

ibm.com/redbooks

Front cover

LOBs with DB2 for z/OS:
Stronger and Faster

Paolo Bruni
Patric Becker
Tim Bohlsen

Burkhard Diekmann
Dima Etkin

Davy Goethals

Define LOBs, see how they work, and
see how to store them

Manage LOBs in operational
environments

Use LOBs in your applications
and with SAP solutions

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

LOBs with DB2 for z/OS: Stronger and Faster

November 2006

SG24-7270-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (November 2006)

This edition applies to IBM DB2 for z/OS Version 8 (program number 5625-DB2) and IBM DB2 Version 9.1 for
z/OS (program number 5635-DB2).

Note: Before using this information and the product it supports, read the information in “Notices” on
page xv.

Note: This book is based on a pre-GA version of DB2 Version 9.1 for z/OS and may not apply when the
product becomes generally available. We recommend that you consult the product documentation or
follow-on versions of this IBM Redbook for more current information.

Contents

Figures . vii

Tables . ix

Examples . xi

Notices .xv
Trademarks . xvi

Preface . xvii
The team that wrote this IBM Redbook . xvii
Become a published author .xx
Comments welcome. .xx

Chapter 1. Introduction. 1
1.1 Object-relational in DB2 for z/OS . 2
1.2 Changes with DB2 9 . 3
1.3 DB2 for z/OS and large objects. 4
1.4 The IBM Redbook contents. 4
1.5 Pointers to LOB functions after DB2 Version 6 . 4

Chapter 2. Large objects with DB2 . 9
2.1 Introduction to LOB data types . 10
2.2 The LOB table spaces. 12

2.2.1 Single LOB column table space . 12
2.2.2 Multiple LOB column table space . 12
2.2.3 Partitioned LOB table space . 13
2.2.4 The full LOB implementation structure . 14

2.3 LOB locators . 16
2.3.1 Purpose of LOB locators . 16
2.3.2 Different types of LOB locators . 17

2.4 LOB file reference variables . 18
2.4.1 DB2-generated file reference variable constructs . 19
2.4.2 Language support for LOB file reference variables. 19
2.4.3 File local/client support . 21

Chapter 3. Creating LOBs . 23
3.1 Alternatives in defining LOBs . 24

3.1.1 Example of automatic creation of objects . 24
3.1.2 Using CURRENT RULES STD . 29
3.1.3 Manual creation of objects . 31
3.1.4 Adding a LOB column to an existing table . 37

3.2 Defining ROWIDs . 39
3.2.1 Creating the ROWID column. 40

3.3 LOBs and LOG activity . 44
3.3.1 LOGGED and NOT LOGGED attributes . 44
3.3.2 Logging for all LOB sizes . 50

3.4 Additional considerations for creating LOB objects. 52
3.4.1 Data conversion . 52
3.4.2 Buffer pools and LOB table spaces . 56
© Copyright IBM Corp. 2006. All rights reserved. iii

3.4.3 Locking with LOBs . 56
3.4.4 Buffer pool and page size considerations . 57
3.4.5 DSSIZE for LOB table spaces . 58
3.4.6 GBPCACHE parameter. 59
3.4.7 Impact on cursors fetching LOB values . 60

3.5 LOBs are different DB2 objects. 60
3.6 Physical layout of LOBs . 62

Chapter 4. Using LOBs . 65
4.1 Language considerations . 66

4.1.1 LOB host variables, locators, and file reference variables 66
4.1.2 Use of a double or triple SQLDA in dynamic SQL . 67
4.1.3 Working with LOBs in JDBC and SQLJ applications . 68
4.1.4 Specific SQL support for LOBs . 69
4.1.5 Functions such as XML2CLOB. 72
4.1.6 Stored procedures . 73

4.2 LOB locators . 73
4.2.1 Getting to know LOB locators . 74
4.2.2 Examples of using locators . 78

4.3 DRDA LOB flow optimization . 79
4.3.1 DB2 Universal Java Driver . 81

4.4 Feeding a LOB column . 83
4.4.1 Loading a LOB column using LOAD or the cross loader 83
4.4.2 Inserting LOBs using the host application. 85
4.4.3 DB2 for Linux, UNIX and Windows import . 93

4.5 Locking . 94
4.5.1 Locking for LOBs with DB2 V8 . 95
4.5.2 Locking for LOBs with DB2 9 . 101

4.6 Unloading LOBs . 107
4.6.1 Unloading a LOB using an application . 107
4.6.2 Using FETCH CONTINUE . 113
4.6.3 Finding the nth occurrence of a string. 119

4.7 Updating LOBs . 120
4.7.1 Deleting a specific part of a LOB . 120
4.7.2 Updating a specific part of a LOB . 121
4.7.3 Updating the entire LOB value . 122

4.8 General best practices . 122

Chapter 5. SAP usage of LOBs . 125
5.1 Overview of SAP usage of LOBs . 126

5.1.1 Some history of SAP LOB usage . 126
5.1.2 Basic architecture . 126
5.1.3 Connectivity . 127
5.1.4 Why use LOBs . 127
5.1.5 SAP usage of LOBs in terms of number and size. 128

5.2 ABAP and Dynpro source and Load . 129
5.3 Programming techniques for the ABAP stack . 133

5.3.1 Basic locator access . 133
5.3.2 CLI Streaming Interface . 134

5.4 Optimization techniques and query rewrite . 136
5.4.1 Local LOB buffer . 136
5.4.2 Retrieve length and maximal data with locator . 137
5.4.3 Optimizing the free locator statement . 137
iv LOBs with DB2 for z/OS: Stronger and Faster

5.4.4 Comparison of different techniques using SGEN . 138
5.4.5 Chaining . 138

5.5 Programming techniques with JDBC . 140
5.6 Data Dictionary considerations . 143

5.6.1 ABAP stack . 143
5.6.2 Java stack . 144
5.6.3 DSNZPARMs for DB2 V8 . 144
5.6.4 ROWID . 144

5.7 Unicode . 147
5.8 Some points of SAP LOB usage with CCMS . 148
5.9 Portability aspects . 149
5.10 Monitoring and tