVENTORY MANAGEMENT SYSTEM

 1. Add New Product
 2. Update Product Info (Quantity or Location)
 3. Query Product
 4. Exit

 Enter option: 2

 Update A Product

 1. Update quantity
 2. Update location

 Enter option: 1

 Enter product ID to update: 101-101-10
 Enter new quantity : 20

 Product successfully updated.

4.3.16 Complete C inventory program

After adding the data retrieve and manipulation code into the inventory program
template shown in Example 4-4 on page 154, we have a complete C inventory
program as shown in Example 4-24.

Example 4-24 inventory.sqc

/**
** Source File Name: inventory.sqc
**
** This simple C program will manage the inventory of
** products for a company
**
***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC SQL BEGIN DECLARE SECTION;
 Chapter 4. Application development with C/C++ 169

char PID[11];
sqlint32 quantity;
char location[129];

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void add_product(void);
void update_product(void);
void query_product(void);

main()
{

int option;

// Connect to the SAMPLE database
EXEC SQL CONNECT TO sample;
if (sqlca.sqlcode!=0){

printf("Database connection error occurred. Sqlcode: %d
Sqlstate: %s\n",sqlca.sqlcode, sqlca.sqlstate);

return;
}

while(1){
printf("---\n");
printf(" SIMPLE INVENTORY MANAGEMENT SYSTEM \n\n");
printf(" 1. Add New Product \n");
printf(" 2. Update Product Info (Quantity or Location) \n");
printf(" 3. Query Product \n");
printf(" 4. Exit \n\n");
printf(" Enter option: ");
scanf("%d", &option);

switch(option) {
case 1:add_product();

break;
case 2:update_product();

break;
case 3:query_product();

break;
case 4:return 0;
default : printf(" Error: Option not recognized\n");

break;
}

170 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

printf ("\n");
}
EXEC SQL CONNECT RESET;

}

/**
** This function will add a product into the
** INVENTORY table. It demonstrates how to write a
** simple static SQL statement and work with the
** SQLCA to get back information on the processing of
** an SQL statement
***/
void add_product(void)
{

printf("---\n");
printf(" Add A Product \n\n");
printf(" Enter Product ID : ");
scanf("%s", &PID);
printf(" Enter Quantity : ");
scanf("%d", &quantity);
printf(" Enter Location : ");
scanf("%s", &location);

EXEC SQL INSERT INTO inventory (PID, quantity, location) VALUES
(:PID, :quantity, :location);

if (sqlca.sqlcode!=0) {
if (sqlca.sqlcode == -803)

printf("\n Error: Product already exists in the database.\n");
else

printf("\n Error: Problem occurred when adding a new product.
Sqlcode: %d Sqlstate: %s\n",sqlca.sqlcode, sqlca.sqlstate);

return;
}

EXEC SQL COMMIT;
printf("\n Product successfully added.");

}

/**
** This function will update information on an existing
** product into the INVENTORY table. It demonstrates
** how to write dynamic SQL, and use the WHENEVER
** statement.
 Chapter 4. Application development with C/C++ 171

***/
void update_product(void)
{

char updateField[9];
char updateValue[128];
enum {UPDATE_QUANTITY, UPDATE_LOCATION} option;

EXEC SQL BEGIN DECLARE SECTION;
char updateStmt[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL WHENEVER SQLERROR GOTO errorFound;
EXEC SQL WHENEVER NOT FOUND GOTO PIDNotFound;

printf("---\n");
printf(" Update A Product \n\n");
printf(" 1. Update quantity \n");
printf(" 2. Update location \n\n");

while(1) {
printf(" Enter option: ");
scanf("%d", &option);

option--; // Enum starts at 0. Our options start at 1.

if (option==UPDATE_QUANTITY) {
strncpy(updateField,"quantity",sizeof(updateField));
break;

}
else if (option==UPDATE_LOCATION) {

strncpy(updateField,"location",sizeof(updateField));
break;

}
else {

printf(" Error: Option not recognized\n\n");
}

}
printf("\n Enter product ID to update: ");
scanf("%s", &PID);
printf(" Enter new %s : ", updateField);
scanf("%s", &updateValue);

if (option==UPDATE_LOCATION) // Ensure single quotes enclose the
location value
172 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

sprintf(updateStmt,"update inventory set %s='%s' where PID='%s'",
updateField, updateValue, PID);

else
sprintf(updateStmt,"update inventory set %s=%s where PID='%s'",

updateField, updateValue, PID);

EXEC SQL EXECUTE IMMEDIATE :updateStmt;
EXEC SQL COMMIT;

printf("\n Product successfully updated.");
return;
errorFound: {

printf("\n Error: Problem occurred. Sqlcode: %d Sqlstate:
%s\n",sqlca.sqlcode, sqlca.sqlstate);

return;
}
PIDNotFound: {

printf("\n Error: Product ID was not found. \n");
return;

}
}

/**
** This function will query for information on a
** product in the INVENTORY table using static SQL
***/
void query_product(void)
{

printf("---\n");
printf(" Query A Product \n\n");
printf(" Enter Product ID : ");
scanf("%s", &PID);

EXEC SQL WHENEVER SQLERROR GOTO errorFound;
EXEC SQL WHENEVER NOT FOUND GOTO PIDNotFound;

EXEC SQL SELECT quantity, location INTO :quantity, :location from
inventory where PID=:PID;

printf(" Found Quantity : %d\n",quantity);
printf(" Location : %s\n",location);
EXEC SQL COMMIT;

return;
 Chapter 4. Application development with C/C++ 173

errorFound: {
printf("\n Error: Problem occurred. Sqlcode: %d Sqlstate:

%s\n",sqlca.sqlcode, sqlca.sqlstate);
return;

}
PIDNotFound: {

printf("\n Error: Product ID was not found. \n");
return;

}

}

4.3.17 The SQL Descriptor Area (SQLDA)

The SQL Descriptor Area (SQLDA) is a structure that can provide information
about dynamic SQL statements that are prepared and executed. With
DESCRIBE, PREPARE, OPEN, FETCH, CALL, and EXECUTE statements, an
application can retrieve information about the prepared statement, or input and
output parameters of the SQL statement. In PREPARE and DESCRIBE, an
SQLDA provides information to an application program about a prepared
statement. In OPEN, EXECUTE, FETCH, and CALL, an SQLDA describes host
variables.

The SQLDA is made up of header and SQLVAR describing its structure. Within
it, there can be multiple SQLVAR elements defined. An individual SQLVAR
structure can hold information regarding:

� A column of a table in a DESCRIBE or PREPARE statement
� A variable in a FETCH, EXECUTE, CALL, or OPEN statement

The fields, which describe the SQLDA, contain information on the size of the
structure, whether the SQLDA has doubled in size (which will happen if LOB
objects are used), the number of SQLVAR elements allocated, and the number
of columns/variables in the SQL statement.

Depending on whether the SQLDA is being used to store input or output
information of an SQL statement, SQLVAR elements can contain information
about data types, lengths, column names, code pages, and much more.

To define the SQLDA, we can add the following statement to our program:

EXEC SQL INCLUDE SQLDA;
174 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Alternatively, we can include the SQLDA include file and declare an application
variable to make use of the structure:

#include <sqlda.h>
struct sqlda *mysqlda;

Once we define the SQLDA structure, we can use it within SQL statements to
store input or output information as needed. For example, we can use it within a
prepare statement where <sqlstatement> is a variable storing a dynamic SQL
statement:

EXEC SQL PREPARE stmt INTO :*mySqlda FROM <sqlstatement>;

The above statement will prepare and store information into the SQLDA structure
about the dynamic SQL statement specified in the statement. This is equivalent
to the following two statements:

EXEC SQL PREPARE stmt FROM <sqlstatement>;
EXEC DESCRIBE stmt INTO :*mySqlda;

Note that the example above only describes the output rows of a resultset or in
the case of a stored procedure CALL, the INOUT and OUT arguments. To get
information about input parameter markers, you need to add an INPUT INTO
:*myInputSQLDA clause.

Let us try an example and see what is stored in the SQLDA. We include the
sqlca.h header file, declare the mysqlda variable in our code, and define the
variables in Example 4-24.

Example 4-25 Setting up the SQLDA

char test[40];
mysqlda=(struct sqlda*) malloc(SQLDASIZE(2));
mysqlda->sqln=2;

In Example 4-25, we define a buffer named test to store the SQL string that we
will be working with. Also, we allocate an SQLDA structure, which will hold two
SQLVAR elements by using the SQLDASIZE macro, and as required, set a field
named sqln which stores the number of SQLVAR elements needed. We defined
2 SQLVAR structures to be used for our application because we will be working
with at most two table columns.

Next, we assign test to hold our SQL statement. We will be querying for the
product ID (PID) field from the INVENTORY table. We prepare the statement,
using the SQLDA to hold information about the column being returned, and
subsequently print fields of the SQLDA structure.
 Chapter 4. Application development with C/C++ 175

Example 4-26 Printing SQLDA Fields

strncpy (test,"SELECT PID FROM inventory", sizeof(test));

/***
Call PREPARE INTO to prepare and describe the SQL statement. The
statement is equivalent to :

EXEC SQL PREPARE stmt INTO :*mysqlda FROM :test;
EXEC SQL EXECUTE stmt USING DESCRIPTOR :*mysqlda;
***/

EXEC SQL PREPARE stmt INTO :*mysqlda FROM :test;

printf("Number of columns(sqld)= %d\n", mysqlda->sqld);
printf("Number of SQLVARs(sqln)= %d\n", mysqlda->sqln);
printf("Column name (sqlname.data)= %s\n",
mysqlda->sqlvar[0].sqlname.data);
printf("Column name length (sqlname.length)= %d\n",
mysqlda->sqlvar[0].sqlname.length);
printf("Column datatype (sqltype)= %d\n", mysqlda->sqlvar[0].sqltype);
printf("Column length (sqllen)= %d\n", mysqlda->sqlvar[0].sqllen);

Running this produces the following output.

Example 4-27 Sample output of values stored in the SQLDA

Number of columns(sqld)= 1
Number of SQLVARs(sqln)= 2
Column name (sqlname.data)= PID
Column name length (sqlname.length)= 3
Column datatype (sqltype)= 448
Column length (sqllen)= 10

The result in Example 4-27 informs us that there are two SQLVAR elements
defined (sqln), and one column in the resultset returned (sqld). The name of the
column (sqlname.data) is PID which is of length (sqlname.length) 10 and of type
(sqltype) SQL_VARCHAR (448).

Although we defined two SQLVAR elements, we only really needed one
SQLVAR element because there is only one column returned by the SQL
statement. In the PREPARE of a SELECT statement, ideally the number of
SQLVAR elements defined should be equal to the number of columns expected
from the result set. If more SQLVARs are defined than is needed, more memory
176 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

would be unnecessarily used. If fewer SQLVARs are defined, there will not be
enough SQLVAR elements to describe all the columns being returned.

4.4 Building a C/C++ application using CLI

In this section, we show you the fundamentals of building a C/C++ application
using CLI. We discuss first some basic concepts and the environment setup. We
then guide you step-by-step to build an application starting from a simple code
template.

4.4.1 CLI handles

A Call Level Interface (CLI) application needs to initially set up data structures
and variables to manage work such as connecting to the database, running SQL
statements, and disconnecting from the database. Luckily, data objects called
handles exist to make things easier. Handles can be allocated, used for
processing, and then freed. The possible CLI handles are:

� Environment (SQL_HANDLE_ENV)

This object is the base handle, which holds iholds information and provides a
context for all connections. Typically, only a single environment handle exists
for an application.

� Connection (SQL_HANDLE_DBC)

This object holds information about a connection to a single database and
provides a context for all statements executed against that database. A CLI
application can connect to multiple databases. This means that there can be
multiple connection handles associated with a single environment handle.

� Statement (SQL_HANDLE_STMT)

This object contains information about the processing of an SQL statement.
This must be associated with a connection handle.

� Descriptor (SQL_HANDLE_DESC)

This handle holds information about either parameter markers or columns in a
resultset. It can be associated with either a statement or connection handle.

Figure 4-1 on page 178 illustrates the relationship of the handles. Connection
handles can only be defined under the context of an environment handle, and
statement handles can only be defined under the context of a connection handle.
Descriptor handles can be optionally allocated to associate with a connection or
statement handle. Handle allocation is done in sequence. The environment
handle must be declared first, then the connection handle is declared under the
environment handle, and then the statement handle is declared under the
 Chapter 4. Application development with C/C++ 177

connection handle. When freeing the handles, all child handles should be freed
explicitly before freeing the parent handle.

Figure 4-1 CLI handles

4.4.2 The CLI driver

In order for us to use Call Level Interface (CLI) APIs, we need to make use of the
CLI driver available in DB2. The name of the library specific to each platform is:

� On Windows: db2cli.dll (for dynamic loading) or db2cli.lib (for static linking)

� Linux: libdb2.a (for either dynamic loading at runtime or static linking at
compile time)

In this book, we discuss the basic programming features available in the CLI
interface.

4.4.3 The CLI configuration file (db2cli.ini)

If we ever need to change the default behavior of CLI, we can change the
db2cli.ini configuration file by adding or modifying CLI keywords. This file is read
by the CLI driver during runtime, and is either located in the directory specified by
the DB2 environment registry setting DB2CLIINIPATH (if set by the user) or in
the following directories.

Descriptor

Descriptor

Al
lo

ca
tio

n
O

rd
er

Descriptor

Environment

Handle

Statement Statement Statement

Connection Connection

Descriptor

Descriptor

(Free) O
rder

De-Allocation

H
an

dl
e

178 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Table 4-4 Locations of the db2cli.ini file

An example of the contents of a db2cli.ini file is found in Example 4-28.

Example 4-28 Sample db2cli.ini file contents

; Comment lines start with a semi-colon.

[tstcli1x]
uid=userid
pwd=password
autocommit=0
TableType="'TABLE','VIEW','SYSTEM TABLE'"

[tstcli2x]
; Assuming dbalias2 is a database in DB2 for MVS.
SchemaList="'OWNER1','OWNER2',CURRENT SQLID"

[MyVeryLongDBALIASName]
dbalias=dbalias3
SysSchema=MYSCHEMA

[testDB]
autocommit=0

In a db2cli.ini file, the name of a database is surrounded by square brackets.
Each database in the file will have its own section of CLI keywords, which are
listed below the database name. If a database is not listed in the db2cli.ini file,
this means that there are no CLI keywords associated with it. Comments are
denoted by semicolons (;). In Example 4-28, we see that there is a database
named testDB with one CLI keyword named autocommit.

If we want a CLI keyword to apply to all databases, instead of defining the
keyword in each database section, we can use a common section. A common
section (denoted by “[common]”) in the configuration file means that the CLI
driver will read the CLI keyword during runtime for all databases it accesses.

We can choose to modify the db2cli.ini manually or on the DB2 Command Line
Processor (CLP). To list the entire contents of the db2cli.ini file on the CLP, we
can run the command:

db2 get cli cfg

Windows Sqllib in the DB2 installation path

Linux sqllib/cfg of the instance owner
 Chapter 4. Application development with C/C++ 179

To only get CLI keywords applicable for a particular database, we can run the
following command (where <database name> is the name of the database):

db2 get cli cfg for section <database name>

To add or update a CLI keyword for a particular database, we can run the
following command (substituting for the actual database name, CLI keyword, and
value):

db2 update cli cfg for section <database name> using <CLI keyword>
<value>

If a section for a database does not already exist and we use the UPDATE CLI CFG
command, a section will be automatically added to the configuration file. An
example of adding a CLI keyword to the db2cli.ini file on the CLP for the
SAMPLE database is:

db2 update cli cfg for section sample using autocommit 0

Refer to the DB2 UDB Call Level Interface Guide & Reference, SC10-4224, for a
list of all supported CLI keywords.

4.4.4 Setting up the CLI Environment

In addition to setting up the C/C++ development environment as outlined in 4.1.1,
“C/C++ development environment setup” on page 148, programs written using
CLI need to ensure that the necessary CLI packages exist on the database
server.

The CLI driver will communicate with the application and the database to process
SQL statements. Precompile and bind steps are not required for CLI
applications. This means that no application packages are created in the
database. However, for an SQL statement to be executed, there still needs to be
a package with available sections in the database for access plans. This is where
CLI bind files come in. CLI bind files are supplied by DB2 and only have to be
bound against the database once. Once bound, CLI dynamic placeholder
packages will exist in the database. These packages are ready to handle the
dynamic SQL passed by the driver.

DB2 supplies text files listing the required bind files to be bound against a
particular database server platform. Table 4-5 on page 181 outlines the list files
specific to each database server platform. They are available in the BND
directory of the DB2 installation path.
180 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Table 4-5 DB2 list files for CLI

To bind the packages, you need to connect to the database server and run the
BIND command to process the appropriate .lst file.

For example, within a DB2 UDB CLP window on a Windows machine, suppose
we want to bind the CLI packages against a DB2 database on a Linux machine.
Example 4-29 shows the commands we execute to create the CLI and DB2 utility
packages in the SAMPLE database.

Example 4-29 Binding CLI bind files

db2 connect to sample
db2 bind C:\Program Files\IBM\SQLLIB\bnd\@db2ubind.lst sqlerror
continue grant public
db2 bind C:\Program Files\IBM\SQLLIB\bnd @db2cli.lst sqlerror continue
grant public
db2 terminate

In the example above, you might notice that an at character, (@), is added in
front of the list filename. This is needed for the DB2 binder to properly process
each bind file listed in the list file.

Server platform Needed .lst files for CLI

DB2 UDB (Windows, UNIX) db2cli.lst, db2ubind.lst

DB2 for z/OS® and OS/390® ddcsmvs.lst

DB2 for VM ddcsvm.lst

DB2 for VSE ddcsvse.lst

DB2 for AS/400® and iSeries™ ddcs400.lst
 Chapter 4. Application development with C/C++ 181

4.4.5 Overview of steps

The steps to build a C/C++ application using CLI are as follows:

1. Allocate an environment handle.

2. Allocate one or more connection handles to be associated with the single
environment handle allocated in step 1.

3. With a connection handle allocated in Step 2, perform a database connection.
Allocate one or more statement handles under the connection handle to do
SQL processing against the database.

4. Repeat step 3 if there are multiple connection handles.

5. Clean up resources by ensuring all database connections are disconnected
and all handles are freed before the application terminates.

4.5 A simple C inventory program using CLI

To illustrate the basic fundamentals of building a C/C++ application using the CLI
interface, let us develop a simple program and work with the INVENTORY table in
the SAMPLE database again. This application will print a list of products, which are
low in quantity, see Example 4-30. The user must supply the minimum
acceptable quantity value. Any products with quantity less than the acceptable
value need to be restocked.

Example 4-30 Sample output of CLI program

CLIinventory 50

Products to Restock (less than 50)

5 100-100-01
25 100-101-01

In the above run, the user tells the application that we need a list of all products,
which have a quantity of less than 50. The application returns a list of two items
in the database satisfying this requirement.
182 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

4.5.1 CLI header files

To begin a CLI program, we need to ensure one of the following header files is
included:

� sqlcli.h - Contains CLI constants, function prototypes and data structures

� sqlcli1.h - Contains everything in sqlcli.h as well as SQL extensions in sqlext.h

4.5.2 Allocating handles

There are various CLI APIs we can use to allocate different types of handles.
Refer to DB2 documentation for the syntax of each API. In Table 4-6, we list the
APIs.

Table 4-6 APIs to allocate handles

We use SQLAllocHandle in our sample CLI application.

This is the syntax of the function, as outlined in the DB2 documentation:

SQLRETURN SQLAllocHandle (
 SQLSMALLINT HandleType, /* fHandleType */
 SQLHANDLE InputHandle, /* hInput */
 SQLHANDLE *OutputHandlePtr); /* *phOutput */

In the above syntax, HandleType is the type of handle, InputHandle is the
context for the new handle, and OutputHandlePtr is a buffer storing the newly
allocated handle data structure.

To begin the application, we need to define and allocate an environment and
connection handle. Example 4-31 on page 184 illustrates how to do this. We
declare two variables to store the data structure of the handles and then call the
SQLAllocHandle() API. When environment handles are allocated, there is no

CLI API Purpose

SQLAllocEnv Get an environment handle.

SQLAllocConnect Get a connection handle.

SQLAllocHandle Get a handle.

SQLAllocStmt Get a statement handle.

Note: SQLAllocEnv(), SQLAllocConnect(), and SQLAllocStmt() are all ODBC
2.0 APIs and are deprecated. These APIs should be replaced by
SQLAllocHandle.
 Chapter 4. Application development with C/C++ 183

context for that handle type, so we use SQL_NULL_HANDLE as the context.
When connection handles are allocated, they need to be under the context of an
environment handle.

Example 4-31 Using SQLAllocHandle()

SQLHANDLE env_handle;
SQLHANDLE conn_handle;
…
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_handle);
…
SQLAllocHandle(SQL_HANDLE_DBC, env_handle, &conn_handle);

4.5.3 Freeing handles

At the end of an application, we need to ensure we free the resources associated
with each handle. There are various CLI APIs we can use to free up the different
types of handles. In Table 4-7, we list the APIs.

Table 4-7 APIs to free handles

Generally, we can use the SQLFreeHandle() API to free environment,
connection, and statement handles. We use SQLFreeHandle() API in our sample
CLI application. To end our sample application, we need to free the connection
and environment handles. We show how to do this with the SQLFreeHandle()
API, giving a handle type and handle for each call in Example 4-32.

Example 4-32 Using SQLFreeHandle()

SQLFreeHandle(SQL_HANDLE_DBC,conn_handle);
SQLFreeHandle(SQL_HANDLE_ENV,env_handle);

CLI API Purpose

SQLFreeEnv Free an environment handle.

SQLFreeConnect Free a connection handle.

SQLFreeStmt Free a statement handle.

SQLFreeHandle Free a handle.

Note: SQLFreeEnv(), SQLFreeConnect(), and SQLFreeStmt(SQL_DROP)
are deprecated. SQLFreeHandle() should be used to free environment,
connection, and statement handles.
184 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

4.5.4 Connecting and disconnect to and from a database

Table 4-8 lists some APIs that can be used in working with a connection to a
database.

Table 4-8 Connection-related CLI APIs

There are various APIs to choose from for connecting to a database. The
SQLDriverConnect() API expands the functionality of SQLConnect() by allowing
extra connection parameters and the ability to get connection information from
the user. The SQLBrowseConnect() is an iterative way of connecting to the
database. In our application, we use the SQLConnect() API:

SQLRETURN SQLConnect (
 SQLHDBC ConnectionHandle, /* hdbc */
 SQLCHAR *ServerName, /* szDSN */
 SQLSMALLINT ServerNameLength, /* cbDSN */
 SQLCHAR *UserName, /* szUID */
 SQLSMALLINT UserNameLength, /* cbUID */
 SQLCHAR *Authentication, /* szAuthStr */
 SQLSMALLINT AuthenticationLength); /* cbAuthStr */

In our code, we add the following line (Example 4-33 on page 186) to establish a
default database connection and later to disconnect from the database.

CLI API Purpose

SQLConnect Connect to a database given a database name, user ID, and
password.

SQLDriverConnect Connect to a database (has expanded connection
parameters).

SQLBrowseConnect Use iterative method to connect to a database.

SQLSetConnectAttr Set connection attributes.

SQLSetConnection Sets the current active connection. Used for embedded
SQL modules within a CLI application.

SQLGetConnectAttr Get connection option value.

SQLDisconnect Disconnect from the database.
 Chapter 4. Application development with C/C++ 185

Example 4-33 Using SQLConnect() & SQLDisconnect()

SQLConnect(conn_handle, "sample", SQL_NTS, NULL, SQL_NTS, NULL,
SQL_NTS);
…
SQLDisconnect(conn_handle);

4.5.5 Processing SQL statements

After connecting to the database, we need to allocate a statement handle to
manage our SQL statement. Once this is done, we can execute an SQL
statement by either preparing the statement or executing the statement directly.
Figure 4-2 illustrates this process.

Figure 4-2 Processing SQL statements

In either case, if parameter markers exist in the SQL statement,
SQLBindParameter() must be called to associate each parameter marker to an
application buffer or a LOB locator. If a SELECT statement is run and a result set
expected, a cursor is automatically opened. So, unlike embedded SQL, cursors
neither have to be declared nor opened. To fetch the results, SQLBindCol() is
first called to bind the columns of a result set to application variables, then
SQLFetch() is called to fetch the rows.

SQLPrepare()

SQLBindParameter()

SQLExecute()

Prepare and execute

SQLBindParameter()

SQLExecDirect()

Execute directly
186 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

After the processing of an SQL statement is complete, the statement handle can
be freed. In the complete CLI code definition in Example 4-34 on page 188, we
show how to prepare, bind, and execute a SELECT statement and fetch the
results. Table 4-9 lists some CLI APIs that you can use for processing an SQL
statement.

Table 4-9 Some CLI APIs for SQL processing

CLI API Purpose

SQLPrepare Prepare an SQL statement.

SQLExtendedPrepare Prepare an array of statement attributes for an SQL
statement.

SQLExtendedBind Bind an array of columns.

SQLBindParameter
SQLSetParam

Bind a parameter marker in an SQL statement.

SQLDescribeParam Get info about a parameter marker.

SQLExecute Execute a prepared statement.

SQLExecDirect Execute a statement.

SQLNumParams Get the number of parameters in a statement.

SQLRowCount Get the number of rows affected by an insert/update/delete
or number of rows in a result set.

SQLNumResultCols Get the number of columns in a result set.

SQLDescribeCol Describe a column in the result set.

SQLColAttribute
SQLColAttributes

Get information about the attributes of a column in a result
set.

SQLBindCol Bind a column in the result set to an application variable.

SQLFetch Get a result set row.

SQLExtendedFetch Get multiple result set rows.

SQLCancel Cancel an SQL statement.

SQLTransact
SQLCloseCursor

Commit or roll back a transaction.

SQLEndTran End a transaction.
 Chapter 4. Application development with C/C++ 187

4.5.6 Complete CLI Inventory Program

In our example CLI inventory program (Example 4-34), we connect to the
database, prepare a SELECT statement, and then bind the parameter marker.
Because QUANTITY is of type INTEGER in the database, we bind the parameter
marker with a C type of SQL_C_LONG and SQL type of SQL_INTEGER. In
binding a parameter marker, the SQL data type and the symbolic C data type
need to be known as input to the CLI API.

We also call SQLBindCol() for each column of the result set. Because QUANTITY
and PID data values are returned from the INVENTORY table, we call
SQLBindCol() to bind both columns to application buffers. Once we finish
processing the result set, we disconnect from the database.

For simplicity and ease of readability, we have omitted error checking in our
example CLI application.

Example 4-34 CLIinventory.c

/**
** Source File Name: CLIinventory.c
**
** This simple CLI program will print a list of
** products that need to be restocked.
** The user needs to supply the minimum acceptable
** quantity value before a product is considered to be
** low in stock.
**
***/

#include <stdlib.h>
#include <stdio.h>
#include <sqlcli.h>

int main(int argc, char *argv[]) {
SQLHANDLE env_handle;
SQLHANDLE conn_handle;
SQLHANDLE stmt_handle;
SQLCHAR PID[11];
SQLINTEGER quantity;
SQLLEN ind[2];
SQLINTEGER min_quality=atoi(argv[1]);

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_handle);
SQLAllocHandle(SQL_HANDLE_DBC, env_handle, &conn_handle);
188 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

SQLConnect(conn_handle, "sample", SQL_NTS, NULL, SQL_NTS, NULL,
SQL_NTS);

SQLAllocHandle(SQL_HANDLE_STMT, conn_handle, &stmt_handle);
SQLPrepare(stmt_handle, "select quantity,PID from inventory where

quantity <? order by quantity", SQL_NTS);
SQLBindParameter(stmt_handle, 1, SQL_PARAM_INPUT, SQL_C_LONG,

SQL_INTEGER,0,0,&min_quality,0,NULL);
SQLExecute(stmt_handle);
SQLBindCol(stmt_handle, 1, SQL_C_LONG, &quantity, 0,&ind[0]);
SQLBindCol(stmt_handle, 2, SQL_C_CHAR, PID, sizeof(PID),&ind[1]);

printf("\nProducts to Restock (less than %d)\n",min_quality);
printf("-------------------------------------\n");
while (SQLFetch(stmt_handle)==SQL_SUCCESS)

printf("%d\t%s\n",quantity, PID);

SQLFreeHandle(SQL_HANDLE_STMT, stmt_handle);
SQLDisconnect(conn_handle);
SQLFreeHandle(SQL_HANDLE_DBC,conn_handle);
SQLFreeHandle(SQL_HANDLE_ENV,env_handle);
return SQL_SUCCESS;

}

4.5.7 Error handling

After each API call, we should be checking the return code status to ensure that
no errors have occurred. Table 4-10 on page 190 lists possible CLI function
return codes.
 Chapter 4. Application development with C/C++ 189

Table 4-10 CLI function return codes

If a function call resulted in an unexpected return code, diagnostic records are
produced and associated with the handle that executed the API. To retrieve the
diagnostic information, applications can make use of functions as shown in
Table 4-11.

Table 4-11 Some diagnostic CLI APIs

4.5.8 Quick SQLGetDiagRec() example

Let us see an example of how to use the SQLGetDiagRec() API. We first define
the variables within a CLI application needed for the function call:

SQLCHAR SQLState[6]; // Will store the SQLState
SQLCHAR msgText[SQL_MAX_MESSAGE_LENGTH]; // Will store the error msg
text
SQLINTEGER nativeErrorCode; // Will store the native error code
SQLSMALLINT msgTextLength; // Will store the error msg text length

CLI function return code CLI function result

SQL_SUCCESS Successful. No SQLSTATE information available.

SQL_SUCCESS_WITH_INFO Successful, but some informational message or
warning was returned.

SQL_STILL_EXECUTING Still executing although control has been returned
to the application.

SQL_NO_DATA_FOUND Successful, but no data was found.

SQL_NEED_DATA Missing parameter data needed for the execution
of an SQL statement.

SQL_ERROR Error.

SQL_INVALID_HANDLE Error. Invalid handle specified by the application

CLI API Purpose

SQLError Get information on an error.

SQLGetDiagField Get a field in a diagnostic record.

SQLGetDiagRec Get diagnostic record.
190 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Now let us try connecting to an invalid database and see what is provided by the
diagnostic function. We run a program with the following lines:

SQLConnect(conn_handle, "samdple", SQL_NTS, NULL, SQL_NTS, NULL,
SQL_NTS);

SQLGetDiagRec(SQL_HANDLE_DBC, conn_handle, 1, SQLState,
&nativeErrorCode, msgText, sizeof(msgText), &msgTextLength);

printf("SQLState: %s\nNative Error: %d\nError Message Text:
%s",SQLState, nativeErrorCode,msgText);

This produces the following output to let us know the database name was
incorrectly specified:

SQLState: 08001
Native Error: -1013
Error Message Text: [IBM][CLI Driver] SQL1013N The database alias name
or database name "SAMDPLE" could not be found. SQLSTATE=42705

4.6 XML support

The XML data type is supported for use in embedded SQL and CLI applications.
We briefly discuss how to work with the data type within C/C++ applications.

4.6.1 Embedded SQL

Embedded applications can make use of XML, LOB, or LOB_FILE data types
when working with XML data in a DB2 database. If you choose to use XML host
variables, they will be implicitly parsed, whereas using host variables of
character and binary data type might not be. For dynamic SQL, CLOB, and
BLOB are also implicitly parsed. For static SQL, an explicit XMLPARSE() will be
injected in the SQL statement, but only for CLOB and BLOB (not DBCLOB). To
declare host variables to handle XML data, we do so in the DECLARE section as
we normally would for host variables of other data types. For XML host variables,
we can use declarations of the form:

SQL TYPE IS XML AS <base type> <host var>

In the above statement, <host var> denotes the host variable name, and <base
type> denotes the data type of the XML host variable. The possible values are
listed in Table 4-12 on page 192.
 Chapter 4. Application development with C/C++ 191

Table 4-12 Allowed XML host variable data types

Once the host variable declarations are done, we can write code to process SQL
statements using XML data in the same way we write code to process other
types of SQL statements. Refer to Chapter 2, “Application development with DB2
pureXML” on page 49 to obtain information about how to write SQL statements to
interact with data of the DB2 XML data type.

Selecting XML data using embedded SQL
Example 4-35 below shows a simple example of how to retrieve an XML column
in embedded SQL.

Example 4-35 Retrieving an XML column using embedded SQL

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB(10K) clob1;

EXEC SQL END DECLARE SECTION;
…
EXEC SQL CONNECT TO sample;
…
EXEC SQL SELECT description INTO :xmlClob1 FROM product WHERE
PID='100-100-01';
printf("XML data length: %d\nXML data: %s",clob1.length,clob1.data);
EXEC SQL COMMIT;
EXEC SQL CONNECT RESET;

In Example 4-35, we first declare a host variable of character LOB type to hold
the serialized string format of our XML data. The precompile form of the clob1
host variable shows that clob1 is a structure with a length and data field:

struct clob1_t {
sqluint32 length;;
char data[10240];

} clob1;

Data type XML data encoding

CLOB(n) Application mixed code page stored in CLOB host variable.

DBCLOB(n) Application graphic code page stored in DBCLOB host variable.

BLOB(n) Internally encoded in a BLOB host variable.

CLOB_FILE Application mixed code page stored in CLOB file.

DBCLOB_FILE Application graphic code page stored in DBCLOB file.

BLOB_FILE Internally encoded in a BLOB file.
192 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

We then run a select statement to retrieve the DESCRIPTION field of the
PRODUCT table in the SAMPLE database. In the database, the DESCRIPTION
column is of type xml. We call the XMLSERIALIZE method to convert the XML
data from the database hierarchical format to an application CLOB and store the
result in clob1. Running the application produces the following output.

Example 4-36 Output from running Example 4-35 on page 192

XML data length: 251
XML data: <product xmlns="http://posample.org"
pid="100-100-01"><description><name>Snow Shovel, Basic 22
inch</name><details>Basic Snow Shovel, 22 inches wide,
straight handle with D-Grip</details><price>9.99</price><weight>1
kg</weight></description></product>

Inserting XML data using embedded SQL
Example 4-37 shows a simple example of how to insert XML data into the XML
column (DESCRIPTION column in the PRODUCT table) using embedded SQL.

Example 4-37 Insert data into XML column

#include <sqlenv.h>
#include <sqlutil.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
 char xmldata[1000];
 short nullind;
 static SQL TYPE IS XML AS CLOB(1k) xmlclob1=SQL_CLOB_INIT(" ") ;

EXEC SQL END DECLARE SECTION;

int main(int argc, char *argv[])
{
 nullind = 0;
 /* Create a XML document for Description column*/
 strcpy (xmldata, "<product xmlns=\"http://posample.org\"
pid=\"102-102-02\">"
 "<description><name> Shovel </name>"
 "<details>Basic Shovel, 22 inches wide, straight
handle with D-Grip</details>"
 "<price>19.99</price>"
 "<weight>1.5 kg</weight>"
 "</description></product>");
 Chapter 4. Application development with C/C++ 193

 /* description and product */
 strcpy(xmlclob1.data, xmldata);

 /* Set the length of the data */
 xmlclob1.length = strlen(xmldata) + 1;

 /* connect to database */
 EXEC SQL CONNECT TO sample;

 /* inserting when source is from host variable of type XML AS CLOB */
 printf(" Inserting when source is from host variable of type XML AS
CLOB\n");
 EXEC SQL INSERT INTO product (pid, DESCRIPTION)
 VALUES ('102-102-02', :xmlclob1:nullind);

 if (sqlca.sqlcode != 0)
 {
 printf("\n Insertion failed\n");
 printf(" FAILED WITH SQLCODE = %d\n\n", sqlca.sqlcode);
 }
 EXEC SQL COMMIT;
 /* disconnect from the database */
 EXEC SQL CONNECT RESET;

 return 0;
} /* main */

In Example 4-37 on page 193, we declare a host variable of XML as CLOB. The
bind file resulting from the db2 prep utility results in the following db2bfd -v
command output:

InsertProd.bnd: Host Variables = 3
Type SQL Data Type Length Alias Name_Len Name UDT Name
---- -------------- ------ ------ -------- ----------- ------------
 460 C STRING 1000 H00001 7 xmldata
 500 SMALLINT 2 H00002 7 nullind
 408 CLOB 1024 H00003 8 xmlclob1 XML

Updating XML data column using embedded SQL
Example 4-38 on page 195 below shows a simple example of how to update
XML data in the XML column (DESCRIPTION column of the PRODUCT table) using
embedded SQL.
194 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 4-38 Updating XML column in C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlutil.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
 char xmldata[2000];
 char parse_option[30];
 static SQL TYPE IS XML AS CLOB(1k) xmlclob1=SQL_CLOB_INIT(" ") ;
EXEC SQL END DECLARE SECTION;

int main(int argc, char *argv[])
{
 int rc = 0;

 /* Create a XML document that will be used to INSERT in the table */
 strcpy (xmldata, "<product xmlns=\"http://posample.org\"
pid=\"102-102-02\">"
 "<description><name> Shovel </name>"
 "<details>Basic Shovel, 22 inches wide, straight
handle with D-Grip</details>"
 "<price>9.99</price>"
 "<weight>1.5 kg</weight>"
 "</description></product>");

 strcpy(xmlclob1.data, xmldata);

 xmlclob1.length = strlen(xmldata) + 1;

 /* check the command line arguments */
 EXEC SQL CONNECT TO sample;

 /* Update the XML column using host variable of type XML */
 printf(" Update XML column using variable of type XML\n");
 EXEC SQL UPDATE product SET DESCRIPTION = :xmlclob1 WHERE pid =
'102-102-02';

 if (sqlca.sqlcode != 0)
 {
 printf("\nUpdate failed\n");
 Chapter 4. Application development with C/C++ 195

 printf(" FAILED WITH SQLCODE = %d\n\n", sqlca.sqlcode);
 }
 EXEC SQL COMMIT;
 /* disconnect from the database */
 EXEC SQL CONNECT RESET;

} /* main */

In Example 4-38 on page 195, we declare a host variable of XML as CLOB. The
bind file resulting from the db2 prep utility results in the following db2bfd -v
command output:

updtProd.bnd: Host Variables = 3

Type SQL Data Type Length Alias Name_Len Name UDT Name
---- ------------- ------ ------ -------- -------------- ----------
 460 C STRING 2000 H00001 7 xmldata
 460 C STRING 30 H00002 12 parse_option
 408 CLOB 1024 H00003 8 xmlclob1 XML

4.6.2 Call Level Interface (CLI)

CLI Applications can use the xml, binary, or character data types to work with
XML data from a DB2 database. In CLI API calls, applications can use
application C types of the following:

� SQL_C_BINARY
� SQL_C_CHAR
� SQL_C_WCHAR
� SQL_C_DBCHAR

This means that when applications work with XML data types, they can bind
application variables to any of the types just mentioned. The default C type is
SQL_C_BINARY and using this type can avoid code page conversion issues.
The other C types assume the application code page encoding. That is,
SQL_C_BINARY would output in UTF-8, SQL_C_WCHAR in platform-encoding
UTF-16, and SQL_C_CHAR/SQL_C_DBCHAR in the application mixed and
graphic code pages respectively.

On the database end, a column of type xml has a symbolic SQL type of
SQL_XML. The application can use this SQL type when trying to store or retrieve
XML data.

Let us try a simple CLI example. Assuming we have initialized all the necessary
data structures and are connected to the database, we now want to get back the
196 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

DESCRIPTION column from the PRODUCT table. The column in the database is
of type xml. We can do the following (Example 4-39).

Example 4-39 Retrieving an XML column using CLI

SQLCHAR description[10001];
SQLINTEGER ind;
…
SQLAllocHandle(SQL_HANDLE_STMT, conn_handle, &stmt_handle);
…
SQLExecDirect(stmt_handle, "select description from product where
PID='100-100-01'", SQL_NTS);
SQLBindCol(stmt_handle, 1, SQL_C_CHAR, description,
sizeof(description), &ind);
SQLFetch(stmt_handle);
printf("%s",description);
…

In Example 4-39, we declare a buffer called DESCRIPTION to hold the returned
value from the database. We call SQLExecDirect() to execute the SELECT
statement, and call SQLBindCol() to bind the returned column value to the
application storage buffer named description. We specify SQL_C_CHAR as the
C data type because we are expecting the xml to be converted to a CLOB in our
XMLSERIALIZE call. Running the program produces the output as shown in
Example 4-40.

Example 4-40 Output from running Example 4-39

<?xml version="1.0" encoding="ISO-8859-1" ?>
<product xmlns="http://posample.org"
pid="100-100-01"><description><name>Snow Shovel, Basic 22
inch</name><details>Basic Snow Shovel, 22 inches wide, straight handle
with D-Grip</details><price>9.99</price><weight>1
kg</weight></description></product>
 Chapter 4. Application development with C/C++ 197

198 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Chapter 5. Application development
with Java

In this chapter, we describe how to develop a Java application with DB2
Express-C. This chapter contains the following:

� Application software requirements

� In-depth description of the java.sql package support in DB2 Type 4 driver,
including stored procedure and transactions

� An overview of javax.sql package

� Exception handling

� XML/XQuery support

� SQLj support

5

© Copyright IBM Corp. August 2006. All rights reserved. 199

5.1 Application requirements

Any Java application needs the following packages to access the DB2 JDBC
universal driver and use it to make the connection to the DB2 database:

� java.sql contains the core JDBC API.

� com.ibm.db2.jcc contains the DB2-specific implementation of JDBC for
universal JDBC driver. db2jcc.jar archive contains this package.

For accessing the DataSource object for enterprise application, you need the
following packages along with the above:

� javax.naming contains classes and interfaces for Java Naming and Directory
Interface.

� javax.sql contained JDBC 2.0 standard extensions (db2jcc_javax.jar).

� javax.transactions contains support for distributed transaction for DB2 JDBC
Type 2 driver.

Along with this files, one of these two files should be included in CLASSPATH:

� db2jcc_license_cu.jar
� db2jcc_license_cisuz.jar

5.2 Drivers

Java applications, which use DB2 as a database, connect to the database using
different kinds of drivers. According to the JDBC specification, there are four
types of driver architecture. DB2 supports Type 2 (deprecated as of DB2 V8.2)
and a combination of Type 2 and Type 4 drivers called universal JDBC drivers,
which combine the Type 2 and Type 4 functionalities. Using universal driver, an
application can utilize both Type 2 and Type 4 functionalities using a single
instance of driver in memory.

Universal JDBC driver for DB2
Whenever an application loads the universal driver, a single instance of Type 2
and Type 4 driver is loaded in memory and can be used to make Type 2 and
Type 4 connections. This driver is an entirely new driver and the behavior of this
driver might be different from the standard Type 2 and Type 4 drivers.The Type 2
and Type 4 driver connectivity depend on the type of URL provided to the driver
while getting the connection.

For Type 2 driver connectivity, use the following URL format:

jdbc:db2:database name
200 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

For Type 4 driver connectivity, use the following URL format:

jdbc:db2://host name:port number/database name

The db2jcc.jar package contains the universal driver classes.

5.3 Application example

In this chapter, we discuss the fundamentals of application development using
DB2 JDBC and guide you through the Java application development process
using a small shopping cart application. This application uses the SAMPLE
database shipped along with the DB2 Express-C. The application does the
following:

� Takes the customer ID as an input. Checks if the customer exists. If the
customer exists, the application goes to the next page to take the order.

� Displays all the available products. The user can select a product from the list
and add it to the cart.

� While checking out, the application gives the purchase order ID and inserts
the purchase order details in the table.

The class in Example 5-1 on page 202 has some of the support methods used
for the application. We use this example along with others to explain how to
access DB2 data. At the end of this chapter, you can follow the steps provided to
run the application. You can find the sample application download procedure at
Appendix C, “Additional material” on page 319.

This class contain the following method:

� isCustomer(int):
This method checks to see if the customer ID passed to the method as an
argument exists in the database or not. It returns the customer name if the id
exists.

� getProducts():
This method returns the name of all the available products.

� getDescription(String):
This method returns the description of the product id passed as an argument.

� createCart(HashMap):
This creates a cart table to store the temporary data for the cart.

� updateTable():
Update the tables with the purchase order details.
 Chapter 5. Application development with Java 201

� createPorder(poid):
This calls a stored procedure to create the XML value.

Example 5-1 OrderProcess class

import java.sql.*;
import java.util.*;
import com.ibm.db2.jcc.*;
public class OrderProcess {

private Connection con=null;
private String[] products=null;
private int cid=0;
public static void main(String args[])
{

String[] products=null;
OrderProcess op=new OrderProcess();
int custid=1001;
HashMap hm=new HashMap();
hm.put("Snow Shovel, Deluxe 24 inch",4);
hm.put("Snow Shovel, Basic 22 inch",5);
op.getConnection();
products=op.getProducts();
for(int i=0;i<products.length && products[i]!=null ;i++)
{

System.out.println(products[i]);
}

String name=op.isCustomer(custid);
if(name!=null)
{

op.dropCart();
op.createCart(hm);
Double price = op.findTotal();
System.out.println("your total is " +price);
op.updateTable();

}

}
public void getConnection()
{

try {
if(con==null)
{

202 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();

con=DriverManager.getConnection("jdbc:db2://localhost:50000/sample","us
er1","db2usrpw");

products=getProducts();

}
System.out.println(con);

} catch (SQLException e) {
System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();

} catch (Exception e) {
e.printStackTrace();

}
}

// isCustomer method will check if the customer with the id exists
// in the customer table or not. The function returns the name of
// the customer if the customer exists; otherwise, it returns null

public String isCustomer(int id)
{
String query="select xmlquery('declare default element namespace

\"http://posample.org\"; $id/customerinfo/name' passing by ref
customer.info as \"id\") from customer where cid=?";

try {
PreparedStatement stmt=con.prepareStatement(query);
stmt.setInt(1,id);
ResultSet rs=stmt.executeQuery();
cid=id;
if(!rs.next())

return null;
else

return rs.getString(1);
} catch (SQLException e) {

System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();
return null;

}

} // isCustomer

// getProduct returns all the product names
public String[] getProducts()
 Chapter 5. Application development with Java 203

{
String[] products=new String[10];
int i=0;
String query="select name from product";
Statement stmt;
try {

stmt = con.createStatement();
ResultSet rs=stmt.executeQuery(query);
while(rs.next())

{
products[i]=rs.getString(1);
i++;

}
return products;
} catch (SQLException e) {

System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();
return null;

}
} // getProducts

// getDescription method returns the description of the product
public Object getDescription(String name)
{

try {
PreparedStatement stmt=con.prepareStatement("select description

from product where name=?");
stmt.setString(1,name);

ResultSet rs=stmt.executeQuery();
rs.next();
String

value=((com.ibm.db2.jcc.DB2Xml)rs.getObject(1)).getDB2String();
return value;
} catch (SQLException e) {

System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();
return null;

}
} // getDescription

public void dropCart()
{

String cart = "cart"+cid;
204 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

try {
Statement stmt=con.createStatement();
stmt.executeUpdate("drop table " + cart);
}catch (SQLException e) {

System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();
}

}
//createCart method creates a table to store the product id
//and the quantity ordered by the customer temporarily. This
//table is used to create the purchaseorder in XML format

public void createCart(HashMap hm)
{

try {
Statement stmt=con.createStatement();

String cart = "cart"+cid;
String insertQuery="insert into "+cart+ " values((select pid

from product where name=?),?)";
String createQuery="create table "+cart+"(pid varchar(10),

quantity int)";
PreparedStatement pstmt=con.prepareStatement(insertQuery);
System.out.println(insertQuery);
stmt.executeUpdate(createQuery);
con.setAutoCommit(false);
Set set=hm.keySet();
Iterator it=set.iterator();
while(it.hasNext())
{

String key=(String) it.next();
pstmt.setString(1,key);
pstmt.setInt(2,((Integer)hm.get(key)).intValue());
pstmt.addBatch();
System.out.println(key +"

"+((Integer)hm.get(key)).intValue());
}
pstmt.executeBatch();
con.commit();
con.setAutoCommit(true);

}catch (BatchUpdateException buex) {
int [] updateCounts = buex.getUpdateCounts();
for (int i = 0; i < updateCounts.length; i++) {
 Chapter 5. Application development with Java 205

System.err.println(" Statement " + i + ":" +
updateCounts[i]);

System.err.println(" Message: " + buex.getMessage());
System.err.println(" SQLSTATE: " + buex.getSQLState());
System.err.println(" Error code: " + buex.getErrorCode());
SQLException ex = buex.getNextException();
while (ex != null) {
 System.err.println("SQL exception:");
 System.err.println(" Message: " + ex.getMessage());
 System.err.println(" SQLSTATE: " + ex.getSQLState());
 System.err.println(" Error code: " + ex.getErrorCode());
 ex = ex.getNextException();
 }

}
} // createCart

public double findTotal()
{

Statement stmt;
try {

stmt = con.createStatement();
String query="select sum(price*quantity) from cart"+cid+",

product where cart"+cid+".pid=product.pid";
ResultSet rs= stmt.executeQuery(query);
rs.next();
return rs.getDouble(1);

} catch (SQLException e) {
System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();
return 0;

}
}

// updateTable updates the purchaseorder table with the new purchase
// order

public int updateTable()
{
try {

Statement stmt=con.createStatement();
String porder=null;
String dropQuery="drop table cart"+cid;
con.setAutoCommit(false);
ResultSet rs=stmt.executeQuery("select max(poid) from

purchaseorder");
rs.next();
206 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

int poid=rs.getInt(1)+1;
porder=createPorder(poid);

System.out.println(porder);
PreparedStatement pstmt=con.prepareStatement("Insert into

purchaseorder(poid, status, custid, porder)
values(?,?,?,XMLPARSE(document cast(? as varchar(5000))))");

pstmt.setInt(1,poid);
pstmt.setString(2,"unshipped");
pstmt.setInt(3,cid);
pstmt.setString(4,porder);
pstmt.executeUpdate();
con.commit();
con.close();;
return poid;

} catch (SQLException e) {
System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();
return 0;
}

} // updateTable

// createPorder calls a stored procedure to create the XML
// document for porder XML column value

public String createPorder(int poid)
{
CallableStatement cstmt;
String cart="cart"+cid;
try {

cstmt = con.prepareCall("call createOrder(?,?,?)");

cstmt.setInt(1,poid);
cstmt.setString(2,cart);
cstmt.registerOutParameter(3, Types.VARCHAR);
cstmt.executeUpdate();
return cstmt.getString(3);
} catch (SQLException e) {

System.out.println(e.getMessage());
System.out.println(e.getErrorCode());
e.printStackTrace();
return null;
}

} // createPorder
 Chapter 5. Application development with Java 207

} // OrderProcess

At the end of the chapter, we use this class to make a Web application which will
run on the server and implement a very simple application to create a purchase
order for a shopping cart. This application can also be run as a stand-alone
application. To run the application stand-alone, refer to 5.13, “Running the
application” on page 247.

5.4 java.sql package

Java.sql package defines the classes and interfaces required for the JDBC
program to access the relation data stored in a database. These APIs can be
used to connect to the relational database and manipulate the data (insert,
update, delete, and so on) stored in tabular form using the SQL standard. The
interfaces defined in this package are implemented by the driver specific classes
and the definition can differ from vendor to vendor.

5.4.1 Getting a connection

A connection to a database can be obtained using the DriverManager class of
the java.sql package.

Before getting connection, the driver specific classes must be loaded and
registered to the DriverManager. Any number of drivers can be loaded and
registered with the DriverManager. You can use the code shown in Example 5-2
on page 208 to load a driver specific class.

Example 5-2 Loading the Type 4 driver classes

Class.forName(“com.ibm.db2.jcc.DB2Driver”)

The forName method take a string argument whose value is the name of the
package which implements the interfaces defined in java.sql package.

The connection to a database can be obtained by calling the getConnection
method of DriverManager class. This method takes a string value (URL) as an
input, which gives the information required to connect to the database. A typical
URL format for Type 4 driver is:

jdbc:db2://<servername>:<port number>/<database name>

The code in Example 5-3 returns the connection as Connection class object.
208 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 5-3 Loading the Type 4 driver and getting connection to the database

Connection con = null;
Class.forName(“com.ibm.db2.jcc.DB2Driver”).newInstance();
con =
DriverManager.getConnection(“jdbc:db2://localhost:50000/sample”,”user”,
”password”);

In the case where multiple drivers are loaded, DriverManager is responsible for
making use of the appropriate driver to make a connection.

5.4.2 Manipulating data

After getting the connection, data can be selected, inserted, updated, or deleted
from the relational tables using SQL statements. JDBC driver implements two
interfaces Statement and PreparedStatement for this purpose. An object of any
of these classes is required for running an SQL statement.

Statement
An object of Statement (or class implementing the Statement interface) can be
used to execute the SQL statement which does not contain parameter markers.
An object can be created from the Connection object using createStatement
method.

Any number of statements can be created for a particular connection object.

Statement interface defines executeQuery and executeUpdate methods to
execute a query statement. The executeQuery method is used when the result
set is expected (for example, for the SELECT statement) as output of the query.
Alternatively, executeUpdate method is used for updating the database contents
(for example, INSERT, UPDATE, and DELETE statements). The executeQuery
method returns the ResultSet object, which represents a set of rows returned by
the SELECT query. This ResultSet object can be used to fetch the result row by
row. executeUpdate returns an integer value, which indicates the number of rows
updated, inserted, or deleted from the database based on the type of SQL
statement.

SELECT using Statement object
Example 5-4 contains a code snippet for the method getProducts from the
application code. The method select the product names from the CUSTOMER table
and stores them in the String array.

Example 5-4 SELECT using Statement object

String[] products=new String[10];
 Chapter 5. Application development with Java 209

int i=0;
String query="get name of product";
Statement stmt;
try {

stmt = con.createStatement();
ResultSet rs=stmt.executeQuery(query);
while(rs.next())

{
products[i]=rs.getString(1);
i++;

}

The Statement object also provides execute methods to execute any type of
query. The execute method is useful when the decision on SQL statement type is
taken at runtime. It returns true if the result of the SQL statement is a ResultSet
object (for example, for SELECT statement) and false if the result is update
count or there is no result. Based on the return value, getResultSet and
getUpdateCount methods can be used to get the resultSet object or the update
count.

Example 5-5 on page 210 uses the execute method to implement the same
function in Example 5-4.

Example 5-5 SELECT using Statement object’s execute method

String queryStmt="select name from product";
Statement stmt=con.createStatement();
boolean test=stmt.execute(queryStmt);
if (test=true)
ResultSet rs=stmt.getResultSet()
else
int count=stmt.getUpdateCount();

UPDATE using Statement object
Example 5-6 give the code snippet to update a value in the table using the
Statement object.

Example 5-6 UPDATE using Statement object

Statement stmt=null;
stmt = con.createStatement();
stmt.executeUpdate("update purchaseorder set status='shipped' where
poid=5007
210 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

An INSERT or DELETE statement can be executed using the Statement object
in the same fashion.

PreparedStatement
An object of PreparedStatement (or a class implementing the
PreparedStatement interface) can be used to run the queries, which can contain
parameter markers. A PreparedStatement object can be created using the
prepareStatement method of Connection object. PreparedStatement extends the
Statement interface.

If the SQL statement contains parameter markers, the values for these
parameter markers need to be set before executing the statement. Value can be
set using setXXX methods of PreparedStatement object where XXX denoted the
data type of the parameter marker. setXXX methods are also called setter
methods.

The following are the examples of setXXX methods:

� setInt
� setString
� setDouble
� setBytes
� setClob
� setBlob

After setting the parameter values, the SQL statement can be executed using
any of the executeQuery, executeUpdate, or execute method based on the SQL
type.

SELECT using PreparedStatement object
Example 5-7 gives the code snippet for the method isCustomer from the
application code. The method passes the value of the customer id to the method,
which is used to pass the value to the SELECT query. The method returns null if
the customer id does not exist.

Example 5-7 SELECT using PreparedStatement object

String query="select info from customer where cid=?";
PreparedStatement stmt=con.prepareStatement(query);
stmt.setInt(1,id);
ResultSet rs=stmt.executeQuery();
if(!rs.next())
return null;
else
return rs.getString(1);
 Chapter 5. Application development with Java 211

INSERT using PreparedStatement
Example 5-8 shows how to insert the value in the table using the
PreparedStatement object.

Example 5-8 INSERT using the PreparedStatement object

PreparedStatement stmt=null;
stmt = con.prepareStatement("insert into puchaseorder(poid, status)
values(?,?)");
stmt.setInt(1,5020);
stmt.setString(2,"shipped");
stmt.executeUpdate();
l

The DELETE and UPDATE statements can be executed in the same fashion.

CallableStatement
An object of the CallableStatement interface (or the class implementing the
CallableStatement interface) can be used to call the stored procedure. The
CallableStatement interface extends the PreparedStatement interface. An object
of CallableStatement can be created using the prepareCall method of
Connection object.

The parameter for a CallableStatement can be of three types:

� IN
� OUT
� INOUT

The value for IN and INOUT parameters must be set before executing the
CallableStatement. In the same way, OUT and INOUT parameters should be
registered to the database before executing the statement. The
CallableStatement can be executed using execute, executeQuery, and
executeUpdate methods. The usage of these three methods is:

� execute: Use this method when multiple result sets are expected as an
output.

Tip: Trying to run a query which updates the content of the database with the
executeQuery method will result in an exception. Similarly, trying to run a
select query using the executeUpdate method will give an exception. Use the
execute method whenever you are unsure about the query at compile time
(that is, the query is generated at runtime using user’s input) and check for the
Boolean value returned by the method to decide the result.
212 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� executeQuery: Use this method when a single result set is expected.

� executeUpdate: Use this method when no result set is expected.

Example 5-9 gives the code snippet from the createPorder method of the
application code. The method calls a stored procedure named createOrder. The
stored procedure code is given in the class CreateOrder. The stored procedure
has two IN parameters and one OUT parameter. The stored procedure should be
registered before using it. 5.5, “Stored procedure support” on page 219 explains
how to register the stored procedure.

Example 5-9 Calling a stored procedure using CallableStatement object

CallableStatement cstmt;
cstmt = con.prepareCall("call createOrder(?,?,?)");
cstmt.setInt(1,poid);
cstmt.setString(2,cart);
cstmt.registerOutParameter(3, Types.VARCHAR);
cstmt.executeUpdate();
return cstmt.getString(3);

ResultSet
The executeQuery method of Statement, PreparedStatement, and
CallableStatement returns the ResultSet object as an output of the query.

The ResultSet object maintains a cursor to the current row of the result set of a
query. This cursor can be advanced to the next row by using the next method of
this object. The cursor by default can only be moved forward and is read-only.

The columns value for the current row can be fetched by calling the getXXX
method of the ResultSet object where XXX denotes the data type of the column.
The getXXX takes the column number or name for the current row as an input.
Once all the rows are fetched, the next method returns an exception.

Example 5-4 on page 209, Example 5-5 on page 210, and Example 5-7 on
page 211 use the ResultSet object to retrieve the result of the query.

By default, the cursor cannot be moved backward and updated. Cursors can be
moved backward or moved directly to a specific row by defining the scrollability
of the ResultSet object. Similarly, the cursor can be updated by defining the
updateability of the ResultSet object.

The following three properties for the ResultSet can be set while creating the
Statement object:

� resultSetType
� resultSetConcurrency
 Chapter 5. Application development with Java 213

� resultSetHoldability

While resultSetType defines the scrollability of the cursor, resultSetConcurrency
defines the updatabilty of the cursor. resultSetHoldability indicates that the result
set will remain open even after the statement is closed. The createStatement and
prepareStatement supporting all of these properties have the following syntax:

createStatement(int resultSetType, resultSetConcurrency,
resultSetHoldability)
prepareStatement(int resultSetType, resultSetConcurrency,
resultSetHoldability);

All three properties are optional. Example 5-10 defines a Statement object with a
scrollable and updatable ResultSet. It fetched the ResultSet row by row and
update the status whenever the record with value 5003 is found. It prints all the
records after the update is done.

Example 5-10 Scrollable and updatable Result set

Statement stmt=con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
ResultSet rs=stmt.executeQuery("Select POID,Status from purchaseorder"
);
while(rs.next())
{
 int id=rs.getInt(1);
 String status = rs.getString(2);
 if(id==5003 && status.toUpperCase().compareTo("UNSHIPPED")==0)
 {
 System.out.println("updating status to shipped for id value "+
 id+".....");
 rs.updateString(2,"Shipped");
 rs.updateRow();
 }
}

rs.beforeFirst();

System.out.println("Printing all the purchase order record status");
while(rs.next())
{
 int id=rs.getInt(1);
 String info = rs.getString(2);
 System.out.println("id="+id+" info="+ info);
}

214 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

The supported methods for the scrollable cursor are:

� first()
� last()
� next()
� previous()
� absolute()
� relative()
� afterLast()
� beforeLast()

BatchUpdate
With batch updates, a group of updates can be done to the database at the same
time instead of updating one by one. The Statement object provides the following
methods for batch updates:

� addBatch method can be used to add the SQL statements in the batch.

� executeBatch method will execute all the batch statements at the same time.

� executeBatch method will return the number of rows affected by the batch
update.

Example 5-11 shows how to do the batch updates using the Statement object.

Example 5-11 Batch update with Statement object

con.setAutoCommit(false);
Statement stmt=con.createStatement();
stmt.addBatch("create table cart(pid varchar(10), quantity int");
stmt.addBatch("insert into cart values(‘100-100-01’,4)");
stmt.addBatch("insert into cart values(‘100-101-01’,5)");
int[] numUpdates=stmt.executeBatch();

for(int i=0;i<numUpdates.length;i++)
{
 if(numUpdates[i]==-2)

Tip: Each ResultSet object is associated with a Statement,
PreparedStatement, or CallableStatement object. The sensitivity or the
updatability cannot be defined at the resultSet level. It should be defined while
creating the statement object itself, which means ResultSet objects created
for SQL statements using the same statement object will have the same
properties. So once the ResultSet object is created, it is not possible to
change the properties.

In the application getProducts, isCustomer uses the ResultSet object to fetch
the result of the query.
 Chapter 5. Application development with Java 215

 System.out.println("Statement " + i +": Unknown number of rows
 updated");
 else
 System.out.println("Statement " + i +": Successful "+ numUpdates[i]
 +"rows updated");
}

con.commit();

PreparedStatement and CallableStatement can also be used to make the batch
updates. This can be done by running the same PreparedStatement or
CallableStatement with different parameter values.

Example 5-12 gives the code snippet from the application code from the method
createCart. The method takes an HashMap object which has the key-value pair of
product name and the quantity as an input and inserts the PID and QUANTITY
values using a batch update into a table. The table is also created in the same
method. The name of the table is generated by appending the CID value to the
word cart.

Example 5-12 Batch update with PreparedStatement object

Statement stmt=con.createStatement();

String cart = "cart"+cid;
String insertQuery="insert into "+cart+ " values((select pid

from product where name=?),?)";
String createQuery="create table "+cart+"(pid varchar(10),

quantity int)";
PreparedStatement pstmt=con.prepareStatement(insertQuery);
System.out.println(insertQuery);
stmt.executeUpdate(createQuery);
con.setAutoCommit(false);
Set set=hm.keySet();
Iterator it=set.iterator();
while(it.hasNext())
{

String key=(String) it.next();
pstmt.setString(1,key);
pstmt.setInt(2,((Integer)hm.get(key)).intValue());
pstmt.addBatch();
System.out.println(key +"

"+((Integer)hm.get(key)).intValue());
}
pstmt.executeBatch();
216 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

con.commit();
con.setAutoCommit(true);

5.4.3 MetaData

The java.sql package provides three interfaces to access the metadata at the
database level, parameter level, and result set level. The driver class implements
these interfaces.

DatabaseMetaData
DatabaseMetaData object gives the information of the database as a whole. The
object can be created by calling the method getMetaData of Connection object.
The DatabaseMetaData object provides a lot of methods to get the database
information. Some of them are explained below:

� Driver information

getDriverName and getDriverVersion methods give the details of the driver in
use.

� Index and primary key information

getIndexInfo gives the details of the indexes in the database. Similarly, the
getPrimaryKeys method gives the primary key’s details.

� Information of database object name’s length

getMaxCursorNameLength, getMaxProcedureNameLength,
getMaxSchemaNameLength, getMaxStatementLength,
getMaxTableNameLength and so on give the maximum length allowed for the
different database objects.

� Information regarding the database objects

getProcedures, getSchemas, getTables, getUserName, getTableTypes, and
so on methods give the information regarding the database object.

Tip: To execute a batch of statements, all the statements in a single batch
should be batch compatible. Batch compatible statements fall in two
categories:

1. Statements not having parameter markers or host expressions.

2. Different instances (with different parameter values) of the same
PreparedStatement if the statement has the parameter marker.

All the statement in category 1 are batch compatible. In the same way, all the
statements in category 2 are batch compatible, but none of the statements in
category 1 are batch compatible with the statements in category 2.
 Chapter 5. Application development with Java 217

� Information regarding database object size

Methods are provided to get the information regarding the size of the object
such as maximum number of connections allowed, maximum number of
columns in a table, and so on. Examples of these kinds of methods are:

– getMaxConnection
– getMaxColumnInTable
– getMaxColumnInOrderBy
– getMaxColumnInIndex
– getMaxColumnInSelect and so on

� Support functions

There are a lot of support functions defined that can be used to check if any of
the functionality is supported in this driver or not. Some examples are:

– supportBatchUpdates
– supportConvert
– supportColumnAliasing
– supportGroupBy
– supportGroupByUnrelated
– supportExpressionInOrderBy
– supportFullOuterJoins and so on

ParameterMetaData
This interface is included in JDBC universal driver and is not supported for Type
2 drivers. This interface contains the methods to retrieve the information
regarding the parameter’s markers in a PreparedStatement object.The
ParameterMetaData object can be created by calling the getParameterMetaData
method of PrepareStatement object. This interface has the following methods:

� getParameterCount

This method returns the number of parameters in PrepareStatement.

� getParameterType

This method returns the SQL data type of the parameter marker. It takes an
integer value, which indicates the position of the parameter marker in the
PreparedStatement.

� getParameterMode

This method gives the information regarding the type of the parameter: IN,
INOUT, or OUT.

� isNullable

This method returns true if the parameter is nullable; otherwise, it returns
false.
218 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� getPrecision and getScale

These methods return the precision and the scale of the parameter marker if
the parameter type is decimal.

ResultSetMetaData
This interface provides the methods to get the ResultSet information. This
information is specially needed to retrieve the data when the application does not
know about the column types in the ResultSet. The object of ResultSetMetaData
can be created by calling the getResultSetMetaData method on the ResultSet
object. This interface has the following important methods:

� getColumnCount
This method returns the number of columns in the ResultSet object.

� getColumnName
This method returns the name of the column in the ResultSet object.

� getColumnType
This method returns the data type of the column.

� getTableName
This method returns the name of the underlying table for the ResultSet.

� isNullable
This method returns true if the ResultSet column can have a null value.

� isReadOnly
This method will return true if the column is read-only.

5.5 Stored procedure support

DB2 supports the Java stored procedure, which can be run on the server side by
the application. Follow these guidelines to create the Java stored procedure:

� The method in the class, which will map to the stored procedure, must be
defined as public static void method.

� Output and InOut parameters must be set up as a single element array.

To create, register, and use a Java stored procedure in an application, follow
these steps:

1. Write a Java program with the stored procedure method. The method should
be public static void.

2. Compile the program using the Java compiler.

3. Copy the .class file of the program to sqllib/function directory on server
side. If you declare a class to be part of the Java package, create
 Chapter 5. Application development with Java 219

subdirectories in the function directory that correspond to the fully qualified
class names and place the related class files in the corresponding
subdirectories. You can create a JAR file too in case you want to copy a set of
stored procedure class files.

4. Register the stored procedure to the database using the CREATE
PROCEDURE command.

5. Call the stored procedure from the client program.

Let us register the stored procedure to create an XML document for the porder
column of the PURCHASEORDER table.

Step 1
Example 5-13 shows the stored procedure. Make sure that the class should be
public and extends the StoredProc class. The method in the class should be
public void. The OUT parameter values are set using the set function.

Example 5-13 Stored procedure

import java.sql.*;
import com.ibm.db2.jcc.*;
import COM.ibm.db2.app.StoredProc;
public class CreateOrder extends StoredProc
{
public void createOrder(int poid, String cart, String porder) throws
Exception
{

PreparedStatement stmt;

Connection con =
DriverManager.getConnection("jdbc:default:connection");

java.util.Date d = new java.util.Date();
String value=null;
String date=d.getYear()+"-"+d.getMonth()+"-"+d.getDate();
String query="Select xmldocument(XMLELEMENT (NAME

\"PurchaseOrder\"," +
"xmlattributes(cast(? as int) as \"PoNum\",cast(? as varchar(10))

as \"OrderDate\", cast(? as varchar(10)) as \"Status\"),"+
"xmlagg(xmlelement(NAME \"item\",xmlconcat(" +
"xmlelement(NAME \"partid\", t.pid)," +
"xmlelement(NAME \"name\", p.name)," +
"xmlelement(NAME \"quantity\",t.quantity)," +
"xmlelement(NAME \"price\", t.quantity*p.price)" +
"))))) from "+ cart +" as t, product as p where p.pid=t.pid";
220 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

stmt = con.prepareStatement(query);
stmt.setInt(1,poid);
stmt.setString(2, date);
stmt.setString(3,"unshipped");
ResultSet rs=stmt.executeQuery();
rs.next();
value=rs.getString(1);
rs.close();
set(3,value);

}
}

Step 2
Compile the above class using the javac compiler.

Step 3
Copy the CreateOrder.class to the sqllib/function directory.

Step 4
Register the stored procedure using the following command:

CREATE PROCEDURE createOrder(IN poid int,IN cart varchar(10), OUT
porder varchar(5000)) DYNAMIC RESULT SETS 0 NOT DETERMINISTIC LANGUAGE
JAVA PARAMETER STYLE DB2GENERAL NO DBINFO FENCED THREADSAFE READS SQL
DATA PROGRAM TYPE SUB EXTERNAL NAME 'CreateOrder.createOrder'

Step 5
Call the stored procedure from the client program.

The createPorder method of the application calls this stored procedure to create
the PORDER column value for the PURCHASEORDER table. You can call this stored
procedure from the command line using the following command:

call createOrder(poid, cart, ?)

where poid is the purchase order ID and cart is the table name. Before calling the
stored procedure, make sure that the poid value does not exist in the
PURCHASEORDER table and CART table has the PID and QUANTITY columns of
varchar(10) and int data type respectively. Also, populate the CART table with
product ID and quantity values. PID inserted in this table should exist in the
PRODUCT table.

The stored procedure returns the XML value in its output parameter denoted by
the question mark (?) while calling the stored procedure.
 Chapter 5. Application development with Java 221

5.6 Handling large objects

JDBC provides different classes to support BLOB, CLOB, and XML values.

BLOB
A BLOB value can be used to store the binary large value. A BLOB object can be
created and populated using the way shown in Example 5-14.

Example 5-14 Creating a BLOB value

String data=new String("jdbc");
byte[] byteArray=data.getBytes();
java.sql.Blob
blobData=com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);

BLOB implementation in DB2 JDBC universal driver does not support any
constructor function to create the BLOB object. So, it is not possible to create a
BLOB object using a new operator.

The value of the BLOB type parameter can be set using the following
PreparedStatement setter methods:

� setBytes
� SetBinaryStream

The BLOB value from the ResultSet object can be retrieved using the following
ResultSet getter methods:

� getBytes
� getBinaryStream

CLOB and DBCLOB
A CLOB value can be used to store the character large value. A CLOB object can
be created using a way similar to the way we created a BLOB object.
Example 5-15 shows how to create a CLOB value.

Example 5-15 Creating a CLOB value

String xsdData = new String("jdbc");
java.sql.Clob clobData =
com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(xsdData);

The parameter value of type CLOB can be set using the following setter methods
of PreparedStatement object:

� setString
222 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� setAsciiStream
� setUnicodeStream
� setCharacterStream

The CLOB value can be retrieved from the result set using the following getter
methods of ResultSet object:

� getAsciiStream
� getCharacterString
� getString
� getUnicodeStream

DBCLOB values are handled as CLOB objects in JDBC.

GRAPHICS and DBGRAPHICS
GRAPHICS and DBGRAPHICS are treated as String values in JDBC.

XML
XML is a new data type introduced in DB2 9. XML is different from the current
data types supported in DB2, because XML is self-defined and stored in an tree
structure manner in the database. For more details about the XML data type,
refer to Chapter 2, “Application development with DB2 pureXML” on page 49.

Currently, JDBC does not have any XML class to support the XML data type.
XML data or columns can be mapped to any of the following:

� String
� byte
� Stream
� com.ibm.db2.DB2Xml class

com.ibm.db2.DB2Xml is a newly introduced class in JDBC universal driver. This
class is a native class for the universal driver for handling the XML values.

The following setXXX method can be used to set the value of the XML parameter
in a PreparedStatement object:

� setBytes()

� setString()

� setAsciiStream()

� setBinaryStream()

Tip: When creating the BLOB object, a byte array should be passed to the
createBlob method. When creating the CLOB object, a String value should be
passed to the createCLOB method.
 Chapter 5. Application development with Java 223

� setCharacterStream()

� setClob()

� setBlob()

� setObject()
Supports DB2Xml, String, byte[], inputStream, Reader, CLOB, and BLOB as
parameters

The encoding conversion of the XML data depends on which setXXX method is
used to bind the parameter value. The setAsciiStream, setCharacterStream, and
setString methods convert the encoding to UTF-8 and send the XML value as an
explicit external encoding; setByte and setBinaryStream assume that the internal
encoding is correct and send the XML value with internal encoding.

An XML value can be retrieved from the ResultSet using the following getXXX
methods:

� getBytes()
� getString()
� getAsciiStream()
� getBinaryStream()
� getCharacterStream()
� getObject()

The getObject method will retrieve the XML value as an DB2Xml class object.
The XML values retrieved by these methods are externally encoded data and
without explicit XML declaration. These methods cannot be called on the same
XML row again. Trying to do that will throw an SQLException.

com.ibm.db2.jcc.DB2Xml Class
DB2 Universal JDBC driver introduces the DB2Xml class. The object of this class
is returned to the application whenever the getObject method is used to retrieve
the XML column value from the ResultSet object.

This class define methods to convert the XML data to other Java data types,
such as String, byte[], BinaryStream, and AsciiStream. These methods have the
getDB2XXX format where XXX indicate the data type. This class also defines the
methods which convert the XML data to the specified data and add the XML
declaration tag. These methods have a format such as getDB2XmlXXX.

Example 5-16 shows how to retrieve an XML value as a DB2Xml object.

Example 5-16 Retrieving XML value as a DB2Xml object

Statement stmt=con.createStatement();
ResultSet rs=stmt.executeQuery("select info from customer");
224 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

while(rs.next())
{
 com.ibm.db2.jcc.DB2Xml data=(com.ibm.db2.jcc.DB2Xml)
 rs.getObject(1);
 // Print the result as DB2 XML String
 System.out.println();
 System.out.println(data.getDB2String());
}
// Close the result set
rs.close();

The metadata information regarding the XML data type column gives the data
type of the column as java.sql.Types.OTHER because there is no XML data
type defined in the JDBC standard.

5.7 Simple application program life cycle

Figure 5-1 on page 226 shows different life cycles for a query in an application
program. An application program starts by getting the Connection object for the
database using DriverManager. A Connection object can be used to create three
different kinds of SQL statements: Statement, PreparedStatement, and
CallableStatements. Connection objects provide methods to create any of these
objects. A Statement object is used to execute the SQL statement with a
parameter, and the PreparedStatement can be used to run the SQL statement
with a parameter. CallableStatement is used to call the user defined functions
(UDFs). Figure 5-1 depicts different paths for an SQL statement in a JDBC
program.
 Chapter 5. Application development with Java 225

Figure 5-1 Different path for an SQL statement in a JDBC program

Each of the three classes, Statement, PreparedStatement, and
CallableStatement, provides three different methods to execute a query:

� executeQuery: This method is used to select the rows and return a resultSet
object.

� executeUpdate: This method is used to update the database and return the
update count.

� execute method: This method returns a Boolean value of true if the output of
the query is a ResultSet object (SELECT) and false if its an update statement
(INSERT, UPDATE, or DELETE).

The getUpdateCount method can be used to get the number of rows updated in
the database by the SQL statement. The getXXX method of the ResultSet object
can be used to fetch the individual rows.

For CallableStatement, each of these methods has a slightly different meaning.
The executeQuery method is used when the stored procedure returns a
ResultSet, where execute is used when the stored procedure returns multiple
ResultSets.

Driver Manager

Connection CreateStatement()

ResultSet

setXXX(?.?)
executeQuery()

setXXX(?.?)
executeUpdate()

setXXX(?.?)
execute()

execute()

Update
Count RecordsUpdate

Count
Update
CountRecords

executeQuery(?)

CallableStatementStatement

executeUpdate(?)

ResultSet

setXXX(?.?)
executeQuery()

getUpdateCount() getUpdateCount()

setXXX(?.?)
executeUpdate()

Records

next()
getXXX(?.?)

ResultSet

False

getUpdateCount()

PreparedStatement

ResultSet

next()
getXXX(?.?)

next()
getXXX(?.?)

 getConnection(?.?.?)

 PrepareStatement(?)

Null

 PrepareCall(?)

True
226 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

5.8 Introduction to javax.sql package

The javax.sql package defines extension to the JDBC 2.0 API to support
connection pooling, data source, distributed transaction, and so on. DB2
universal database implements all of these interfaces. DataSource
implementation is explained below.

5.8.1 DataSource

Using DriverManager to get the database connection makes the application
dependent on the vendor specific URL and driver classes. A DataSource object
can be used to get the connection, which is portable among the different data
sources, hence, not dependent on the specific URL format and driver classes.
This portability is gained by registering the different data sources with the JNDI
service (javax.naming service) and getting the information about any data
sources by providing the logical name of the datasource in the application. A
DataSource object is either created in the application itself or by a lookup in the
JNDI service. Before making use of lookup in JNDI services, you need to register
the database to JNDI.

The Example 5-17 gives an example of creating DataSource object by JNDI
lookup service and getting the connection to the data source.

Example 5-17 Creating DataSource by JNDI lookup service

Context ctx=new InitialContext();
DataSource ds=(DataSource)ctx.lookup("sampledb");
Connection con=ds.getConnection();

A DataSource object can be bound to a logical name by registering it to JNDI.
Registering to JNDI services requires setting all of the properties to get a
connection such as database name, user name, password, and so on. Once the
data source is registered, an application needs to know only the logical name to
retrieve the database connection. DB2 universal driver provides the following
implementation for the DataSource:

com.ibm.db2.jcc.DB2SimpleDataSource

A data source can be registered using this implementation as shown in
Example 5-18.
 Chapter 5. Application development with Java 227

Example 5-18 Registering data source

DB2SimpleDataSource db2ds=new com.ibm.db2.jcc.DB2SimpleDataSource();
db2ds.setDatabaseName("sample");
db2ds.setDescription("sample database for DB2 Express-C");
Context ctx=new InitialContext();
ctx.bind("sampledb",db2ds);

5.9 Exception handling

JDBC exception handling is done using the try-catch block of the Java
application. A DB2 application throws an SQLException whenever it encounters
the SQL error while running the SQL statements.

5.9.1 SQLExceptions

An object of SQLException is created and thrown whenever an error occurs
while accessing the database.The object gives the following information
regarding the error:

� Message:
Message is a textual representation of the error code. The getMessage
method of the SQLException object returns this message string.

� SQLState:
The SQLState string can be retrieved from the SQLException object by
calling the SQLState method.

� ErrorCode:
This is an integer value and indicates the error which caused the exception to
be thrown. Error codes can be retrieved by calling the getErrorCode method
of the SQLException object.

Apart from the above information, DB2 JCC driver provides an extra interface
com.ibm.db2.jcc.DB2Diagnosable. This interface gives more information
regarding the error that occurred while accessing the DB2 database.
DB2Diagnosable interface has the following methods:

� getSqlca

This method returns the db2sqlca object, which gives an SQL error code,
SQLERRMC values, SQLERRP value, SQLERRD values, SQLWARN
values, and SQLState value.

� getThrowable
228 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

This method returns the java.lang.Throwable object that causes the
SQLException if one exists.

� PrintTrace

This method prints the stack trace information.

If multiple SQLExceptions are thrown, they are chained. The next exception
information can be retrieved by calling the getNextException method of the
current SQLException object. This method will return null if the current
SQLException object is last in the chain. A while loop in the catch block of the
program can be used to retrieve all the SQLException objects one by one.

Example 5-19 shows how to handle the SQLException in the try-catch block.

Example 5-19 SQLException handling

try {
 // code which can throw SQLException go here
} catch (SQLException sqle)
 {
 if(sqle instanceof DB2Diagnosable)
 {
 com.ibm.db2.jcc.DB2Diagnosable diag =
 (com.ibm.db2.jcc.DB2Diagnosable) sqle;
 DB2Sqlca sqlca = diag.getSqlca();
 if(sqlca != null)
 {
 int sqlCode=sqlca.getSqlCode();
 String sqlErrmc = sqlca.getSqlErrmc();
 String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();
 String sqlErrp = sqlca.getSqlErrp();
 // Get the SQLERRP
 int[] sqlErrd = sqlca.getSqlErrd();

 // Get SQLERRD fields
 char[] sqlWarn = sqlca.getSqlWarn();

 // Get SQLWARN fields
 String sqlState = sqlca.getSqlState();

 // Get SQLSTATE
 System.err.println
 ("--------------- SQLCA ---------------");
 System.err.println ("Error code: " + sqlCode);
 System.err.println ("SQLERRMC: " + sqlErrmc);
 for (int i=0; i< sqlErrmcTokens.length; i++) {
 Chapter 5. Application development with Java 229

 System.err.println (" token " + i + ": "
 + sqlErrmcTokens[i]);
 }
 System.err.println ("SQLERRP: " + sqlErrp);
 System.err.println (
 "SQLERRD(1): " + sqlErrd[0] + "\n" +
 "SQLERRD(2): " + sqlErrd[1] + "\n" +
 "SQLERRD(3): " + sqlErrd[2] + "\n" +
 "SQLERRD(4): " + sqlErrd[3] + "\n" +
 "SQLERRD(5): " + sqlErrd[4] + "\n" +
 "SQLERRD(6): " + sqlErrd[5]);
 System.err.println (
 "SQLWARN1: " + sqlWarn[0] + "\n" +
 "SQLWARN2: " + sqlWarn[1] + "\n" +
 "SQLWARN3: " + sqlWarn[2] + "\n" +
 "SQLWARN4: " + sqlWarn[3] + "\n" +
 "SQLWARN5: " + sqlWarn[4] + "\n" +
 "SQLWARN6: " + sqlWarn[5] + "\n" +
 "SQLWARN7: " + sqlWarn[6] + "\n" +
 "SQLWARN8: " + sqlWarn[7] + "\n" +
 "SQLWARN9: " + sqlWarn[8] + "\n" +
 "SQLWARNA: " + sqlWarn[9]);
 System.err.println ("SQLSTATE: " + sqlState);
 }

else
 {

System.out.println(sqle.getMessage());
System.out.println(sqle.getErrorCode());
sqle.printStackTrace();

 }
 System.out.println("Rollback the transaction and quit the
 program");
 System.out.println();
 try { con.rollback(); }
 catch (Exception e) {}
 System.exit(1);

}

230 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

The SQLException class has multiple subclasses, which define more specific
errors. We explain these classes next.

5.9.2 SQLWarning

The SQLWarning object is created whenever there is a database warning that
occurred while calling the methods of the following classes:

� Connection
� Statement
� PreparedStatement
� CallableStatement
� ResultSet

All these interfaces contain the getWarning method to retrieve the warning
information. Note that the creation SQLWarning object does not throw any
SQLException. You need to call the getWarning method of the above interface to
check if any warning exists or not. See Example 5-20.

Example 5-20 Handling SQL warning

Statement stmt=con.createStatement();
stmt.executeUpdate("delete from product where pid='101'");
SQLWarning sqlwarn=stmt.getWarnings();
while(sqlwarn!=null)
{
 System.out.println ("Warning description: " + sqlwarn.getMessage());
 System.out.println ("SQLSTATE: " + sqlwarn.getSQLState());
 System.out.println ("Error code: " + sqlwarn.getErrorCode());
 sqlwarn=sqlwarn.getNextWarning();
}

5.9.3 DataTruncation

The DataTruncation class is a subclass of the SQLWarning to handle the data
truncation whenever an application tries to insert a value larger than the value
defined in the database definition. In that case, the data is stored after truncating

Note: Before using the method of Diagnosable class, make sure that the
object of the SQLException thrown is an instance of this class. If not, you
cannot use the method defined in this class. In that case, use the standard
getMessage, getSQLState, and getErrorCode methods of SQLException to
print the information.
 Chapter 5. Application development with Java 231

the value to the specified size and a DataTruncation object is created to provide
the information. Whenever truncation happens while reading the value from the
database, an SQLWarning object is created instead of DataTruncation. A
DataTruncation object is created when truncation occurred during writing to the
database.

All the methods in SQLException and SQLWarning classes are inherited in this
class. Apart from these, the following methods give more information regarding
DataTruncation Exception:

� getParameter

This method returns true if the parameter value is truncated. It returns false
if the column value is truncated.

� getIndex

This method will return an integer value, which gives the index of the
parameter or column being truncated. This method will return -1 if the index
of the column or parameter is unknown.

� getRead

This method will return true if the truncation occurs while reading. False is
returned if truncation occurred while writing to the database.

� getDataSize

This methods returns the actual size of the data, which should be read or
written to the database without truncation.

� getTransferSize

This method will return the size of the data, which is actually read or written to
the database with truncation.

5.9.4 BatchUpdateException

An object of BatchUpdateException is thrown whenever an error occurs while
running a set of statements together by using BatchUpdate. This class inherits all
the methods from java.lang.Exception class. Apart from that, the following
method is provided by the BatchUpdateException for the additional information:

� getUpdateCounts:

This method returns a array whose size is equal to the number of elements in
the batch. This array has an entry for each statement in the batch to indicate
the failure or success of the statement.

Example 5-21 on page 233 shows the catch block of the method createCart
from our application example. This method does the batch update to update
the cart table.
232 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 5-21 Handling BatchUpdateException

catch (BatchUpdateException buex) {
int [] updateCounts = buex.getUpdateCounts();
for (int i = 0; i < updateCounts.length; i++) {
System.err.println(" Statement " + i + ":" +

updateCounts[i]);
System.err.println(" Message: " + buex.getMessage());
System.err.println(" SQLSTATE: " + buex.getSQLState());
System.err.println(" Error code: " + buex.getErrorCode());
SQLException ex = buex.getNextException();
while (ex != null) {
 System.err.println("SQL exception:");
 System.err.println(" Message: " + ex.getMessage());
 System.err.println(" SQLSTATE: " + ex.getSQLState());
 System.err.println(" Error code: " + ex.getErrorCode());
 ex = ex.getNextException();
 }

}

5.10 Transactions

Transaction are used to access data concurrently with consistency and by
maintaining data integrity. You can view a database transaction as a set of
interactions with the database system independent of other transactions, which
are either completed or aborted. This set of interactions is called unit of work. A
unit of work can be defined as a set of SQL statements, which need to be
executed successfully to complete a task. Any failure from these SQL statements
should lead to failure of the transaction (unit of work), and the database system
should be restored to the state where it is before starting the transaction.

A single transaction can contain a set of queries, which reads and writes to the
database. To complete a transaction, an application should make sure that all of
the queries are executed successfully before ending the transaction. This is
required to maintain the integrity of the data. For example, for an order, if the
customer bought x quantity of the product y, the inventory details for product y
should be decreased by the x amount to complete the purchase order
transaction. If the purchase order is successful without updating the inventory,
the data in the inventory details becomes inconsistent.
 Chapter 5. Application development with Java 233

A typical transaction has the following steps:

1. Start the transaction.

2. Execute some queries. (Any updates to the database are not visible to the
outside world yet.)

3. Complete the transaction by committing. (Any updates to the database
become visible now.)

To maintain the consistency and integrity in a transaction, JDBC includes the
following concepts:

� Auto commit mode
� Transaction isolation level
� Savepoints

5.10.1 Auto commit mode

A transaction is started whenever an SQL statement requires one and there is no
transaction in place. There is no explicit API defined to start a transaction.

Auto commit mode is set to indicate when to end a transaction. Auto commit
mode can be set by setting the auto-commit attribute of the Connection object.
This attribute is set to either enable or disable. Enabling this attribute makes
each SQL statement a separate transaction. So whenever an SQL statement is
issued by the application, a new transaction is started and once the statement is
executed successfully, the transaction is completed by committing any updates
done to the database. Disabling this attribute gives the application flexibility to
end the transaction any time by calling the commit method of the Connection
object. if any of the SQL statements in the transaction failed, the application
needs to restore the state of the database by calling the rollback method of the
Connection object. Disabling this attribute gives the flexibility to the application to
include multiple SQL statements in a transaction and commit and roll back the
transaction whenever needed.

The value of the auto-commit attribute of the Connection object can be set by
calling the Connection object method setAutoCommit. The default value for this
attribute is true (enable). If the value of the auto-commit attribute is changed in
the middle of the transaction, the current transaction is committed and a new
transaction with the changed value is started.

5.10.2 Transaction isolation level

The isolation level specifies how the data is visible to the transactions running
concurrently while the transactions update the data in the database. Isolation
level also relates to how the data is locked for a particular transaction. They
234 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

directly impact the level of concurrent access to the same database object and
how the different transactions interact with each other while accessing the same
data source. The different kinds of interaction possibilities are:

� Lost updates

Two applications, Application A and Application B, read the same row and
calculate the new value for a column for that row. Application A updates the
row with the new value, and just after that Application B updates its new
value. The value updated by Application A is lost.

� Access to uncommitted data

Application A updates a row without committing, and Application B reads this
uncommitted value. Now, if Application A rolled back the transaction,
Application B has already read the data and has the wrong set of data.

� Nonrepeatable reads

Application A reads from the database and then goes on to process another
SQL statement in the transaction. In the meantime, Application B has
updated or deleted the same row. Now if Application A came back and read
the same data again, it found either the value is updated or deleted from the
database. This type of interaction is possible when Application B updates or
deletes the row, which was the part of the result set of transaction A.

� Phantom read

Application A selects some data based on some condition. Application B
inserts another row to the same table, which satisfies the condition of
Application A and commits the changes. If Application A selects the data
again, it will find the extra rows in the result of the query. This kind of
transaction is possible if Application B adds some more rows to the table,
which can be part of the result set of transaction A if the result set is created
again (by running the statement again).

These interactions between different transactions can cause unpredictable
results. Setting isolation levels to appropriate values restricts these interactions.
DB2 provides the following isolation levels. Each isolation level is described on
two parameters:

� How the data is seen by the other transactions while this transaction with this
specified isolation level is updating or reading the data.

� How the current transaction with the specified isolation level can see the data
read or updated by other transactions.

All the transactions acquire an exclusive lock whenever they update a row in the
table, so the lost update is not possible at all.
 Chapter 5. Application development with Java 235

Uncommitted read (UR)
This is the lowest level of isolation:

� Any row already read by the current transaction can be updated by another
transaction.

� The current transaction can see any uncommitted data from other
transactions.

Any kind of interaction except lost update is possible with this isolation level.

Cursor stability (CS)
The characteristics of CS are:

� Any row except the current row read by this transaction can be updated by the
other transactions.

� The current transaction cannot see the uncommitted data from other
transactions.

� Non-Repeatable read and phantom read are possible with this isolation level.

Read stability (RS)
The characteristics of RS are:

� Any row read by the current transaction cannot be updated by any other
transaction.

� The current transaction cannot see the uncommitted data from other
transactions.

� Interactions of type phantom read are possible between concurrent
transactions.

Repeatable read (RR)
This is the highest level of isolation. This isolation level completely isolates the
concurrent transactions:

� Any row read by the current transaction cannot be updated by any other
transaction. At the same time, this isolation level makes sure that the
ResultSet of the same statement remains constant even if the statement is
executed twice in the same transaction.

� Current transactions cannot see the uncommitted data from other
transactions.

� The isolation level for a transaction can be set by calling the method
setTransactionIsolation of Connection object.

Example 5-22 on page 237 shows how to set the isolation level for a transaction.
236 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 5-22 Setting islolation level

Connection con = null;
Class.forName(“com.ibm.db2.jcc.DB2Driver”).newInstance();
con = DriverManager.getConnection(“jdbc:db2:sample”);
// Set the isolation level to RR
con.setTransactionIsolation(TRANSACTION_SERIALIZABLE);

Table 5-1 show the JDBC equivalent variable for the different isolation levels.

Table 5-1 Equivalent JDBC and DB2 isolation levels

5.10.3 Savepoints

A savepoint defines a particular state of the database during a unit of work or
transaction. A savepoint is required if we want to roll back the transaction to a
particular state instead of rolling back to the start of the transaction. DB2
Universal driver provides the method set Savepoint of the Connection object to
set a savepoint during the transaction.

A savepoint can be release by calling the method releaseSavePoint method of
the Connection object. Releasing a savepoint will release all the savepoints
created after the released savepoint. After releasing the savepoint, the
transaction cannot be rolled back to the released savepoint or any of the
savepoints created subsequently.

A transaction can be rolled back to a savepoint by calling the rollback method
and giving the savepoint variable as an argument to this method.

Any cursor opened inside a savepoint will remain open even after rollback to the
savepoint but can go to an invalid state if they depend on some DDL statements
which were rolled back.

Example 5-23 on page 238 shows how to create the savepoint.

JDBC integer constant value DB2 isolation level Equivalent
integer
value

TRANSACTION_SERIALIZABLE Repeatable read 8

TRANSACTION_REPEATABLE_READ Read stability 4

TRANSACTION_READ_COMMITTED Cursor stability 2

TRANSACTION_READ_UNCOMMITTED Uncommitted read 1
 Chapter 5. Application development with Java 237

Example 5-23 Savepoint

con.setAutoCommit(false);
Statement stmt=con.createStatement();
stmt.executeUpdate("create table order(id int, description
varchar(100))");
con.commit();
stmt.executeUpdate("insert into order values(1, 'first order of the
day')");
Savepoint svpt1=con.setSavepoint();
stmt.executeUpdate("insert into order values(2, 'second order')");
Savepoint svpt2=con.setSavepoint();
stmt.executeUpdate("insert into order values(3, 'third order')");
con.rollback(svpt2);
con.releaseSavepoint(svpt1);
stmt.close();
con.commit();

5.11 SQL/XML and XQuery support

An XQuery or SQL/XML statement can be executed in the same manner as we
execute an SQL statement in the JDBC application. All the restrictions of XQuery
are also applicable here. For the XQuery statement, the query should be prefixed
with the xquery word.

For more details about how to write an XQuery, refer to Chapter 2, “Application
development with DB2 pureXML” on page 49.

Example 5-24 shows how to run an XQuery statement in Java. This XQuery
gives all the customers’ cities in Canada.

Example 5-24 Running XQuery

Statement stmt = con.createStatement();
String query="XQUERY"+
+" declare default element namespace \"http://posample.org\";"+
"fn:distinct-values(db2-fn:xmlcolumn('CUSTOMER.INFO')"+\";"+
"/customerinfo/addr[@country=\"Canada\"]/city)";
System.out.println();
System.out.println(query);
ResultSet rs = stmt.executeQuery(query);
// retrieve and display the result from the query
while (rs.next())
{

238 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 // retrieve the data as binary stream
 String data=rs.getString(1);
 // Print the result
 System.out.println(data);
}
// Close the resultset
rs.close();
// Close the statement
stmt.close();

5.12 SQLj support

JDBC runs all the SQL statements dynamically, which means it prepares all the
statements at runtime just before the execution. Some of the statements (for
example, statements without parameters) can be prepared at compile time,
which increases the performance of the application at runtime. SQLj gives this
flexibility of preparing the statements at compile time. An SQLj program runs all
the statements statically. The SQL statements can be embedded into the Java
program using SQLj. Example 5-25 gives the different syntaxes of how to embed
a static SQL statement in a Java program.

Example 5-25 SQLj syntax

#sql [connection-context] { sql statement }
#sql [connection-context, execution context] { sql statement }
#sql { sql statement }
#sql [execution context] { sql statement }

Connection context in SQLj is equivalent to the Connection object in JDBC and
required for executing any SQL statement. Execution context is required to get
the information regarding the SQL statement before and after executing the SQL
statement. A default connection context is used when no connection context is
specified.

The SQLj program needs to be translated and customized first before compiling
and running the program. Translation and customization create the package for
embedded SQL statements in the program and store it in the database. These
packages are used by the application at runtime.
 Chapter 5. Application development with Java 239

5.12.1 Getting connection context

The SQLj program needs to connect to the database before executing any SQL
statement. For getting a connection context, following these steps:

1. Declare a class for connection context. This can be done using the following
statement:

#sql context context-class-name

This declaration creates a class with the name context-class-name. To use
this class to create a context object, declaration must be global and should
not be inside the class.

2. Load the JDBC driver. You do this the same way we have done for the JDBC
program.

3. Invoke the constructor of the context class.

The Example 5-26 shows how to establish the connection in the SQLj program.

Example 5-26 SQLj connection context

#sql context ctx; // This should be outside the class
Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
ctx ctx1=new ctx(“jdbc:db2:sample”,false);

A Connection context for the SQLj program can also be created using the
Connection object. See Example 5-27.

Example 5-27 SQLj Connection Context from Connection object

#sql context ctx; // This should be outside the class
Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
Connection con=DriverManager.getConnection();
ctx ctx1=new ctx(con);

5.12.2 Manipulating data

A connection context class object can be used to execute any SQL statement.
To monitor and control the SQL statements while executing, we need to create
the ExecutionContext class. An ExecutionContext class object can be created by
calling the method getExecutionContext of connection context. Some of the
ExecutionContext methods are applicable before executing the SQL statement
while some of them are applicable only after execution of the statement.
240 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 5-28 shows how to create the ExecutionContext object and use its
method getUpdateCount to retrieve the number of rows deleted by the DELETE
statement.

Example 5-28 Creating ExecutionContext object

#sql context ctx; // this should be outside the class
String url = "jdbc:db2:sample";
Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
Connection con=DriverManager.getConnection(url);
ctx ctx1=new ctx(con);
ExecutionContext exectx1=ctx1.getExecutionContext();
#sql[ctx1,exectx1] { DELETE FROM purchaseorder WHERE
status='UnShipped'}
int i=exectx1.getUpdateCount();

5.12.3 Iterators

SQLj defines iterators for selecting multiple rows using the SELECT statement.
Iterators are the SQLj equivalent of ResultSet in Java and cursors in other
programming languages.

To iterators, the application needs to create an iterator class by defining the
iterator and an object of that class. The result of the SELECT statement can be
assigned to this object.

SQLj provides two types of iterators:

� Named iterators
� Positioned iterators

Named iterators
Named iterators identify a row by the name of the column in the result set. So
while defining the named iterator, you need to specify the name of the columns
and their data types selected by the SELECT statement.

Example 5-29 shows how to use the named iterator in an SQLj program.

Example 5-29 Using named iterators

#sql iterator namediterator(int poid,String status)
namediterator iterator1;
#sql [ctx1] iterator1={ select poid,status from purchaseorder };
while(iterator1.next())
{
 System.out.println("poid: " + iterator1.poid() + "Status: "+
 Chapter 5. Application development with Java 241

 iterator1.status());
}iterator1.close();

Positioned iterators
A positioned iterator identifies a row by its position in the result set. So while
defining the position iterator, you need to give only the data types of the columns.

Example 5-30 shows how to use the positioned iterator in SQLj.

Example 5-30 Using positioned iterators

#sql iterator positionedIterator(int, String);
String status=null;
int poid=0;
positionedIterator iterator1;
#sql [ctx1] iterator1={ select poid,status from purchaseorder };

#sql { fetch :iterator1 into :poid, :status };
while(!iterator1.endFetch())
{
 System.out.println("poid: " + poid + "Status: "+ status);
 #sql { fetch :iterator1 into :poid, :status };
}

Updatable and scrollable iterators
Like JDBC, by default iterators in SQLj are read-only and cannot be moved
backward. To define a scrollable iterator, you need to implement the
sqlj.runtime.Scrollable while defining the iterator. Similar to defining the
updatable cursor, you need to implement sqlj.runtime.ForUpdate while defining
the iterator. Unlike JDBC, when defining the updatable iterator, you also need to
specify the columns you would like to update. Example 5-31 gives the code
snippet, which uses updatable iterators.

Example 5-31 Updatable iterator

#sql public iterator namediterator implements sqlj.runtime.ForUpdate
with (updateColumns="STATUS") (int poid, String status);
namediterator iterator1;
#sql [ctx1] iterator1={ select poid,status from purchaseorder };

while(iterator1.next())
{
 System.out.println("before update poid: " + iterator1.poid() +
 "Status: "+ iterator1.status());
242 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 if(iterator1.status().toUpperCase().compareTo("UNSHIPPED")==0)
 #sql [ctx1] {update purchaseorder set status=
 'shipped' where current of :iterator1 };
}
#sql [ctx1] {commit};

Similarly, you can define the holdability of the iterator by adding the clause
with (holdability=true) while defining the iterator.

5.12.4 Batch updates with SQLj

SQLj supports batch updates the same way JDBC does. But unlike JDBC, SQLj
allows you to add statements of different types (a different instance of the same
statement, or a statement with a host expression) in the same batch.

To create a batch in SQLj, an ExecutionContext is required. The batching can be
enabled by calling setBatching method of ExecutionContext and setting the value
to true.

The number of statements in the batch can be limited to a value by calling the
method setBatchLimit of the ExecutionContext. Once this limit is set, batch will
be automatically executed when this limit is reached. Batch can be explicitly
executed by calling the executeBatch method of the ExecutionContext. Apart
from that, a batch is executed implicitly if the batch contains a statement, which is
incompatible with other statements in the same batch. In that case, a batch will
be executed and a new batch is created for incompatible statements.
Example 5-32 shows how to perform batch update.

Example 5-32 Batch updates

ExecutionContext ec=ctx1.getExecutionContext();
ec.setBatching(true);
#sql[ctx1] { insert into product(pid, price) values('100-201-03',10) };
#sql[ctx1] {update purchaseorder set status='shipped' where poid=5000};
#sql[ctx1] {Delete from purchaseorder where poid=5010};
ec.executeBatch();
System.out.println("Batch executed");
ec.setBatching(false);

When an error occurs while executing any of the batch statements, the remaining
statements are executed and a BatchUpdateException is thrown after all of the
statements have executed.
 Chapter 5. Application development with Java 243

5.12.5 Savepoints

A savepoint can be created in an SQLj program using universal driver. A
savepoint in an SQLj program can be created using the SAVEPOINT statement.

Example 5-33 shows how to create a savepoint in an SQLj program.

Example 5-33 Creating a savepoint in SQLj

con.setAutoCommit(false);
ctx ctx1=new ctx(con);
#sql[ctx1] {create table order(id int, description varchar(100)) };
#sql[ctx1] {insert into order values(1, 'first order of the day')};
#sql[ctx1] {SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};
#sql[ctx1] {insert into order values(2, 'second order')};
#sql[ctx1] {SAVEPOINT SVPT2 ON ROLLBACK RETAIN CURSORS};
#sql[ctx1] {insert into order values(3, 'third order')};
#sql[ctx1] {ROLLBACK TO SAVEPOINT SVPT2};
#sql[ctx1] {RELEASE SAVEPOINT SVPT1};
#sql[ctx1] {commit};

5.12.6 XQuery and SQL/XML support

An XQuery can only be run dynamically. As SQLj runs every query statically, to
run the XQuery in SQLj, we need to change the XQuery statement into an
SQL/XML statement. An SQL/XML statement can be run statically. For example,
the SQL/XML equivalent of query in Example 2-11 on page 71 is shown in
Example 5-34.

Example 5-34 SQL/XML equivalent of XQuery statement

select xmlquery('$d/movie[movie-details/country="US"]/heading/title'
passing movies.info as "d") from movies

Example 5-35 shows the SQLj code to run the query shown in Example 5-34.

Example 5-35 Running XQuery in SQLj

#sql custIter = {select
xmlquery('$d/movie[movie-details/country="US"]/heading/title' passing
movies.info as "d") from movies};

For retrieving XML values, an iterator can be defined either with Object data type
argument or a new class, com.ibm.db2.jcc.DB2Xml object.
244 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

5.12.7 Exception handling

Exception handling can be done in the same way we handle exceptions in a
JDBC program.

5.12.8 JDBC and SQLj

JDBC and SQLj can be used together in a single application. A connection object
in JDBC is similar to the ConnectionContext in SQLj. A connection object can be
retrieved from a ConnectionContext object and vice versa. Getting a
ConnectionContext object from a Connection object is shown in Example 5-27 on
page 240. A connection object from ConnectionContext can be retrieved using
the method getConnection of ConnectionContext object.

In the same way, an iterator in SQLj and the JDBC ResultSet can be retrieved
from each other. To get an iterator from the ResultSet object, use the following
command:

#sql iterator={CAST :result-set }

Before doing the cast, make sure that iterator definition is the same as the result
set definition. For the named iterator, column name and the data types of the
columns defined in the iterator should be the same as those of the result set. For
a positioned iterator, the number of columns and data type should match those of
the result set. Apart from that, properties such as scrollability, updatability, and
holdability should match the definition of the iterator. For details about setting
these properties for SQLj iterator, refer to “Updatable and scrollable iterators” on
page 242.

A ResultSet object can be retrieved from the iterator by calling the getResultSet
method of the iterator class.

Example 5-36 shows how to get an iterator from the ResultSet object.

Example 5-36 Creating an iterator from the ResultSet object

#sql public iterator positionIterator (int, String);

Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
Connection con=DriverManager.getConnection(url);
con.setAutoCommit(false);
ctx ctx1=new ctx(con);
positionIterator iterator;
Statement stmt=con.createStatement();
ResultSet rs=stmt.executeQuery("select poid, status from
purchaseorder");
 Chapter 5. Application development with Java 245

#sql [ctx1] iterator={cast :rs};
#sql {fetch :iterator into :poid, :status};
while(!iterator.endFetch())
{

System.out.println("id: "+poid+" status: "+status);
#sql {fetch :iterator into :poid, :status};

}
iterator.close();

Similarly, an ExecutionContext in SQLj is equivalent to the Statement object in
JDBC. In SQLj, ExecutionContext is used to get the information regarding the
Query statement before and after execution; in a Java Statement, the object is
used to do the same. Some of the equivalent functions are shown in Table 5-2.

Table 5-2 Comparison between Statement and ExecutionContext

Table 5-3 on page 247 gives you a comparison between ResultSet object in
JDBC and iterator in SQLJ.

Method description Statement
object method

ExecutionContext
method

Retrieve the update counts done by the
update or delete statement

getUpdateCount getUpdateCount

Retrieve the warnings thrown by the
statements

getWarnings getWarnings

To start the batchUpdate no need to enable
batching.

setBatching

To add the SQL statement in the batch addBatch After enabling the
batching using
setBatching method,
Subsequent
statements are
added to the batch
automatically

To execute the batch statements executeBatch executeBatch
246 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Table 5-3 Comparison between ResultSet and iterator

5.13 Running the application

The application code in Example 5-1 on page 202 can be executed either
stand-alone or using a Web service.

5.13.1 Running an application stand-alone

To run the application stand-alone, follow these steps:

1. Set your CLASSPATH to include all the files required for JDBC (see
“Application requirements” on page 200).

2. Initialize the following variables in the main method:

a. custid: Initialize the variable with a valid customer ID (Exists in customer
table).

Description ResultSet object Iterator

Creation Returned by Statement object
methods executeQuery.
For example,
ResultSet rs=null;
rs=stmt.executeQuery(query
)
where stmt is the statement
object.

Need to declare the iterator class
using SQLj declaration clause.
Create the object after declaration.
For example:
#sql iterator iterator1(int, String);
iterator iterator1

Scrollability and
Updatability

Scrollability and Updatability
are defined while creating the
Statement object for all the
ResultSets created from that
object.

Scrollability and Updatability are
defined by specifying the
implement clause in the
corresponding interface while
declaring the iterator.

Holdability Same as above. Holdability is defined by defining
the holdability property to true in
the with clause of the iterator.

Methods
supported for
scrollability

first
last
previous
next
absolute
relative
afterLast
beforeFirst

first
last
previous
next
absolute
relative
afterLast
beforeFirst
 Chapter 5. Application development with Java 247

b. hm: This variable is of type HashMap. The key for the HashMap is product
name and value is the quantity ordered.

3. Start the DB2 server.

4. Create the SAMPLE database using this command:

db2sampl -xml

5. Register the procedure created in “Stored procedure support” on page 219 to
the database.

6. Compile the Java code using the Java compiler.

7. Run the application.

5.13.2 Running the application as a Web service

To run the application as a Web service, follow these steps:

1. Install the Tomcat application server. You can obtain Tomcat from the
following Web site:

http://tomcat.apache.org/download-55.cgi

2. Install the Eclipse SDK.

3. Install the Tomcat-eclipse plug-in.

4. Download the application code from the IBM Redbooks Web site. For
download instructions, refer to Appendix C, “Additional material” on page 319.

5. Open the project in eclipse.

6. Start the DB2 server.

7. Create the SAMPLE database using the command:

db2sampl -xml

8. Register the procedure created in “Stored procedure support” on page 219 to
the sample database.

9. Start the Tomcat server.

10.Point your browser to this link:

http://localhost:8080/cart/default.jsp

If Tomcat and the application are downloaded onto a remote machine, give the
machine IP address/name instead of localhost.

Note: The previous project can be run using any application server. We
recommend Tomcat and Eclipse, because we used them to create the
application.
248 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://tomcat.apache.org/download-55.cgi

 Chapter 5. Application development with Java 249

250 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Chapter 6. Application development
with .NET

In this chapter, we introduce DB2 application development using .NET.

In this chapter, we discuss following:

� Requirements for .NET application development with DB2
� Add-in features for Visual Studio .NET
� DB2 Data Providers available for use with .NET
� Application examples using .NET and DB2 Express-C

6

© Copyright IBM Corp. August 2006. All rights reserved. 251

6.1 .NET technology and ADO.NET

.NET is Microsoft’s Web services architecture, which represents a set of
Microsoft frameworks and technologies. It is alternative to J2EE, the distributed
application infrastructure based on Java language and is available for Windows
platforms.

ActiveX Data Object for .NET (ADO.NET) provides classes, methods, and
attributes to access data source utilizing features of Web services and XML.

ADO.NET serves as a single data access layer used by all server processes and
applications running on Microsoft platforms. ADO.NET consists of objects such
as Connection, Command, DataAdapter, and DataReader to access data source
as shown in Figure 6-1.

Figure 6-1 ADO.NET architecture

DataSet

DataReader

DataAdapter

Connection

Command

DB
252 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

6.2 Requirements for .NET application development with DB2

The following requirements are needed to develop .NET application solutions
with DB2 data source:

� DB2 client (minimum DB2 Application Development Client) Version 8.1.2 for
use of DB2 .NET Data Provider and Version 8.1.5 for OLE DB bridge provider
needs to be installed and the appropriate database needs to be cataloged.

� To develop and run applications that use DB2 .NET Data Provider, the .NET
Framework Version 2.0 or 1.1 is required. The .NET Framework version 2.0 is
recommended for new DB2 solutions development.

� For Visual Studio 2005 add-in, Microsoft Visual Studio 2005 is required and
DB2 Application Development Client V8.2 fix pack 10 or later.

� For Visual Studio 2005 add-in, Windows XP, Service Pack 2, or later, or
Windows Server® 2003, Service Pack 1.

DB2 .NET Data Provider can be used to connect to the following data sources:

� DB2 Universal Database for Linux, UNIX, and Windows, Version 9

� DB2 Universal Database Version 8 for Windows, UNIX, and Linux-based
computers

� DB2 Universal Database Version 6 (or later) for OS/390 and z/OS, through
DB2 Connect

� DB2 Universal Database Version 5, Release 1 (or later) for AS/400 and
iSeries, through DB2 Connect

To ensure that the ADO.NET applications built for DB2 UDB V8 can function
successfully with DB2 9, they need to be migrated. This may involve rebuilding
the application if DB2 .NET Data Provider is used. An application built using OLE
DB .NET Data Provider or ODBC .NET Data Provider does not need to be rebuilt.

For further details, refer to the following URL:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com
.ibm.db2.udb.uprun.doc/doc/t0023417.htm

6.3 Add-in features for Visual Studio .NET

The IBM DB2 Development Add-In integrates a collection of DB2 specific
features with the Microsoft Visual Studio .NET development environment.
 Chapter 6. Application development with .NET 253

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.uprun.doc/doc/t0023417.htm

Visual Studio .NET 2005 Add-In is available as a separate install from the core
DB2 product. This was done to allow the tool to be available with other IBM
databases.

The minimum requirement for the Visual Studio .NET 2005 Add-In is the DB2
Application Development Client V8.2 Fix Pack 10 or later.

The main features of IBM DB2 Development Add-In for V8 are:

� Launch various DB2 development and administration tools.
� Access and manage DB2 data connections in the IBM Explorer.
� Create and manage DB2 projects in the Solution Explorer.
� Create and modify DB2 scripts to create stored procedures and user defined

functions (UDFs).

In Visual Studio 2005 Add-In, the following features are available in addition to
the previous V8 IBM DB2 Development Add-In:

� Seamless integration with Microsoft Server Explorer, where DB2 connections
can now be added into Microsoft Server Explorer (in V9, IBM Explorer has
been deprecated).

� Introduction of IBM Designer to script and create DB2 database objects.

� IBM Database Add-Ins for Visual Studio 2005 is now available as a separate
install.

� You can build Windows applications and Web sites for DB2 without writing
any code:

– All flavors of DB2 are supported (DB2 UDB for Linux, UNIX, and Windows,
DB2 UDB for iSeries, and DB2 UDB for z/OS).

– Federated database and nicknames are supported for application
development.

– Filtering of database objects is supported for optimal performance on
iSeries and zSeries® servers.

– Caching of schema information for objects in DB2 connections in Server
Explorer provides better application development performance at design
time.

� A new feature in IBM tooling is the ability to hide or show specific folders for a
DB2 connection in Server Explorer.

� The tooling continues to support displaying detailed messages of DB2 activity
on the IBM Message Pane.

� The new tooling introduces a new set of IBM designers to create, alter, and
clone database objects:
254 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

– All IBM designers continue to use the smart multi-line editors that provide
syntax colorization and statement completion.

– You have the ability to create new tables, views, and procedures using IBM
designers.

– There is new functionality to alter existing tables, views, and procedures,
using IBM designers.

– There is new functionality to create and alter roles and assign privileges to
database objects.

– The IBM designers give you the ability to clone tables and procedures.

� The new tools give you a new way to seamlessly debug SQL procedures on
Linux, UNIX, and Windows, or zSeries servers, from Server Explorer.
Debugging support now uses the new IBM Designer for Procedures that
allows a seamless debugging experience.

� There is a new designer to view or create script for all objects. The IBM Script
Designer provides:

– The ability to change and execute scripts.

– The ability to run single or multiple DDL/DML statements and view results
in single or multiple grids.

– The ability to alter objects using scripts.

� You can show data from tables and views with the following new
enhancements:

– You can filter columns while retrieving data.

– You can save data as XML to import or export, allowing easy table or view
data migration.

� Execute procedures and functions has the following new enhancements:

– You have the ability to run pre- and post-scripts.

– You can save input or in-out parameter values across Visual Studio
sessions.

– You can commit or roll back transactions.

� There is a new user interface to view result sets in DB2 connections on the
Server Explorer. It gives you:

– The ability to view single or multiple result sets for a procedure in Server
Explorer.

– The ability to discover automatically (when possible) or to manually define
or customize result set definitions for a procedure.
 Chapter 6. Application development with .NET 255

– The ability to set the preference to always discover or always manually
define the result set definition in Add or Modify connection.

� You have continued support for DB2 projects and IBM Scripting wizards to
create DB2 scripts. The debugging support has been discontinued from DB2
Projects. Instead, it is supported seamlessly from DB2 connections on Server
Explorer.

6.3.1 Visual Studio 2005 Add-In: Sever Explorer integration

DB2 connections can be added from Server Explorer using the Add Connection
option.

1. Open Server Explorer if it is not already open using View → Server Explorer.

2. In the Server Explorer, right-click and select Add Connection from Data
Connections node as shown in Figure 6-2.

Figure 6-2 Adding connection in Data Explorer
256 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

3. Select Data source then select IBM DB2 as shown in Figure 6-3. Click
Continue.

Figure 6-3 Selecting IBM DB2 in Data Explorer

4. Add the server name (given drop-down box will show server options),
database name, user ID, and password as shown in Figure 6-4 on page 258.
Click OK, which will now add the given database connection to Server
 Chapter 6. Application development with .NET 257

Explorer and
you can test the connection.

Figure 6-4 Providing connection information in Data Explorer

If the window shown in Figure 6-4 does not display and another window
results in "Failed to find or load the registered .Net Framework Data
Provider", then the following steps are needed to resolve the error:

a. Open the DB2 Command window. Click Start → Programs → IBM
DB2 → Command Line Tools → Command Window.

b. At the prompt in the DB2 Command window, enter the following
command:

 db2lswtch.exe –promote

Repeat the procedure to add DB2 connection.
258 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

6.3.2 Visual Studio 2005 Add-In: IBM Designer

IBM Designer provides tools to create various database objects. It can be used
to create and alter tables, views, scripts, and procedures.

IBM Table Designer
The IBM Table Designer can be used to create a new table. From Server
Explorer, chose Data Connections → database, right-click Tables node, and
select Add New Table with Designer as shown in Figure 6-5.

Figure 6-5 Starting IBM Table Designer

Note: The wizard and designer can both be used to create the same database
objects. The wizard, however, is targeted to novice users who prefer
step-by-step creation while the designer allows a more advanced user to
switch between views and other applications in the design process.
 Chapter 6. Application development with .NET 259

The Table Designer window shows Table Definition, Columns, and Column
properties section as in Figure 6-6.

Figure 6-6 Table Designer window

The following menus are provided in Table Designer window:

� Column Definitions View (Default): Allows you to define columns and their
data types.

� Keys View: Allows defining primary keys, unique keys, and foreign keys.

� Indexes View: Allows creating indexes for the columns defined in the columns
view.

� XML Indexes View: Allows creating indexes for any tags in XML document.

� Check Constraints View: Allows adding check constraints for the table and its
columns.

� Triggers View: Allows adding triggers to a table.

� Privileges View: Allows adding roles and privileges to the users.

� Show Script View: This shows the create table statement command.
260 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

IBM View Designer
The IBM View Designer can be used to create a new view by right-clicking Views
node in Server Explorer under Data Connections → database, and selecting
Add New View with Designer as shown in Figure 6-7.

Figure 6-7 Starting IBM View Designer
 Chapter 6. Application development with .NET 261

The View Designer window is shown in Figure 6-8.

Figure 6-8 View Designer window

The menu provided in View Designer window includes the following:

� View View: Provides ability to check the syntax or test execute the SQL
statement provided in the view definition.

� Triggers View: Provides ability to define and add triggers.

� Privileges View: Allows adding roles and privileges to users.

� Show Script View: Shows the create view statement.

IBM Procedure Designer
The IBM Procedure Designer can be used to create a new procedure by
right-clicking Procedures node in Server Explorer, under Data Connections →
database, then selecting Add New SQL Procedure with Designer as shown in
Figure 6-9 on page 263.
262 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Figure 6-9 Starting IBM Procedure Designer
 Chapter 6. Application development with .NET 263

The Procedure Designer window is shown in Figure 6-10.

Figure 6-10 Procedure Designer window

The menu provided in Procedure Designer window includes the following:

� Procedure View: Allows defining procedure parameters and procedure body.

� Privileges View: Allows adding roles and privileges to the users or groups.

� Show Script View: Shows the create procedure statement.

Debugging SQL procedures
Debugging support for SQL procedure has been extended to zSeries servers.

Procedure can be debugged using the following steps:

1. Create SQL procedure with Debug mode option set to ALLOW.

2. Add breakpoints in SQL body.

Note: At time of DB2 9 release, CLR Procedure can only be created using the
wizard. Only SQL Procedure Designer is available.
264 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

This can be done using Debug → Toggle Breakpoint (F9), which will
highlight the line and place a red dot to the left of the breakpoint as shown in
Figure 6-11 on page 266.

Breakpoints can be deleted by left-clicking the red dot.
 Chapter 6. Application development with .NET 265

Figure 6-11 Adding debug breakpoints in Procedure Designer

3. Start debugging using Step Into button on the toolbar.
266 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

6.4 Data Providers for ADO.NET

In ADO.NET architecture, applications (also called Data Consumers) connect to
database (also referred to as Resource) using data provider. The data provider
encapsulates data and provides a means to interact with the database including
connection, execution of SQL command, and retrieval of results.

As mentioned in Chapter 1, “DB2 application development overview” on page 1,
IBM DB2 provides three data providers for ADO.NET applications. These are:

� DB2 .NET Data Provider
� OLE DB .NET Data Provider
� ODBC .NET Data Provider

6.4.1 Managed provider and unmanaged provider

In ADO.NET, Data Provider can be separated into two categories according to
how it is implemented:

� Managed Provider: This executes within the ADO.NET environment, which
controls all aspects of application execution, including memory allocation,
memory deallocation, application domains, and so on.

� Unmanaged Provider: This is pre-ADO.NET Windows 32-bit operating
system-based drivers.

DB2 .NET Data Provider is managed type. DB2 .NET Data provider is ADO.NET
data provider, which is recommended for use with DB2 family databases. The
following namespaces are required for DB2 .NET Data Provider:

using System;
using System.Data;
using IBM.Data.DB2;

OLE DB .NET Data Provider is a bridge provider that passes the ADO.NET
request to native IBM OLE DB provider (IBMDADB2). The following namespaces
are required for OLE DB .NET Data Provider:

using System;
using System.Data;
using System.Data.OleDb;

ODBC .NET Data Provider is a bridge provider that passes ADO.NET requests
to the IBM ODBC Driver. The following namespaces are required for ODBC .NET
Data Provider:

using System;
using System.Data;
 Chapter 6. Application development with .NET 267

using System.Data.Odbc;.

Use of OLE DB .NET Data Provider or ODBC .NET Data Provider is
recommended if the application is connecting to multiple vendor databases and
you do not wish to change any code within the application.

DB2 .NET Data Provider is recommended for any new ADO.NET application
development. It will yield the best performance due to the elimination of the extra
unmanaged layer as shown in Figure 6-12.

Figure 6-12 DB2 Data Provider

Five objects in ADO.NET make up core functionalities. This is illustrated in
Figure 6-1 on page 252.

Five key managed provider components in ADO.NET
There are five key managed provider components in ADO.NET that are common
to all IBM DB2 data providers. These include:

� Connection
� Command
� DataReader
� DataAdapter

DB

Application
System.Data.OleDb

OleDbConnection

OleDbCommand

OleDbDataAdapter

OleDbDataReader

OLE DB.Net
Data Provider

IBM DB2 OLE
DB Provider

Application
Microsoft.Data.ODBC

OdbcConnection

OdbcCommand

OdbcDataAdapter

OdbcDataReader

ODBC.Net Data
Provider

IBM DB2 ODBC
Driver

Application
IBM.Data.DB2

DB2Connection

DB2Command

DB2DataAdapter

DB2DataReader

DB2.Net Data
Provider
268 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� DataSet

Connection
The Connection object is used to connect to a database and control the
transactions in ADO.NET. Each data provider has different Connection Objects.
Each of the three data providers IBM DB2 incorporates has its own Connection
Objects (DB2Connection, OleDbConnection, and OdbcConnection).

The data connection class enables you to specify the connection string used to
connect to the target database server:

� This is implemented as DB2Connection object in DB2 .NET Data Provider, for
example:

DB2Connection connection = new DB2Connection(“Database=SAMPLE”);

� This is implemented as OleDbConnection object in DB2 OLE DB Data
Provider, for example:

OleDbConnection connection = new
OleDbConnection(“Provider=IBMDADB2.1;DSN=SAMPLE”);

� This is implemented as OdbcConnection object in DB2 ODBC Data Provider,
for example:

OdbcConnection connection = new OdbcConnection(“DSN=SAMPLE”);

The connection object has public property ConnectionString, which is required
for establishing connection with a database. It requires database name and other
parameters such as user ID and password, for example:

connection.ConnectString = “Database=Sample”;

However, ConnectionString property can be set through passing the string to the
Connection Object Constructor as shown in following example:

DB2Connection connection = new DB2Connection(“Database=SAMPLE”);

Connection objects have the following public methods:

� Open: This opens a database connection as specified in a ConnectionString,
for example:

connection.Open();

Connections can be opened by explicitly calling the Open method on the
connection as shown above or by implicitly using a DataAdapter.

� Close: This closes the database connection, for example:

connection.Close();
 Chapter 6. Application development with .NET 269

� CreateCommand: This returns a command object associated with the
connection, for example:

connection.CreateCommand();

� BeginTransaction: This begins the database transaction, for example:

connection.BeginTransaction():

Command
The Command object allows for execution of any supported SQL statement or
stored procedure using a data connection object. Connection object should be
created but do not needed to be opened prior to creating SQL commands:

� This is implemented as DB2Command in DB2 .NET Data Provider, for
example:

DB2Command cmd = new DB2Command();

� This is implemented as OleDbCommand in DB2 OLE DB Data Provider, for
example:

OleDbCommand cmd = new OleDbCommand();

� This is implemented as OdbcCommand in DB2 ODBC Data Provider, for
example:

OdbcCommand cmd = new OdbcCommand();

The Command object has public properties CommandType and CommandText.
The CommandType describes whether an SQL statement or a stored procedure
will be executed. The CommandText is used to set or get an SQL statement or a
stored procedure that is to be executed, for example:

cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT manager FROM org WHERE DEPTNUMB=10";

or

cmd.CommandType = CommandType.StoredProcedure;
cmd.CommandText = procName;

Command object has the following public methods:

� CreateParameter: This is used for parameter handling, for example:

set param1 = cmd.CreateParameter("DEPTNAME", adVarChar,
adParamInput, 14, "Test");
set param2 = cmd.CreateParameter("DEPTNUMB", adTinyInt,
adParamInput, , 510);
270 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� ExecuteNonQuery: Use this to execute a SQL command that does not
return any data, such as UPDATE, INSERT, or DELETE SQL operations.
Method returns the number of rows affected for given execution, as shown:

int rowsAffected = cmd.ExecuteNonQuery();

� ExecuteReader: Use this to execute a SQL query that returns a DataReader.
DataReader is fast forward-only stream of data, for example:

DB2DataReader reader = cmd.ExecuteReader ();

� ExecuteScalar: Use this to execute a SQL command that retrieve a single
value from a database, for example:

int count=(int)cmd.ExecuteScalar();

DataAdapter
The data adapter object populates a disconnected DataSet with data and
performs update. It contains the four optional commands for the select, insert,
update, and delete. Use it between DataSet and database for loading and
unloading data.

� Implement this as DB2DataAdapter in DB2 .NET Data Provider, for example:

DB2DataAdapter adapter = new DB2DataAdapter();

� Implement this as OleDbDataAdapter in DB2 OLE DB Data Provider, for
example:

OleDbDataAdapter adapter = new OleDbDataAdapter();

� Implement this as OdbcDataAdapter in DB2 ODBC Data Provider, for
example:

OdbcDataAdapter adapter = new OdbcDataAdapter();

Data adapter object has these public properties:

� DeleteCommand
� InsertCommand
� SelectCommand
� UpdateCommand

The DeleteCommand deletes records using SQL statements or stored
procedures from the data set, for example:

adapter.DeleteCommand = new DB2Command(“DELETE From org WHERE DEPTNUMB
= 10”, connection);

Note: Object returned by cmd.ExecuteScalar() should be casted to data
type of underlying database object. The above example is valid for a case
where a single value being retrieved is from int column.
 Chapter 6. Application development with .NET 271

The InsertCommand inserts new records into a database using SQL or stored
procedures, for example:

adapter.InsertCommand = new DB2Command(“INSERT INTO org VALUES (30,
‘Test’, 60, ‘Eastern’, ‘Toronto’)”, connection);

The SelectCommand selects records in a database using SQL or Stored
Procedures, for example:

adapter.SelectCommand = new DB2Command(“SELECT manager From org WHERE
DEPTNUMB = 30”, connection);

The UpdateCommand update records in a database using SQL or Stored
Procedures, for example:

adapter.UpdateCommand = new DB2Command(“UPDATE org SET Manager=70 WHERE
DEPTNUMB=20”, connection);

Data Adapter has the following public methods:

� Fill: This fills records in DataSet, as shown below:

DataSet results= new DataSet();
adapter.SelectCommand = new DB2Command("Select * from dept",
connection);
adapter.Fill(results);

� Update: This updates Records in DataSet and a database through INSERT,
UPDATE, and DELETE operations, for example:

DataSet results= new DataSet();
adapter.UpdateCommand = new DB2Command(“UPDATE org SET Manager=70
WHERE DEPTNUMB=20”, connection);
adapter.Update(results);

DataReader
Utilized for fast forward-only, read-only access to connected record sets that are
returned from executing SQL statements or stored procedure calls. The
DataReader object cannot be directly instantiated and needs to be returned as
the result of the Command Object’s ExecuteReader method.

� Implement this as DB2DataReader in DB2 .NET Data Provider, for example:

Db2DataReader reader = cmd.ExecuteReader();

� Implement this as OleDbDataReader in DB2 OLE DB Data Provider, for
example:

OleDbDataReader reader = cmd.ExecuteReader();
272 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� Implement this as OdbcDataReader in DB2 ODBC Data Provider, for
example:

OdbcDataReader reader = cmd.ExecuteReader();

The DataReader object has FieldCount and HasRows public properties. The
FieldCount property returns the total number of columns in the current row while
HasRows property indicates whether DataReader has one or more rows by
returning true or false, for example:

int cols=reader.FieldCount;
bool rows=reader.HasRows;

The DataReader object has the following public methods:

� Read: Reads in records one row at a time and advances the cursor to the
next row. It returns true or false to indicate whether there are any rows to
read, for example:

bool done=reader.read();

� Close: This closes the DataReader, for example:

reader.Close();

� Getxxxx: This is used to get data of type xxxx, for example:

Console.WriteLine (reader.GetString(1));

DataSet
The DataSet object represents an “In-memory cache of data”, which was
retrieved from the database. The DataSet object is a disconnected dataset,
which provides a consistent relational programming model independent of the
data source. Since it is disconnected from the database, it reduces the
communication overhead to the database server.

The DataSet object has the public property DataSetName, which gets or sets
DataSet name, for example:

DataSet ds = new DataSet();
ds.DataSetName = "DB2";

The DataSet object has the following public methods:

� AcceptChanges: This commits changes to the DataSet, for example:

ds.AcceptChanges();

� Clear: This clears the DataSet contents, for example:

ds.Clear();
 Chapter 6. Application development with .NET 273

� GetXML: This gets XML representation of data in the DataSet, for example:

Console.WriteLine(ds.GetXml())

� ReadXML: This reads XML schema and XML into DataSet, for example:

ds.ReadXML(reader);

� WriteXML: This writes XML schema and XML into DataSet, for example:

ds.WriteXml (".\\test.xml") ;

The short ADO.NET sample C# codes shown in Example 6-1 demonstrate the
use of various DB2 Data Providers.

They perform the same functionality where “selects * from staff” query is issued
and displays the name of the staff (second column in staff table) to the screen.
These sample codes require DB2 Sample database. Key differences between
the codes are highlighted in bold.

DB2 .NET Data Provider C# sample is shown in Example 6-1.

Example 6-1 Short C# sample code using DB2 .NET Data Provider

using System;
using System.Data;
using IBM.Data.DB2;

class NETSamp
{
 public static void Main(String[] args)
 {
 DB2Connection conn = null;
 DB2Command cmd = null;
 DB2DataReader reader = null;
 int cols=0;
 bool rows=false;

 try{
 conn=new DB2Connection("Database=SAMPLE");
 Console.WriteLine("\n Connecting to the database.");
 // Opening the connection
 conn.Open();
 // Create the command to be executed
 cmd=conn.CreateCommand();

 //Prepare the query CommandText.
 cmd.CommandText = "SELECT * FROM staff";

274 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 // Retrieve and display the single value
 reader = cmd.ExecuteReader();
 Console.WriteLine("\nExecute: "+cmd.CommandText);
 // Checking to for number of columns and see if any rows

//are returned.
 cols= reader.FieldCount;
 Console.WriteLine("\n FieldCount: "+cols);
 rows=reader.HasRows;
 Console.WriteLine("\n HasRows?: "+rows);

 while (reader.Read()==true)
 {
 //Read the second column which contains staff name
 Console.WriteLine (reader.GetString(1));
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }finally{
 //clean up the resources by closing reader and connection
 reader.Close();
 conn.Close();
 }
 }
}

DB2 OLE DB Data Provider C# sample is shown in Example 6-2.

Example 6-2 Short C# sample code using DB2 OLE DB Data Provider

using System;
using System.Data;
using System.Data.OleDb;

class OLEDBSamp
{
 public static void Main(String[] args)
 {
 OleDbConnection conn = null;
 OleDbCommand cmd = null;
 OleDbDataReader reader = null;
 int cols=0;
 bool rows=false;
 try{
 Chapter 6. Application development with .NET 275

 conn = new OleDbConnection("Provider=IBMDADB2.1;DSN=SAMPLE");
 Console.WriteLine("\n Connecting to the database.");
 // Opening the connection
 conn.Open();
 // Create the command to be executed
 cmd=conn.CreateCommand();
 //Prepare the query CommandText.
 cmd.CommandText = "SELECT * FROM staff";
 // Retrieve and display the single value
 reader = cmd.ExecuteReader();
 Console.WriteLine("\nExecute: "+cmd.CommandText);
 // Checking to for number of columns and see if any rows

//are returned.
 cols= reader.FieldCount;
 Console.WriteLine("\n FieldCount: "+cols);
 rows=reader.HasRows;
 Console.WriteLine("\n HasRows?: "+rows);
 while (reader.Read()==true)
 {
 //Read the second column which contains staff name
 Console.WriteLine (reader.GetString(1));
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }finally{
 //clean up the resources by closing reader and connection
 reader.Close();
 conn.Close();
 }
 }
}

DB2 ODBC Data Provider C# sample is shown in Example 6-3.

Example 6-3 Short C# sample code using DB2 ODBC Data Provider

//Before starting make sure SAMPLE database entry is present in System
DSN tab of Control Panel->Data Sources (ODBC).
using System;
using System.Data;
using System.Data.Odbc;

class ODBCSamp
276 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

{
 public static void Main(String[] args)
 {
 OdbcConnection conn = null;
 OdbcCommand cmd = null;
 OdbcDataReader reader = null;
 int cols=0;
 bool rows=false;

 try{
 conn = new OdbcConnection("DSN=SAMPLE");
 Console.WriteLine("\n Connecting to the database.");
 // Opening the connection
 conn.Open();
 // Create the command to be executed
 cmd=conn.CreateCommand();

 //Prepare the query CommandText.
 cmd.CommandText = "SELECT * FROM staff";

 // Retrieve and display the single value
 reader = cmd.ExecuteReader();
 Console.WriteLine("\nExecute: "+cmd.CommandText);
 // Checking to for number of columns and see if any rows

//are returned.
 cols= reader.FieldCount;
 Console.WriteLine("\n FieldCount: "+cols);
 rows=reader.HasRows;
 Console.WriteLine("\n HasRows?: "+rows);

while (reader.Read()==true)
 {
 //Read the second column which contains staff name
 Console.WriteLine (reader.GetString(1));
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }finally{
 //clean up the resources by closing reader and connection
 reader.Close();
 conn.Close();
 }
 }
 Chapter 6. Application development with .NET 277

}

The above samples can be compiled using the following command:

csc NETSamp.cs /r:<DB2 Install Path>\bin\netf20\IBM.Data.DB2.dll

The <DB2 Install Path> is the path where db2 is installed. Example 6-4 shows
sample application output.

Example 6-4 Sample application output

Connecting to the database.

Execute: SELECT * FROM staff

 FieldCount: 7

 HasRows?: True
Sanders
Pernal
Marenghi
O'Brien
Hanes
...

 Closing reader and disconnecting from the database.

In Microsoft .NET Framework, classes are organized into a hierarchical structure
of related groups called namespaces. System.Data namespace contains classes
associated with the use of ADO.NET.

In C#, all errors are treated as instances of an exception.

Error handling in ADO.NET is done in the form of the try/catch/finally or the On
Error construct.

Summary
Table 6-1 shows the summary various DB2 data providers comparison.

Table 6-1 DB2 Data Provider comparison

DB2 .NET Data
Provider

DB2 OLE DB Data
Provider

DB2 ODBC Data
Provider

Namespace IBM.Data.DB2 System.Data.OleDb System.Data.ODBC
278 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

OLE DB Data provider and ODBC Data Provider have limitations. Refer to
following URLs for complete listings:

� OLE DB Data provider limitations

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/
com.ibm.db2.udb.apdv.ms.doc/doc/r0011826.htm

� ODBC Data Provider limitations

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/
com.ibm.db2.udb.apdv.ms.doc/doc/r0011829.htm

6.5 Application example using ADO.NET

In this section, we provide sample C# application codes, which utilize IBM DB2
.NET Data provider to demonstrate inserting new customer data into the

Connection Object
(Used to create
connection)

DB2Connection System.Data.ODBC ODBCConnection

Command Object
(Used to execute
command)

DB2Command OleDbCommand ODBCCommand

DataReader
Object (Used to
read retrieved
data)

DB2DataReader OleDbDataReader ODBCDataReader

DataAdapter
Object (Used to
load and unload
data between
DataSet and
database)

DB2DataAdapter OleDbDataAdapter ODBCDataAdapter

ConnectionString Database=
SAMPLE

PROVIDER=IBMDA
DB2;DSN=SAMPLE
;UID=db2admin;PW
D=db2admin

DSN=SAMPLE;UID
=db2admin;
PWD=db2admin;
DRIVER={IBM DB2
ODBC Driver}

Transaction Object DB2Transaction OleDbTransaction ODBCTransaction

DB2 .NET Data
Provider

DB2 OLE DB Data
Provider

DB2 ODBC Data
Provider
 Chapter 6. Application development with .NET 279

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.ms.doc/doc/r0011826.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.ms.doc/doc/r0011829.htm

customer table as well as updating and deleting existing customer information in
the SAMPLE database.

The CUSTOMER table in the SAMPLE database has three columns as defined in
Table 6-2. The primary key consists of CID (customer ID) column.

Table 6-2 CUSTOMER table from sample database

In the following set of samples, each task has been presented as a separate
method.

Establishing the connection to the database
Establishing connection to the database is the essential first step. The
connection code to IBM DB2 database using DB2 .NET data provider is
implemented in ConnectDb() method shown in Example 6-6 on page 281.

The ConnectDb() method will return DB2Connection Object once connection has
been established using the three parameters (db alias, userid, and password)
required for the connection string. If passed database alias is null, it will establish
default connection to the SAMPLE database.

Connection is established by first creating DB2Connection object and passing
the connection string to the constructor:

DB2Connection conn = new DB2Connection(connectString);

The namespaces shown in Example 6-5 are required for given samples:

Example 6-5 Namespaces for IBM DB2 .NET Data Provider

using System;
using System.Data;
using IBM.Data.DB2; //needed for IBM DB2 .NET Data Provider
using System.Xml;

Note: The CUSTOMER table is only present in DB2 9 and it has two XML data
type columns.

Column name Type name Length Scale Nullable

CID BIGINT 8 0 No

INFO XML 0 0 Yes

History XML 0 0 Yes
280 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Example 6-6 Connecting to the DB2 database using .NET data provider

public static DB2Connection ConnectDb(String alias, String userid,
String password)
 {
 String dsn = "SAMPLE";
 String connectString;

 //Since this method will be called internally,
 //we don't have to worry about all possible connect string
 scenario.
 if(alias == null)
 {

 connectString = "Database="+dsn;
 }
 else
 {
 dsn = alias;
 connectString = "Database=" + dsn + ";UID=" + userid + ";PWD=" +
 password;
 }
 DB2Connection conn = new DB2Connection(connectString);
 try{
 conn.Open();
 Console.WriteLine(" Connected to the " + dsn + " database");

}catch (Exception e){
 Console.WriteLine(e.Message);
 }
 return conn;
 } // ConnectDb

Selecting existing customer information
In order to read the customer data from CUSTOMER table, we select INFO column,
which contains customer information using the WHERE Clause with specific CID.

The sample INFO XML data from CUSTOMER table is shown in Example 6-7.

Example 6-7 Info XML data from the CUSTOMER table

<customerinfo xmlns="http://posample.org" Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 Chapter 6. Application development with .NET 281

 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
</customerinfo>

The customer ID (CID) is also stored as an attribute in customerinfo element.

The INFO column being returned from the SELECT statement is XMLdata type,
which will be read using XmlReader object.

The XmlReader object is an event-based, read-only, forward-only XML pull
parser. It provides functionality for reading in XML documents.

XmlReader xmlreader = cmd.ExecuteXmlReader();

The XmlReader object is then loaded into XmlDocument object, which
represents XML document as a node tree, where elements and attributes are
stored as nodes that contain relational information.

XmlDocument.Load(xmlreader);

Presence of XML namespace determines whether we need to add
XmlNamespaceManager in order to successfully select nodes.

XmlNamespaceManager nsmgr = new XmlNamespaceManager(XmlNameTable);
nsmgr.AddNamespace(prefix, uri);

If the XPath expression in SelectNodes does not include a prefix, it is assumed
that the namespace URI is the empty namespace. If XML document includes a
default namespace, it must be added to a prefix and namespace URI to the
XmlNamespaceManager or none of the nodes will get selected. The
XmlNamespaceManager is required to resolve any prefixes in the XPath
expression.

selXmlDoc.SelectNodes("//prefix:element", nsmgr);

If XML namespace is not present in XML document (in absence of xmlns
attribute), XmlNamespaceManager is not needed and XPath expression in
SelectNodes will appear as following:

selXmlDoc.SelectNodes("//element");

The double slashes (//) in XPath above refer to descendant-or-self Axis, meaning
it contains the context node in addition to all the nodes contained in the
descendant axis.

Note that the use of (//) prefix will yield all instances of element name specified in
the XML document.
282 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

If you want to differentiate elements of same name in different nodes, you can
specify the specific XPath.

For example, in the CUSTOMER table, we have two instances of <name> in the
XML document for the “info” column. One is for name of the customer and the
other is for the assistant’s name as shown in Figure 6-13.

Figure 6-13 Sample info XML data from the CUSTOMER table

The XPath shown in Example 6-8 can be specified in the SelectNodes() to obtain
all the names in the given XML document (customer’s and assistant’s).

Example 6-8 Selecting all names

XmlNodeList customername= selXmlDoc.SelectNodes("//cust:name", nsmgr);
foreach (XmlElement nameinfo in customername)
{
 String vname=nameinfo.InnerXml;
}

The XPath in Example 6-9 can be specified in the SelectNodes() to obtain
customer’s name and assistant’s name respectively.

Example 6-9 Obtain customer’s name and assistant’s name respectively

//Customer’s name
XmlNodeList customername =
selXmlDoc.SelectNodes("/cust:customerinfo/cust:name", nsmgr);
foreach(XmlElement nameinfo in customername)
{
 String custname = nameinfo.InnerXml;
 Chapter 6. Application development with .NET 283

}
...
//Assistant’s name
XmlNodeList assistantname =
selXmlDoc.SelectNodes("/cust:customerinfo/cust:assistant/cust:name",
nsmgr);
foreach (XmlElement anameinfo in assistantname)
{
 String assistname = anameinfo.InnerXml;
}

The value of the element is extracted using:

XmlElement.InnerXml(localname, XmlNamespaceManager).

The value of the attribute is extracted using:

XmlElement.GetAttribute(localname, XmlNamespaceManager).

The XmlNodeList implements IEnumerable interface, and thus it can be
accessed using IEnumberator methods. The code, which selects INFO XML
column from the customer table is implemented in SelectCustomer() method as
shown in Example 6-10.

Example 6-10 Selecting customer information

public static void SelectCustomer(DB2Connection conn, int pcid)
{
 //Select the data according to cid.
 DB2Command cmd = conn.CreateCommand();
 XmlDocument selXmlDoc = new XmlDocument();
 String selectStmt="SELECT info from customer WHERE cid = " + pcid +
";" ;
 Console.WriteLine("\nSelect Stmt: \n"+selectStmt);
 cmd.CommandText= selectStmt;

 XmlReader xr = cmd.ExecuteXmlReader();
 try{
 //if following XmlNamespaceMangaer is not added no node will be
selected as given XML data contains xmlns
 XmlNamespaceManager nsmgr = new XmlNamespaceManager(xr.NameTable);
 nsmgr.AddNamespace("cust", "http://posample.org");

 Console.WriteLine("\nSelecting using xmlreader\n");

 selXmlDoc.Load(xr);

284 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 XmlNodeList customerinfo=
selXmlDoc.SelectNodes("//cust:customerinfo", nsmgr);
 foreach (XmlElement info in customerinfo)
 {
 String vcid=info.GetAttribute("Cid");
 Console.WriteLine("\n pcid: "+ pcid +"\n vcid: "+vcid);
 }

 XmlNodeList customername= selXmlDoc.SelectNodes("//cust:name",
nsmgr);
 foreach (XmlElement nameinfo in customername)
 {
 String vname=nameinfo.InnerXml;
 Console.WriteLine("\n pcid: "+ pcid +"\n vname: "+vname);
 }

 XmlNodeList customeraddr= selXmlDoc.SelectNodes("//cust:addr",
nsmgr);
 foreach (XmlElement addrinfo in customeraddr)
 {
 String country = addrinfo.GetAttribute("country");
 Console.WriteLine("\n pcid: "+ pcid +"\n country: "+country);
 }

 XmlNodeList customerstreet= selXmlDoc.SelectNodes("//cust:street",
nsmgr);
 foreach (XmlElement stinfo in customerstreet)
 {
 String street = stinfo.InnerXml;
 Console.WriteLine("\n pcid: "+ pcid +"\n street: "+street);
 }

 XmlNodeList customercity= selXmlDoc.SelectNodes("//cust:city",
nsmgr);
 foreach (XmlElement cityinfo in customercity)
 {
 String city = cityinfo.InnerXml;
 Console.WriteLine("\n pcid: "+ pcid +"\n city: "+city);
 }

 XmlNodeList customerprov=
selXmlDoc.SelectNodes("//cust:prov-state", nsmgr);
 foreach (XmlElement provinfo in customerprov)
 {
 String prov = provinfo.InnerXml;
 Chapter 6. Application development with .NET 285

 Console.WriteLine("\n pcid: "+ pcid +"\n prov-state: "+prov);
 }

 XmlNodeList customerzip= selXmlDoc.SelectNodes("//cust:pcode-zip",
nsmgr);
 foreach (XmlElement zipinfo in customerzip)
 {
 String zip = zipinfo.InnerXml;
 Console.WriteLine("\n pcid: "+ pcid +"\n pcode-zip: "+zip);
 }

 XmlNodeList customerphone= selXmlDoc.SelectNodes("//cust:phone",
nsmgr);
 foreach (XmlElement phoneinfo in customerphone)
 {
 String ptype= phoneinfo.GetAttribute("type");
 String phone = phoneinfo.InnerXml;
 Console.WriteLine("\n pcid: "+ pcid +"\n phonetype: "+ptype+",
phone: "+phone);
 }
 }catch (Exception e) {
 Console.WriteLine("\nInvalid cid has been specified for the
select.\n");
 Console.WriteLine(e.Message);
 }finally {
 xr.Close();
 conn.Close();
 }
}

Inserting new customer data
Inserting new Customer Information requires creation of data for CID (customer
ID) and INFO (customer information). The HISTORY column information is not
required.

Since CID is the primary key and thus needs to be unique, we issue a simple
query against the CUSTOMER table’s CID column to obtain the current MAX
value, then add one to generate the new CID.

For the primary key CID generation, we used MAX()+1 but this is not ideal way to
generate the key. You should utilize identity column, which provides a method for
DB2 database to automatically generate a unique numeric value for each row in
a table.
286 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

An identity column that is defined as generated always prevents the overriding of
values in an SQL statement. An identity column that is defined as generated by
default gives an application a way to explicitly provide a value for the identity
column.

In this case, Sample CUSTOMER table was not created with identity column.

The creation of INFO XML data is done by a separate CreateCustXML() method
as shown in Example 6-12 on page 290.

The Example 6-11 shows insert of new customer CID and INFO into the
CUSTOMER table. Once XmlDcoument object containing customer info data
has been created by CreateCustXML() method, we can now insert the data into
the table.

The CID value can be concatenated to the CommandText string. However, the
XmlDocument data needs to be first added using command.Parameters.Add()
method after it is converted to String using InnerXml method. Note that @ prefix
for the parameter is required:

cmd.Parameters.Add(new DB2Parameter("@XMLData", XmlDocument.InnerXml));

Example 6-11 Inserting new CID and info data into the CUSTOMER table

public static void Main(String[] args)
{
 ...
 DB2Connection conn = null;
 conn = ConnectDb(alias, userid, password);
 ...
 InsertCustomer(conn, pname, pcountry, pstreet, pcity, pprov,
 ppcode, ptype, pphonenumb);
 ...
}

public static void InsertCustomer(DB2Connection conn, String pname,
String pcountry, String pstreet, String pcity, String pprov, String
ppcode, String ptype, String pphonenumb)
{
 DB2Command cmd = conn.CreateCommand();
 XmlDocument newXmlDoc = new XmlDocument();
 try{
 cmd.CommandText ="Select MAX(cid)+1 from customer";
 long count = (long)cmd.ExecuteScalar();
 String pcid=Convert.ToString(count);
 Console.WriteLine("\n maxcid value is : " +pcid);
 newXmlDoc=CreateCustXML(pcid, pname, pcountry, pstreet, pcity,
 Chapter 6. Application development with .NET 287

 pprov, ppcode, ptype, pphonenumb);
 cmd.Parameters.Add(new DB2Parameter("@XMLData",
 newXmlDoc.InnerXml));
 String insertStmt="Insert into customer (cid, info)
 values ("+pcid+", @XMLdata);";
 cmd.CommandText=insertStmt;
 int rowsAffected=cmd.ExecuteNonQuery();
 Console.WriteLine("\n Inserted row(s) : "+rowsAffected+" \n");
 }catch (Exception e) {
 Console.WriteLine(e.Message);
 }finally {

conn.Close();
 }
}

288 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Creation of new customer information data for the CUSTOMER table requires
creation of a new XML document. Figure 6-14 demonstrates an XML document
tree for the info XML data.

Figure 6-14 XML document tree for the customer info data

The XmlDocument can be created in memory using XmlDocument() constructor
or by calling XmlImplementation.CreateDocument(). In our example, we create
new XmlDocument using the constructor which will yield an empty document.

Elements will be added to the XmlDocument object using CreateElement() and
AppendChild() methods:

XmlDocument.CreateElement(localname).
XmlElement.AppendChild(Elementname);

<customerinfo>

<addr>

country ="Canada"

<street>

<city>

<prov-state>

<pcode-zip>

<phone>

<type = "work">

XmlDocument

XmlElement

xmlns = "http://posample.org"XmlAttribute

XmlAttribute

XmlElement

XmlAttribute

XmlElement

XmlElement

XmlElement

XmlElement

XmlElement

XmlAttribute

<name>

Cid = "1008"XmlAttribute

XmlElement
 Chapter 6. Application development with .NET 289

Attributes can be assigned using XmlElment.SetAttribute(localname, value) and
Element values can be assigned using XmlElement.InnerXml = value.

Example 6-12 Creating new info XML document

public static XmlDocument CreateCustXML(String icid,String iname,
String icountry, String istreet, String icity, String iprov, String
ipcode, String iptype, String iphone)
 {
 XmlDocument custXmlDoc = new XmlDocument();
 XmlElement customerinfo =
custXmlDoc.CreateElement("customerinfo");
 custXmlDoc.AppendChild(customerinfo);
 customerinfo.SetAttribute("xmlns", "http://posample.org");
 customerinfo.SetAttribute("Cid", icid);

 XmlElement name = custXmlDoc.CreateElement("name");
 customerinfo.AppendChild(name);
 name.InnerXml = iname;

 XmlElement addr = custXmlDoc.CreateElement("addr");
 customerinfo.AppendChild(addr);
 addr.SetAttribute("country", icountry);

 XmlElement street = custXmlDoc.CreateElement("street");
 addr.AppendChild(street);
 street.InnerXml = istreet;

 XmlElement city = custXmlDoc.CreateElement("city");
 addr.AppendChild(city);
 city.InnerXml = icity;

 XmlElement provstate = custXmlDoc.CreateElement("prov-state");
 addr.AppendChild(provstate);
 provstate.InnerXml = iprov;

 XmlElement pcode = custXmlDoc.CreateElement("pcode-zip");
 addr.AppendChild(pcode);
 pcode.InnerXml = ipcode;

 XmlElement phone = custXmlDoc.CreateElement("phone");
 customerinfo.AppendChild(phone);
 phone.SetAttribute("type", iptype);
 phone.InnerXml = iphone;

290 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 Console.WriteLine("\n XML Document to be inserted: \n ");
 custXmlDoc.Save("Customer1.xml");
 Console.WriteLine("\nDone creating customer info XML data. \n");
 return custXmlDoc;
 }

Updating existing customer information
Updating XML data in the CUSTOMER table will require use of the
cmd.Parameters.Add() method to add XML data to the UPDATE statement.
Customer’s info XML data will be recreated using new modified information, then
UPDATE statement will be used to insert new data to existing CID (customer ID).
In Example 6-13, a new XmlDocument is created using changed/modified
customer information through CreateCustXML() method. The DB2Connection
object, CID, and XmlDocument object containing new info data will be passed to
UpdateCustomer() method for update.

Example 6-13 Updating the Customer table

public static void Main(String[] args)
{
 ...
 int rowsupdated= 0;
 XmlDocument newXmlDoc = new XmlDocument();
 // Declare a DB2Connection
 DB2Connection conn = null;
 conn = ConnectDb(alias, userid, password);
 newXmlDoc=CreateCustXML(pcid, pname, pcountry, pstreet, pcity,
pprov, ppcode, ptype, pphonenumb);
 ...
 rowsupdated=UpdateCustomer(conn, cid, newXmlDoc);
 Console.WriteLine("\nRows updated : "+rowsupdated);
 ...
}

public static int UpdateCustomer(DB2Connection conn, int pcid,
XmlDocument pinfo)
{
 DB2Command cmd = conn.CreateCommand();
 cmd.Parameters.Add(new DB2Parameter("@XMLData", pinfo.InnerXml));
 String updtStmt="UPDATE customer SET cid = " + pcid +

" ,info = @XMLdata where cid ="+pcid+";" ;
 Console.WriteLine("\nUpdate Stmt: \n"+updtStmt);
 cmd.CommandText= updtStmt;
 int rowsUpdated = cmd.ExecuteNonQuery();
 Chapter 6. Application development with .NET 291

 Console.WriteLine("\nRows Updated: \n"+rowsUpdated);
conn.Close();

 return rowsUpdated;
}

If we need to update customer information using the name of the customer, we
need to first obtain the customer ID (CID). The CID is an attribute of customerinfo
element in the info XML data, which needs to be queried using the customer
name.

The GetCustomerID() method shown in Example 6-15 will demonstrate how
XMLQuery can be used to obtain the CID attribute using the name element.

The XMLQuery that will yield CID using the customer name is shown in
Example 6-14.

Example 6-14 XMLQuery yielding CID

SELECT XMLCAST(xmlquery('declare default element namespace
"http://posample.org";$d/customerinfo/@Cid' passing customer.info as
"d") AS int) FROM customer where xmlexists('declare default element
namespace "http://posample.org" ;$d/customerifo[name= "Customer Name"
]' passing customer.info as "d")

Example 6-15 GetCustomerID method which will retrieve CID using XMLQuery

public static void GetCustomerID(DB2Connection conn, String pname)
{
 int cid=0;
 String xmlquerystmt= "SELECT XMLCAST(xmlquery('declare default
element namespace "+
 "\"http://posample.org\";$d/customerinfo/@Cid' passing customer.info
as \"d\")"+
 "AS int) FROM customer where xmlexists('declare default element
namespace "+
 "\"http://posample.org\";$d/customerinfo[name=\""+pname+"\"]'
passing customer.info as \"d\");";
 Console.WriteLine("XMLQuery varchar(10) : "+xmlquerystmt);
 DB2Command cmd = new DB2Command(xmlquerystmt, conn);
 DB2DataReader reader = cmd.ExecuteReader();
 try
 {
 while (reader.Read())
 {
 //Read in the int value and assign to cid
 cid=reader.GetInt32(0);
292 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 //Print value
 Console.WriteLine("\nCustomer "+pname+" has cid "+cid);
 }
 }catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }finally
 {
 //Clean up the resources
 reader.Close();
 conn.Close();
 }
}

Deleting customer entry
Deleting existing customer entry is done simply using DELETE statement with
WHERE clause for CID as shown in Example 6-16.

Example 6-16 Deleting a row from the Customer table

public static void Main(String[] args)
{
 ...

 DB2Connection conn = null;
 conn = ConnectDb(alias, userid, password);
 ...
 rowsdeleted=DeleteCustomer(conn, cid);
 Console.WriteLine("\nRows deleted : "+rowsdeleted);
 ...
}

public static int DeleteCustomer (DB2Connection conn, int pcid)
{
 String delSQL="delete from customer where cid = "+pcid;
 Console.WriteLine("\nDelete Stmt: \n"+delSQL);
 DB2Command cmd = new DB2Command(delSQL, conn);
 int rowsDeleted = cmd.ExecuteNonQuery();
 Console.WriteLine("\nRows Deleted: \n"+rowsDeleted);

conn.Close();
 return rowsDeleted;
}

 Chapter 6. Application development with .NET 293

294 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Appendix A. Setup procedure and sample
data

This appendix provides the following:

� Complete XML data used in the examples used throughout Chapter 2,
“Application development with DB2 pureXML” on page 49.

We begin by reproducing the movies XML data, showing complete contents
for five movies. Then we present movie review XML data for these five
movies. Finally, we describe the simple steps to insert this XML data into the
tables. The data files movie.xml and moviereview.xml and the DB2 script to
set up the database are also available to download from the following IBM
Redbooks Web site:

ftp://www.redbooks.ibm.com/redbooks/SG247301

For the download details, refer to Appendix C, “Additional material” on
page 319.

� The procedure to set up Apache HTTP server, PHP, and DB2 on Windows.

Apache HTTP server, PHP, and DB2 are used in the scenario in Chapter 3,
“Application development with PHP” on page 93.

A

© Copyright IBM Corp. August 2006. All rights reserved. 295

ftp://www.redbooks.ibm.com/redbooks/SG247301
ftp://www.redbooks.ibm.com/redbooks/SG247301
ftp://www.redbooks.ibm.com/redbooks/SG247301

A.1 Example data
Example A-1 shows the movie XML data, with a total of five movies in the XML.

Example: A-1 Movie.xml

<?xml version="1.0" encoding="UTF-8"?>
<movie id = "123">
 <heading>
 <title>Peterson's New Life </title>
 <rating>****</rating>
 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG13</MPAArating>
 <country>US</country>
 <year>2006</year>
 <running-time>1 hr. 49 minutes</running-time>
 <production>
 <studio>JJ Studio</studio>
 </production>
 </movie-details>

 <synopsis>
 After losing their 12-year-old son, Steve and Maggie Peterson moved to
 a small town. The unexpected visiting of the granddaughter from the
 next door neighbor has brought them surprise after surprise.
 </synopsis>
 <credits>
 <writer>Michael Sileur</writer>
 <director>John and Anne Tate</director>
 <photography>Charles Govasky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Sam Wilson</actor>
 <actor type="lead" gender="F">Kate Henderson</actor>
 <actor type="lead" gender="M" special="yes">Michael Glaski</actor>
 <actor gender="M">Matt Warrich</actor>
 <actor gender="M">Chris Rogen</actor>
 <actor gender="F">Amanda Johnson</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>

<?xml version="1.0" encoding="UTF-8"?>
<movie id = "234">
 <heading>
 <title>Paradise Regained</title>
 <rating>*****</rating>
296 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG13</MPAArating>
 <country>US</country>
 <year>2006</year>
 <running-time>1 hr. 54 minutes</running-time>
 <production>
 <studio>Wen International</studio>
 </production>
 </movie-details>

 <synopsis>
 A down on his luck actor who never had the good fortune of getting
 the ideal part pulls off of the freeway and arrives in a sleepy little
 town of Paradise Lost.
 </synopsis>
 <credits>
 <writer>John Lass, Joe Farnete and Jorgen Lubien</writer>
 <director>John Lass and Joe Farnete</director>
 <photography>Charles Govasky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Voice of Tom
Wilson</actor>
 <actor type="lead" gender="F">Voice of Kathy Hunt</actor>
 <actor type="lead" gender="M" special="yes">Larry Cable</actor>
 <actor gender="M">John Ratzenr</actor>
 <actor gender="M">Carl Wallis (II)</actor>
 </actors>
 </credits>
</movie>

<?xml version="1.0" encoding="UTF-8"?>
<movie id = "345">
 <heading>
 <title>Crossroads</title>
 <rating>***</rating>
 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG</MPAArating>
 <country>US</country>
 <year>2006</year>
 <running-time>1 hr. 38 minutes</running-time>
 <production>
 <studio>RR Pictures</studio>
 </production>
 </movie-details>

 Appendix A. Setup procedure and sample data 297

 <synopsis>
 A grouchy old college professor who lived in a dilapidated cabin near
 the lake takes an interest in a frustrated writer who suffers from
 habitual writer's block.
 </synopsis>
 <credits>
 <writer>David Anderson</writer>
 <director>Alex Ostern</director>
 <photography>Charles Govasky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Karl Thomas</actor>
 <actor type="lead" gender="F">Sandra Casper</actor>
 <actor type="lead" gender="M" special="yes">Peter Walsh</actor>
 <actor gender="M">Sam Allen</actor>
 <actor gender="M">Chris Plummer</actor>
 <actor gender="F">Linda Collins</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>'

<?xml version="1.0" encoding="UTF-8"?>
<movie id = "456">
 <heading>
 <title>The Royal Marriage</title>
 <rating>*****</rating>
 </heading>
 <movie-details>
 <genres>Comedy</genres>
 <MPAArating>PG</MPAArating>
 <country>US</country>
 <year>1987</year>
 <running-time>1 hr. 40 minutes</running-time>
 <production>
 <studio>Century Production</studio>
 </production>
 </movie-details>

 <synopsis>
 A fairy tale about a beautiful girl who married a prince and
 discovered what the true meaning of love is in a royal marriage.
 </synopsis>
 <credits>
 <writer>Bill Gulden</writer>
 <director>Rob Reiner</director>
 <photography>Charles Minsky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Cary Lewies</actor>
 <actor type="lead" gender="F">Mandy Ramsey</actor>
298 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 <actor type="lead" gender="M" special="yes">Chris Guest</actor>
 <actor gender="M">Eric Shawn</actor>
 <actor gender="M">Roger Rogen</actor>
 <actor gender="F">Amanda Johnson</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>

<?xml version="1.0" encoding="UTF-8"?>
<movie id = "567">
 <heading>
 <title>As Luck Would Have It</title>
 <rating>****</rating>
 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG</MPAArating>
 <country>US</country>
 <year>1996</year>
 <running-time>1 hr. 27 minutes</running-time>
 <production>
 <studio>RR Pictures</studio>
 </production>
 </movie-details>

 <synopsis>
 The never-do-well inventor inspected his garage full of useless
 inventions when he heard a loud knock at the front door. Upon answering
 the door, a man dressed in a conservative blue suit starts to make
 suspicious inquiries about his patents and inventions.

 </synopsis>
 <credits>
 <writer>Tim Harris</writer>
 <director>Joe Peterson</director>
 <photography>Alex Minsky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Michael Fox</actor>
 <actor type="lead" gender="F">Terry Randy</actor>
 <actor type="lead" gender="M" special="yes">Gerry Knight</actor>
 <actor gender="M">Bill Nelson</actor>
 <actor gender="M">Charles Berkeley</actor>
 <actor gender="F">Amanda Johnson</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>
 Appendix A. Setup procedure and sample data 299

Example A-2 shows the movie review XML.

Example: A-2 Moviereview.xml

<movie id = "123">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 <user name ="Linda">has half the violence but twice the laughs of the
first film</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the year.
</newspaper>
 <newspaper name="San Francisco Post">a gritty, ultra-dark thriller
</newspaper>
 </CriticsReview>
 </reviews>
</movie>
<movie id = "234">
 <reviews>
 <UserReview>
 <user name ="Andy">May I start of by saying this is the first "A" I
have ever given.</user>
 <user name ="Linda">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the year.
</newspaper>
 <newspaper name="San Francisco Post">The best mystery thriller of the
year.</newspaper>
 </CriticsReview>
 </reviews>
</movie>

<movie id = "345">
 <reviews>
 <UserReview>
 <user name ="Andy">I tried so hard to like this movie...I really did.
But no matter which way I look at it, I can't seem to find it in me to give
this movie a good rating.</user>
 <user name ="Linda">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the
year.</newspaper>
300 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 <newspaper name="San Francisco Post">The best mystery thriller of the
year.</newspaper>
 </CriticsReview>
 </reviews>
</movie>
<movie id = "456">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 <user name ="Linda">Almost jokeless and at times nearly
incomprehensible...</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the year.
</newspaper>
 <newspaper name="San Francisco Post">The best mystery thriller of the
year. </newspaper>
 </CriticsReview>
 </reviews>
</movie>
<movie id = "567">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 <user name ="Linda">Well here goes! We caught the advance screening
here</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the
year.</newspaper>
 <newspaper name="San Francisco Post">The best mystery thriller of the
year.</newspaper>
 </CriticsReview>
 </reviews>
</movie>

A.2 Setting up the database
Example A-3 on page 302 shows the script to set up the database for the Movie
review example. This is the only script needed to be run to set up the database
used in the example throughout Chapter 2, “Application development with DB2
pureXML” on page 49. Run the script movies.db2 as below:

db2 -td@ -vf movies.db2
 Appendix A. Setup procedure and sample data 301

Example: A-3 movies.db2 (set up database script)

create database movie using codeset utf-8 territory us@
connect to movie@
drop table movies@
create table movies(id int not null primary key, info XML)@
drop table moviereview@
create table moviereview(reviewid int not null primary key, review xml)@

insert into moviereview(reviewid, review) values(321, xmlparse(document
'<movie id = "123">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 <user name ="Linda">has half the violence but twice the laughs of the
first film</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the year.
</newspaper>
 <newspaper name="SF Post">a gritty, ultra-dark thriller </newspaper>
 </CriticsReview>
 </reviews>
</movie>'))@

insert into moviereview(reviewid, review) values(432, xmlparse(document
'<movie id = "234">
 <reviews>
 <UserReview>
 <user name ="Andy">May I start of by saying this is the first "A" I
have ever given.</user>
 <user name ="Linda">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the year.
</newspaper>
 <newspaper name="SF Post">The best mystery thriller of the
year.</newspaper>
 </CriticsReview>
 </reviews>
</movie>'))@

insert into moviereview(reviewid, review) values(543, xmlparse(document
'<movie id = "345">
 <reviews>
 <UserReview>
302 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 <user name ="Andy">I tried so hard to like this movie...I really did.
But no matter which way I look at it, I can't seem to find it in me to give
this movie a good rating.</user>
 <user name ="Linda">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the
year.</newspaper>
 <newspaper name="SF Post">The best mystery thriller of the
year.</newspaper>
 </CriticsReview>
 </reviews>
</movie>'))@

insert into moviereview(reviewid, review) values(654, xmlparse(document
'<movie id = "456">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 <user name ="Linda">Almost jokeless and at times nearly
incomprehensible...</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the year.
</newspaper>
 <newspaper name="SF Post">The best mystery thriller of the year.
</newspaper>
 </CriticsReview>
 </reviews>
</movie>'))@

insert into moviereview(reviewid, review) values(765, xmlparse(document
'<movie id = "567">
 <reviews>
 <UserReview>
 <user name ="Andy">Three is a crowd, yet there are not enough stars
to support this catastrophe.</user>
 <user name ="Linda">Well here goes! We caught the advance screening
here</user>
 </UserReview>
 <CriticsReview>
 <newspaper name="ABC Times">The best mystery thriller of the
year.</newspaper>
 <newspaper name="SF Post">The best mystery thriller of the
year.</newspaper>
 </CriticsReview>
 </reviews>
 Appendix A. Setup procedure and sample data 303

</movie>'))@

insert into movies(id, info) values(123, xmlparse(document '<?xml version="1.0"
encoding="UTF-8"?>
<movie id = "123">
 <heading>
 <title>Peterson's New Life </title>
 <rating>****</rating>
 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG13</MPAArating>
 <country>US</country>
 <year>2006</year>
 <running-time>1 hr. 49 minutes</running-time>
 <production>
 <studio>JJ Studio</studio>
 </production>
 </movie-details>

 <synopsis>
 After losing their 12-year-old son, Steve and Maggie Peterson moved to
 a small town. The unexpected visiting of the granddaughter from the
 next door neighbor has brought them surprise after surprise.
 </synopsis>
 <credits>
 <writer>Michael Sileur</writer>
 <director>John and Anne Tate</director>
 <photography>Charles Govasky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Sam Wilson</actor>
 <actor type="lead" gender="F">Kate Henderson</actor>
 <actor type="lead" gender="M" special="yes">Michael Glaski</actor>
 <actor gender="M">Matt Warrich</actor>
 <actor gender="M">Chris Rogen</actor>
 <actor gender="F">Amanda Johnson</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>'))@

insert into movies(id, info) values(234, xmlparse(document '<?xml version="1.0"
encoding="UTF-8"?>
<movie id = "234">
 <heading>
 <title>Paradise Regained</title>
 <rating>*****</rating>
 </heading>
304 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG13</MPAArating>
 <country>US</country>
 <year>2006</year>
 <running-time>1 hr. 54 minutes</running-time>
 <production>
 <studio>Wen International</studio>
 </production>
 </movie-details>

 <synopsis>
 A down on his luck actor who never had the good fortune of getting
 the ideal part pulls off of the freeway and arrives in a sleepy little
 town of Paradise Lost.
 </synopsis>
 <credits>
 <writer>John Lass, Joe Farnete and Jorgen Lubien</writer>
 <director>John Lass and Joe Farnete</director>
 <photography>Charles Govasky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Voice of Tom
Wilson</actor>
 <actor type="lead" gender="F">Voice of Kathy Hunt</actor>
 <actor type="lead" gender="M" special="yes">Larry Cable</actor>
 <actor gender="M">John Ratzenr</actor>
 <actor gender="M">Carl Wallis (II)</actor>

 </actors>
 </credits>
</movie>'))@

insert into movies(id, info) values(345, xmlparse(document '<?xml version="1.0"
encoding="UTF-8"?>
<movie id = "345">
 <heading>
 <title>Crossroads</title>
 <rating>***</rating>
 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG</MPAArating>
 <country>US</country>
 <year>2006</year>
 <running-time>1 hr. 38 minutes</running-time>
 <production>
 <studio>RR Pictures</studio>
 </production>
 </movie-details>
 Appendix A. Setup procedure and sample data 305

 <synopsis>
 A grouchy old college professor who lived in a dilapidated cabin near
 the lake takes an interest in a frustrated writer who suffers from
 habitual writer's block.
 </synopsis>
 <credits>
 <writer>David Anderson</writer>
 <director>Alex Ostern</director>
 <photography>Charles Govasky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Karl Thomas</actor>
 <actor type="lead" gender="F">Sandra Casper</actor>
 <actor type="lead" gender="M" special="yes">Peter Walsh</actor>
 <actor gender="M">Sam Allen</actor>
 <actor gender="M">Chris Plummer</actor>
 <actor gender="F">Linda Collins</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>'))@

insert into movies(id, info) values(456, xmlparse(document '<?xml version="1.0"
encoding="UTF-8"?>
<movie id = "456">
 <heading>
 <title>The Royal Marriage</title>
 <rating>*****</rating>
 </heading>
 <movie-details>
 <genres>Comedy</genres>
 <MPAArating>PG</MPAArating>
 <country>US</country>
 <year>1987</year>
 <running-time>1 hr. 40 minutes</running-time>
 <production>
 <studio>Century Production</studio>
 </production>
 </movie-details>

 <synopsis>
 A fairy tale about a beautiful girl who married a prince and
 discovered what the true meaning of love is in a royal marriage.
 </synopsis>
 <credits>
 <writer>Bill Gulden</writer>
 <director>Rob Reiner</director>
 <photography>Charles Minsky</photography>
 <actors>
306 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

 <actor special="yes" type="lead" gender="M">Cary Lewies</actor>
 <actor type="lead" gender="F">Mandy Ramsey</actor>
 <actor type="lead" gender="M" special="yes">Chris Guest</actor>
 <actor gender="M">Eric Shawn</actor>
 <actor gender="M">Roger Rogen</actor>
 <actor gender="F">Amanda Johnson</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
</movie>'))@

insert into movies(id, info) values(567, xmlparse(document '<?xml version="1.0"
encoding="UTF-8"?>
<movie id = "567">
 <heading>
 <title>As Luck Would Have It</title>
 <rating>****</rating>
 </heading>
 <movie-details>
 <genres>Drama, Romance and Remake</genres>
 <MPAArating>PG</MPAArating>
 <country>US</country>
 <year>1996</year>
 <running-time>1 hr. 27 minutes</running-time>
 <production>
 <studio>RR Pictures</studio>
 </production>
 </movie-details>

 <synopsis>
 The never-do-well inventor inspected his garage full of useless
 inventions when he heard a loud knock at the front door. Upon answering
 the door, a man dressed in a conservative blue suit starts to make
 suspicious inquiries about his patents and inventions.
 </synopsis>
 <credits>
 <writer>Tim Harris</writer>
 <director>Joe Peterson</director>
 <photography>Alex Minsky</photography>
 <actors>
 <actor special="yes" type="lead" gender="M">Michael Fox</actor>
 <actor type="lead" gender="F">Terry Randy</actor>
 <actor type="lead" gender="M" special="yes">Gerry Knight</actor>
 <actor gender="M">Bill Nelson</actor>
 <actor gender="M">Charles Berkeley</actor>
 <actor gender="F">Amanda Johnson</actor>
 <actor gender="M">Bill Hagen</actor>
 </actors>
 </credits>
 Appendix A. Setup procedure and sample data 307

</movie>'))@

A.3 Setting up Apache HTTP server, PHP, and DB2 on Windows
We understand that it is sometimes frustrating to set up these technologies to
work together, specially for the first time user. Hence, we decided to provide you
some basic steps to install, configure, and run a quick test. These steps have
been tested on Windows XP Professional, but should work on other Windows
operating systems. The same steps can be utilized with little modification on
other operating systems such as Linux as well.

Install Apache HTTP Server
Follow these steps to install Apache HTTP server:

� Install the latest stable version of Windows binary installer (file name must
end with msi) from the following Web site:

http://httpd.apache.org/download.cgi

� Follow the prompt of the installer carefully and finish the install. This should
be installed by default in the directory as below:

C:\Program Files\Apache Group\Apache2

� Point your browser to the URL below, you should be able to see the Apache
HTTP Server Index page in English.

http://localhost/

� In case of a problem, go to Start → All Programs → Apache and try to stop
and start or restart. The "Monitor Apache Servers" utility may also appear in
your Windows Taskbar System Tray.

Install and configure PHP
Use the following steps to install and configure PHP:

� Download the latest stable PHP zip package for Windows (currently 5.1.5
available) from the Web site below. Caution, do not choose Windows installer
because it is CGI only.

http://www.php.net/downloads.php

� Unzip it in C:\PHP folder.

� Download the collection of PECL modules from the same Web site as
mentioned above. The PECL package contains the extensions and libraries
that are not part of core PHP libraries. The IBM DB2 driver for PHP comes in
the PECL package.
308 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://httpd.apache.org/download.cgi
http://www.php.net/downloads.php

� Unzip the PECL packages in C:\PHP\ext folder.

� Edit the Apache HTTP server configuration file, so that the Web server
recognizes PHP. Open C:\Program Files\Apache
Group\Apache2\conf\httpd.conf file in your favorite editor and add the
following two lines:

LoadModule php5_module C:/php/php5apache2.dll
AddType application/x-httpd-php .php

You can add anywhere in the httpd.conf file, but we recommend you find the
corresponding section for LoadModule and AddType and add them at the
bottom of that section.

� Copy and paste the file C:\PHP\php.ini-dist to C:\windows directory and
rename it as php.ini.

� Restart the Apache HTTP server and test PHP by creating a simple text file
called info.php with the contents below:

<?phpinfo();?>

� Point your Web browser to the URL below. You should be able to see the
complete PHP setting/configuration Web page.

http://localhost/info.php

� (Optional) In some cases, you might need to copy the following PHP libraries
from C:\PHP directory to your Apache directory C:\Program Files\Apache
Group\Apache2:

php5apache2.dll
php5apache.dll
phpapache_hooks.dll
php5isapi.dll
php5nsapi.dll
php5ts.dll

Install and configure DB2 extension
Follow these steps to install and configure DB2 extension:

� Edit the C:\windows\php.ini file. Add the IBM DB2 extension below:

extension=php_ibm_db2.dll

� Create a test file as shown in Example 6-17 to test the PHP with DB2. This
assumes that you have DB2 V9 Express-C installed on your computer and
that SAMPLE database exists. This test program verifies that you have the
latest DB2 driver installed, which can leverage new pureXML functionalities
discussed in the redbook.
 Appendix A. Setup procedure and sample data 309

Example 6-17 sample PHP code to test DB2

<?php
 $conn = db2_connect('sample', 'userid', 'password');
 $create = 'DROP TABLE xmlTest';
 $result = db2_exec($conn, $create);
 $create = 'CREATE TABLE xmlTest (id INTEGER, data XML)';
 $result = db2_exec($conn, $create);
 $insert = "INSERT INTO xmlTest values (0,
'<Client><Address><street>555 Bailey Ave</street><city>San
Jose</city><state>CA</state><zip>95141</zip></Address><email>ranjanr
@us.ibm.com</email></Client>')";

 db2_exec($conn, $insert);
 if ($conn) {
 $sql = "SELECT data FROM xmlTest";
 $stmt = db2_prepare($conn, $sql);
 db2_execute($stmt);
 while($result = db2_fetch_assoc($stmt)) {
 print_r($result);
 echo "\n";
 }
 db2_close($conn);
 } else {
 echo "Connection failed.\n";
 }
?>

� Save this file in any folder(for example, C:\rakesh\test.php) and run it:

php test.php

� You should be able to see the result as shown in Example 6-18 on page 310.

Example 6-18 Output of test.php

C:\rakesh>php test.php
Array
(
 [DATA] => <?xml version="1.0" encoding="UTF-8"
?><Client><Address><street>555 Bailey Ave</street><city>San
Jose</cit
y><state>CA</state><zip>95141</zip></Address><email>ranjanr@us.ibm.c
om</email></Client>

)

310 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Note that PHP can also be used on the command line. This method of running
PHP is called PHP CLI. Once you have PHP installed and configured, you can
test it by running the php -v command on your command prompt window. This
should tell you which version of PHP is running, similar to output shown in
Example 6-19:

Example 6-19 php -v

C:\rakesh>php -v
PHP 5.1.4 (cli) (built: May 4 2006 10:35:22)
Copyright (c) 1997-2006 The PHP Group
Zend Engine v2.1.0, Copyright (c) 1998-2006 Zend Technologies

That is it! You have now installed the finest tools to create database driven Web
applications. Enjoy!
 Appendix A. Setup procedure and sample data 311

312 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Appendix B. Ruby on Rails

This appendix briefly introduces Ruby and Ruby on Rails. This appendix includes
the following topics:

� Introduction to Ruby
� Introduction to Ruby on Rails

B

© Copyright IBM Corp. August 2006. All rights reserved. 313

B.1 Introduction to Ruby
Ruby is a object-oriented programming language. It was created by Yukihir
"Matz" Matsumoto in 1995. Ruby language has evolved since then and at the
time of writing this book, the latest stable version of Ruby is 1.8.4. Ruby’s syntax
was inspired by Perl and Smalltalk and also shares some features with Python
and LISP. Ruby is available as a free software download from its official Web site
given below. This Web site also provides documentation and a community
mailing list:

http://www.ruby-lang.org/en/20020102.html

Ruby language is well documented (as of writing this book there are more than
9000 methods that are available in Ruby language). you can find both core API
and standard library documentation on the following Web site:

http://ruby-doc.org/

In today’s software development world, we have choices. Ruby can be
considered to be a great choice for enterprise Web application development
because it distinguishes itself from other available choices in many ways. In
order to understand these features, you would need to refer to the Ruby
language documentation, mentioning that in detail is beyond the scope of this
appendix.

� Ruby employs a clean syntax. You are not required to put a semicolon at the
end of the statement. It can have disadvantages also, because a programmer
has to take care of code layout independently.

� Ruby has regular expressions built into the language. They are also treated
as objects and manipulated in the program for example, pattern matching,
and so on.

� Ruby is a single inheritance only, that means a Ruby class can have only one
parent. However, Ruby provides multiple inheritance-type functionality by
allowing classes to include the functionalities from a partial class definition.

� Ruby provides a hierarchy of exception classes, which is easy to use.

� Ruby implements threads in the language interpreter code itself; hence, it is
independent of the operating system. However, Ruby threads do not utilize
more than one CPU.

� Ruby language comes with a built-in debugger. You can run debugger by
invoking the debugger with -r option.

� Ruby features its own shell called “Interactive Ruby”. You can simply invoke
interactive Ruby by typing irb command on your system. This allows you to
play with Ruby if you are new to the language.
314 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.ruby-lang.org/en/20020102.html
http://ruby-doc.org/

� Ruby language comes with a code profiler. You can invoke it at command line
or in the program.

� Ruby comes ready for Web programming. Ruby can be used to write CGI
scripts for Web programming.

B.1.1 Getting started with Ruby programming language
Getting started with Ruby could not be easier. Ruby is available on all operating
system platforms, including Windows. We show you how to start with Ruby.
Following the new programming language learning tradition, we write and run a
Hello World program in Ruby.

First, you download and install Ruby language pack from the following Web site:

http://rubyforge.org/frs/?group_id=167

Choose the latest stable version. In this example, we downloaded
ruby1.8.4-20.exe and extracted the code in C:\ruby folder. Once extracted, Ruby
is ready to use. Let us write our first program in Ruby.

� Change the directory to C:\ruby and edit a new notepad file with this content:

puts “Hello Ruby World !”

� Save this file as hello.rb.

� On command prompt, run it as shown:

C:\ruby>ruby hello.rb

� You should see the output as below:

Hello Ruby World !

For your learning pleasure, the Ruby package comes loaded with lots of
samples. You can browse some of these samples in the following folder:

C:\ruby\samples\RubySrc-1.8.4\sample

B.2 Introduction to Ruby on Rails
Ruby on Rails (ROR) is a Web application and persistence framework that
includes everything needed to create database-backed Web applications
according to the Model-View-Control pattern of separation. This pattern splits the
view (also called the presentation) into templates that are primarily responsible
for inserting pre-built data in between HTML tags. The model contains the
"smart" domain objects (such as Account, Customer, and Product) that hold all
the business logic and know how to persist themselves to a database. The
 Appendix B. Ruby on Rails 315

http://rubyforge.org/frs/?group_id=167
http://rubyforge.org/frs/?group_id=167

controller handles the incoming requests (such as Create New Account, Update
Product, and Show Post) by manipulating the model and directing data to the
view. In this framework, model is handled by an object relational mapping layer
called Active Record. Active Record connects business objects and database
tables to create a persistable domain model where logic and data are presented
in one wrapping. Active record also minimizes the configuration detail that a
developer has to perform.

ROR comes bundled with everything, all you need is your database, and a Web
server. The latest release of ROR is 1.1 and you can download it from the official
ROR Web site:

http://www.rubyonrails.org/

B.2.1 DB2 9 on Rails
In this section, we provide you a link to a great new tool specially designed to
build Web applications with Ruby on Rails and DB2. IBM has created a starter
toolkit for building an application with cutting edge database technology in DB2 9.
This starter toolkit is freely available on IBM alphaworks Web site and packaged
with the DB2 9 database and necessary driver and adapter for Ruby. The tool
can be downloaded from the Web site:

http://alphaworks.ibm.com/tech/db2onrails

B.2.2 Further reading
The following Web sites contains pertinent information regarding this topic:

� Fast-track your Web apps with Ruby on Rails

A developerworks article to develop Web-based applications using Ruby on
Rails:

http://www.ibm.com/developerworks/linux/library/l-rubyrails/

� Agile Web Development with Rails by Dave Thomas

http://www.pragmaticprogrammer.com/title/rails/

� Server Side programming with Ruby

http://www.devx.com/enterprise/Article/28101

� Programming Ruby - The Pragmatic Programmer's Guide

http://www.rubycentral.com/book/preface.html

� The Ruby FAQ

http://www.rubygarden.org/faq/main/
316 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.rubyonrails.org/
http://alphaworks.ibm.com/tech/db2onrails
http://www.ibm.com/developerworks/linux/library/l-rubyrails/
http://www.pragmaticprogrammer.com/title/rails/
http://www.devx.com/enterprise/Article/28101
http://www.rubygarden.org/faq/main/
http://www.rubycentral.com/book/preface.html

 Appendix B. Ruby on Rails 317

318 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247301

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247301.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

C

© Copyright IBM Corp. August 2006. All rights reserved. 319

ftp://www.redbooks.ibm.com/redbooks/SG247301
ftp://www.redbooks.ibm.com/redbooks/SG247301
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

movie.zip Zipped Movie ranking database setup script and XML
data

zframework.zip Zipped PHP application samples - Movie ranking, Social
network, and Yahoo Web service

Inventory.zip Zipped C/C++ application code samples - Inventory
cart.zip Zipped Java application code sample - Shopping cart
registration.zip Zipped .Net application code sample - User registration

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 1 MB
Operating System: Windows/Linux
Processor: 486 or higher
Memory: 512 MB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
320 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 324. Note that some of the documents referenced here may
be available in softcopy only.

� DB2 UDB V8.2 on the Windows Environment, SG24-7102

Other publications
These publications are also relevant as further information sources:

IBM - DB2 9
� What's New, SC10-4253

� Administration Guide: Implementation, SC10-4221

� Administration Guide: Planning, SC10-4223

� Administrative API Reference, SC10-4231

� Administrative SQL Routines and Views, SC10-4293

� Call Level Interface Guide and Reference, Volume 1, SC10-4224

� Call Level Interface Guide and Reference, Volume 2, SC10-4225

� Command Reference, SC10-4226

� Data Movement Utilities Guide and Reference, SC10-4227

� Data Recovery and High Availability Guide and Reference, SC10-4228

� Developing ADO.NET and OLE DB Applications, SC10-4230

� Developing Embedded SQL Applications, SC10-4232

� Developing Java Applications, SC10-4233

� Developing Perl and PHP Applications, SC10-4234

� Getting Started with Database Application Development, C10-4252
© Copyright IBM Corp. August 2006. All rights reserved. 321

� Getting started with DB2 installation and administration on Linux and
Windows, GC10-4247

� Message Reference Volume 1, SC10-4238

� Message Reference Volume 2, SC10-4239

� Migration Guide, GC10-4237

� Performance Guide, SC10-4222

� Query Patroller Administration and User's Guide, GC10-4241

� Quick Beginnings for DB2 Clients, GC10-4242

� Quick Beginnings for DB2 Servers, GC10-4246

� Spatial Extender and Geodetic Data Management Feature User's Guide and
Reference, SC18-9749

� SQL Guide, SC10-4248

� SQL Reference, Volume 1, SC10-4249

� SQL Reference, Volume 2, SC10-4250

� System Monitor Guide and Reference, SC10-4251

� Troubleshooting Guide, GC10-4240

� Visual Explain Tutorial, SC10-4319

� XML Extender Administration and Programming, SC18-9750

� XML Guide, SC10-4254

� XQuery Reference, SC18-9796

� DB2 Connect User's Guide, SC10-4229

� Quick Beginnings for DB2 Connect Personal Edition, GC10-4244

� Quick Beginnings for DB2 Connect Servers, GC10-4243

IBM - DB2 9
� What’s New V8, SC09-4848-01

� Administration Guide: Implementation V8, SC09-4820-01

� Administration Guide: Performance V8, SC09-4821-01

� Administration Guide: Planning V8, SC09-4822-01

� Application Development Guide: Building and Running Applications V8,
SC09-4825-01

� Application Development Guide: Programming Client Applications V8,
SC09-4826-01
322 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

� Application Development Guide: Programming Server Applications V8,
SC09-4827-01

� Call Level Interface Guide and Reference, Volume 1, V8, SC09-4849-01

� Call Level Interface Guide and Reference, Volume 2, V8, SC09-4850-01

� Command Reference V8, SC09-4828-01

� Data Movement Utilities Guide and Reference V8, SC09-4830-01

� Data Recovery and High Availability Guide and Reference V8, SC09-4831-01

� Guide to GUI Tools for Administration and Development, SC09-4851-01

� Installation and Configuration Supplement V8, GC09-4837-01

� Quick Beginnings for DB2 Clients V8, GC09-4832-01

� Quick Beginnings for DB2 Servers V8, GC09-4836-01

� Replication and Event Publishing Guide and Reference, SC18-7568

� SQL Reference, Volume 1, V8, SC09-4844-01

� SQL Reference, Volume 2, V8, SC09-4845-01

� System Monitor Guide and Reference V8, SC09-4847-01

� Data Warehouse Center Application Integration Guide Version 8 Release 1,
SC27-1124-01

� DB2 XML Extender Administration and Programming Guide Version 8
Release 1, SC27-1234-01

� Federated Systems PIC Guide Version 8 Release 1, GC27-1224-01

Online resources
These Web sites and URLs are also relevant as further information sources:

� DB2 XML wiki

http://www.ibm.com/developerworks/wikis/display/db2xml/Home

� DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

� DB2 Express-C

http://www.ibm.com/software/data/db2/udb/db2express/
 Related publications 323

http://www.ibm.com/developerworks/wikis/display/db2xml/Home
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://www.ibm.com/software/data/db2/udb/db2express/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

http://www.ibm.com/redbooks

Help from IBM
IBM Support and downloads

http://www.ibm.com/support

IBM Global Services

http://www.ibm.com/services
324 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

http://www.ibm.com/redbooks
http://www.ibm.com/support
http://www.ibm.com/support/
http://www.ibm.com/services
http://www.ibm.com/services
http://www.ibm.com/support

Index

Symbols
$db 115
$view 115
$xcs 119
.c 153
.h 157
.NET 2, 11, 252, 280
? 221
@ 181, 287
__autoload 102

A
absolute() 215
access plan 153
active record 316
ActiveX Data Object 252
adapter 271
add_product() 154
Add-In 3, 253
ADO.NET 3, 252
afterLast() 215
API 153
APIs 148, 208
APP driver 8
AppendChild() 289
application 148
application programming interfaces 148
argument 4, 201
array 219
AsciiStream 224
associative array 122
atom feed 117
attribute 79
Auto commit mode 234
auto-commit attribute 234

B
beforeLast() 215
BinaryStream 224
bind file 148, 150, 153, 157, 180
BINDFILE option 151, 153
bind-in 55
© Copyright IBM Corp. August 2006. All rights reserve
bind-out 55
BLOB 58, 222, 224
bootstrap file 112
buffer 183
business logic 50
business object 316

C
C# 2, 278
C++ 150
C/C++ 2
Call Level Interface 177
CallableStatement 212
CGI 6
character string 4
character type 58
Check Constraints View 260
class 208
CLI 3, 6, 11, 148, 177–178, 180
CLI bind file 180
CLI driver 119, 180
CLOB 58, 224
COBOL 3
code page 196
codepage 91
colon 151, 156
Column Definitions View 260
com.ibm.db2.jcc 200
command

COMMIT 163, 167
PRECOMPILE 151

Command Line Processor 3
command.Parameters.Add() 287
CommandText 270
CommandType 270
commit 234
common section 179
communication 273
compile 160
compile time 148
components 98
CONNECT TO statement 158
ConnectDb() 280
d. 325

Connection object 225
constructor 113
convenience method 120
createCart(HashMap) 201
CreateCustXML() 287
CreateElement() 289
createPorder() 202
Creating SQLJ 28
Creating XQuery 32
CRUD 119
CS 236
cursor 213
cursor stability 236

D
data access 2
data consumers 267
data model 55
Data Provide 253
data provider 280
data set 271
data source 273
data type 4, 58, 191, 211, 223
DataAdapter 269
database layer 116
database object 112, 259
database objects 148
database resource 2
database transaction 233
DatabaseMetaData 217
DataReader 272
DataSet 271
DataSet object 273
DataSource object 227
DataTruncation 232
DB2 .NET Data provider 11
DB2 Developer Workbench 24
DB2 Express-C 11
DB2 PREP 150
DB2 setup wizard 12–13
db2_install 23
db2_install script 12
db2bfd 157
db2cli.ini 178
db2cli.lst 181
DB2CLIINIPATH 178
DB2Connection 269
db2sampl 23

db2setup 22
db2sqljbind 10
db2sqljcustomize 10
DB2Transaction 279
db2ubind.lst 181
DB2Xml class 224
DBD 6
DBGRAPHICS 223
DBI 6
ddcsmvs.lst 181
decimal 219
declare section 156
decomposition 65
delimiters 4
deployment tool 12
DESCRIBE statement 174
disconnect 158
distributed transaction processing 3
distribution 2
document model 81
Document Object Model 56
DOM 56
driver 217
driver class 227
DriverManager 208
dynamic 148
dynamic embedded SQL 4, 155
dynamic SQL statement 148, 175

E
e-business 2
element 79
embedded SQL 4, 148, 150, 154, 194
encoding conversion 224
enterprise application 97
environment 94
ErrorCode 228
errText 161
evelopment environment 2
exception handling 228
EXEC SQL portion 156
EXECUTE IMMEDIATE statement 168
executeQuery 213
ExecutionContext 241
export 88, 255
expression 66
extensions 150
326 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

F
fetch 209
FETCH statement 174
fetch*() 113
FieldCount property 273
file extension 153
first() 215
FLWOR 44
for logic 44
forward-only 272
function 59

G
getAsciiStream() 224
getBinaryStream() 224
getBytes() 224
getCharacterStream() 224
getConnection 208
getDataSize 232
getDesription(String) 201
getIndex 232
getNextException 229
getObject() 224
getParameter 232
getParameterMetaData method 218
getProducts() 201
getRead 232
getSqlca 228
getString() 224
getThrowable 228
getTransferSize 232
GRANT 163
GRAPHICS 223

H
handle 177, 182
HandleType 183
HasRows property 273
header file 159
hierarchical form 52
holdability 245
host language 4
host variable 4, 60, 151, 156–157, 191–192

I
IBM.DATA.DB2 11
IBM.Data.DB2 278

ibm_db2 10, 119
IBMDADB2 7, 11
IEnumerable interface 284
implicit parsing 59
import 255
IN 212
indexAction() 104, 127
IndexController.php 103
Indexes View 260
INOUT 212
installation 12
isCustomer 201
isolation level 234, 236
iterators 241

J
Java 2
Java.sql 208
java.sql 200
javax.naming 200
javax.sql 200
JCC type 2 8
JCC type 4 8
JDBC 8, 200, 208
JDBC/SQLJ, 3
JNDI 227

K
kernel 2
Keys View 260
keyword 180

L
last() 215
life cycle 225
LOB 191
LOB locator 186
LOB_FILE 191

M
managed provider 267
metadata 51
method 127, 201, 252
Model-View-Control 315
Model-View-Controller 97
modular 98
monitor 3
 Index 327

MSDASQL 7
MVC 97

N
named iterator 241
namespace 80, 278
native structure 116
NET driver 8
Net Search Extender 81
next() 215
node 58
noRouteAction() 127
NSE 81

O
object file 151
ODBC 11
ODBC .NET Data provider 11
ODBCConnection 279
OdbcConnection 269
ODBCDataReader 279
ODBCTransaction 279
OLE DB 3, 7
OLE DB .NET Data provider 11
OleDbCommand 279
OleDbConnection 269
OleDbDataAdapter 271
OleDbTransaction 279
On Error construct 278
Open method 269
optimizer 82, 153
options 150
OS level 2
OUT 212
OutputHandlePtr 183
overhead 273

P
package 4, 150, 153, 180
parameter 60
parameter marker 188
parser 55
PDO_ODBC 10
performance 79
Perl 3, 6
Perl DBI 3
persistence data access 117

PHP 2, 10
placeholder 151
port 111
portability 95
positioned iterator 241
PRECOMPILE 150
precompile 4, 150
precompile time 151
precompiler 150, 153
PREPARE 167
PreparedStatement interface 212
PreparedStatement object 212, 218
presentation 315
previous() 215
privilege 264
Privileges View 260, 262, 264
procedure parameter 264
Procedure View 264
procedures 259
product family 2
programming interface 2
programming language 4
protocol 50, 53
pure XML 94
pureXML 52
pureXML storage 116

Q
query 213
query_update() 154
question marker (?) 151

R
read stability 236
read-only 272
record set 272
Redbooks Web site 324

Contact us xiv
registry 178
registry variable 115
relative() 215
repeatable read 236
repository 118
response file 22
response file install 12
RESS 3
result set 163, 209
ResultSet 209
328 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

ResultSet object 213
resultSetConcurrency 214
resultSetHoldability 214
resultSetType 214
ROLLBACK 163
ROR 315
RR 236
RS 236
RSS feed 117
runtime 148, 167

S
Sample database 23
savepoint 237, 244
scalar function search 82
schema 60
schema document 60
schema validation 55
scripting language 97
scripts 259
scrollability 214, 245
SelectCustomer() 284
semicolon 156, 179
serialized file 4
serialized string 192
setAsciiStream() 223
setBinaryStream() 223
setBlob() 224
setBytes() 223
setCharacterStream() 224
setClob() 224
setObject() 224
setString() 223
setup 22
setXXX method 211
Show Script View 260, 262, 264
shredding 65
source file 150, 153, 159
SQL 3, 94
SQL Communications Area 159
SQL Descriptor Area 174
SQL statement 150
sql.h 161
SQL_C_BINARY 196
SQL_HANDLE_DBC 177
SQL_HANDLE_DESC 177
SQL_HANDLE_ENV 177
SQL_HANDLE_STMT 177

SQL_XML 196
SQLAllocHandle() 183
SQLBindCol() 186
SQLBrowseConnect 185
SQLCA 159, 161
SQLCA structure 161
Sqlcli.h 183
Sqlcli1.h 183
SQLCODE 159
SQLColAttribute 187
SQLConnect 185
SQLConnect(185
sqld 176
SQLDisconnect 185
SQLDriverConnect 185
SQLDriverConnect() 185
SQLERRD 159
SQLError 190
SQLException 228, 232
SQLFetch() 186
SQLFreeHandle() 184
SQLGetConnectAttr 185
SQLGetDiagField 190
SQLGetDiagRec 190
SQLGetDiagRec() 190
SQLJ 4, 9
SQLj 239
sqlj 10
SQLJ translator 4
sqln 176
sqlname.data 176
SQLSetConnectAttr 185
SQLSetConnection 185
SQLSTATE 159
SQLState 228
SQLVAR 176
stack trace 229
statement 4, 148, 154
Statement object 209
static 148, 154
static cursor 91
static embedded SQL 4, 155
statistics 148
storage model 53
stored procedure 94, 219
StoredProc class 220
string value 60, 208
System.Data.ODBC 279
System.Data.OleDb 278
 Index 329

T
tables 259
text node 126
three tier model 50
tocAction() 104
toolbar 266
transaction 236
tree structure 55
Triggers View 260, 262
try-catch block 228
Type 1 8
Type 2 8, 200
Type 3 8
Type 4 8, 200

U
uncommitted read 236
unicode 91
unit of work 233
universal driver 200
universal JDBC driver 200
Unmanaged Provider 267
updatability 245
update_product() 154
updateTable() 201
UTF-8 224

V
VARCHAR 58
variable 151
views 259

W
Web services message 117
well-formed XML 55
WHENEVER clause 166
whitespace 60
wiki 97
workflow 98

X
XCS 116
XML 2, 191
XML Content Store 116
XML schema 51, 54
XML schema repository 54
XML value index 79

XMLContentStoreDB2 119
XmlDocument 289
XmlDocument() 289
XmlImplementation.CreateDocument() 289
XmlNamespaceManager 282
XmlNodeList 284
XMLPARSE 59
xmlpattern 79
XmlReader 282
XMLSERIALIZE 193
XPath 282
XQUERY 94
XQuery Visual Builder 24
XSR 54

Z
Zend_Controller 98
Zend_Db_Xml_Content 118
330 DB2 Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

DB2 Express-C: The Developer Handbook for XM
L, PHP, C/C+

+
, Java, and .NET

®

SG24-7301-00 ISBN 0738496758

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 Express-C: The
Developer Handbook for XML,
PHP, C/C++, Java, and .NET

Learn DB2
application
development with
XML, PHP, C/C++,
JAVA, and .NET

Understand DB2
supported
programming
environments

Practical application
examples

DB2 Express Edition for Community (DB2 Express-C) is a no
charge data server for use in development and deployment.
DB2 Express-C supports a full range of APIs, drivers, and
interfaces for application development including PHP, C/C++,
and .NET. In addition, DB2 Express-C V9 contains advanced
XML features. DB2 Express-C provides ISVs an ideal starting
database server for Web, enterprise, and eBusiness
applications.

This IBM Redbook provides fundamentals of DB2 application
development with DB2 Express-C. It covers the DB2
Express-C installation and configuration for application
development and skills and techniques for building DB2
applications with XML, PHP, C/C++, Java, and .NET.

Code examples are used to demonstrate how to develop a
DB2 application in a different language. By following the
examples provided, you will be able to learn DB2 application
development with XML, PHP, C/C++, Java, and .NET in a
short time.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Acknowledgement

	Become a published author
	Comments welcome

	Chapter 1. DB2 application development overview
	1.1 Application development with DB2
	1.1.1 DB2 supported development environments
	1.1.2 DB2 supported interfaces

	1.2 DB2 Express-C
	1.3 DB2 Developer Workbench

	Chapter 2. Application development with DB2 pureXML
	2.1 Web application: XML is the answer
	2.2 pureXML in DB2
	2.2.1 When to use DB2 pureXML
	2.2.2 Designing pureXML-based applications
	2.2.3 DB2 hybrid query engine
	2.2.4 pureXML storage overview
	2.2.5 SQL support for XML data (INSERT, SELECT)
	2.2.6 Schema support
	2.2.7 Annotated XML schema decomposition
	2.2.8 XML query support
	2.2.9 Constructor function (publishing functions)
	2.2.10 XML indexing
	2.2.11 Application support (interfaces)
	2.2.12 Utilities and XML support
	2.2.13 XML type support in stored procedures

	Chapter 3. Application development with PHP
	3.1 Application environment
	3.1.1 Zend Framework overview
	3.1.2 Setting up Zend Framework

	3.2 DB2 Interface with PHP
	3.3 Setting up Eclipse with PHP
	3.4 Sample Web application
	3.4.1 Integrating with databases: Zend_Db_Adapter
	3.4.2 Zend framework: XCS
	3.4.3 myContacts.com: An XCS application
	3.4.4 Other Zend Framework components
	3.4.5 Creating Web services with Zend Framework

	3.5 Conclusion

	Chapter 4. Application development with C/C++
	4.1 Overview
	4.1.1 C/C++ development environment setup

	4.2 Building a C/C++ application using embedded SQL
	4.2.1 Host variables and parameter markers

	4.3 A simple C inventory program using embedded SQL
	4.3.1 The INVENTORY table
	4.3.2 Precompiler source file extensions
	4.3.3 Inventory program code template
	4.3.4 Host variable declarations
	4.3.5 Using db2bfd to display host variable declarations
	4.3.6 Using db2dclgn to generate host variable declarations
	4.3.7 Connecting to a database
	4.3.8 Disconnecting from a database
	4.3.9 The SQL Communications Area (SQLCA)
	4.3.10 Quick SQLCA example
	4.3.11 Inserting data
	4.3.12 Retrieving data
	4.3.13 Indicator variables
	4.3.14 The WHENEVER Statement
	4.3.15 Preparing SQL statements
	4.3.16 Complete C inventory program
	4.3.17 The SQL Descriptor Area (SQLDA)

	4.4 Building a C/C++ application using CLI
	4.4.1 CLI handles
	4.4.2 The CLI driver
	4.4.3 The CLI configuration file (db2cli.ini)
	4.4.4 Setting up the CLI Environment
	4.4.5 Overview of steps

	4.5 A simple C inventory program using CLI
	4.5.1 CLI header files
	4.5.2 Allocating handles
	4.5.3 Freeing handles
	4.5.4 Connecting and disconnect to and from a database
	4.5.5 Processing SQL statements
	4.5.6 Complete CLI Inventory Program
	4.5.7 Error handling
	4.5.8 Quick SQLGetDiagRec() example

	4.6 XML support
	4.6.1 Embedded SQL
	4.6.2 Call Level Interface (CLI)

	Chapter 5. Application development with Java
	5.1 Application requirements
	5.2 Drivers
	5.3 Application example
	5.4 java.sql package
	5.4.1 Getting a connection
	5.4.2 Manipulating data
	5.4.3 MetaData

	5.5 Stored procedure support
	5.6 Handling large objects
	5.7 Simple application program life cycle
	5.8 Introduction to javax.sql package
	5.8.1 DataSource

	5.9 Exception handling
	5.9.1 SQLExceptions
	5.9.2 SQLWarning
	5.9.3 DataTruncation
	5.9.4 BatchUpdateException

	5.10 Transactions
	5.10.1 Auto commit mode
	5.10.2 Transaction isolation level
	5.10.3 Savepoints

	5.11 SQL/XML and XQuery support
	5.12 SQLj support
	5.12.1 Getting connection context
	5.12.2 Manipulating data
	5.12.3 Iterators
	5.12.4 Batch updates with SQLj
	5.12.5 Savepoints
	5.12.6 XQuery and SQL/XML support
	5.12.7 Exception handling
	5.12.8 JDBC and SQLj

	5.13 Running the application
	5.13.1 Running an application stand-alone
	5.13.2 Running the application as a Web service

	Chapter 6. Application development with .NET
	6.1 .NET technology and ADO.NET
	6.2 Requirements for .NET application development with DB2
	6.3 Add-in features for Visual Studio .NET
	6.3.1 Visual Studio 2005 Add-In: Sever Explorer integration
	6.3.2 Visual Studio 2005 Add-In: IBM Designer

	6.4 Data Providers for ADO.NET
	6.4.1 Managed provider and unmanaged provider

	6.5 Application example using ADO.NET

	Appendix A. Setup procedure and sample data
	A.1 Example data
	A.2 Setting up the database
	A.3 Setting up Apache HTTP server, PHP, and DB2 on Windows

	Appendix B. Ruby on Rails
	B.1 Introduction to Ruby
	B.1.1 Getting started with Ruby programming language

	B.2 Introduction to Ruby on Rails
	B.2.1 DB2 9 on Rails
	B.2.2 Further reading

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

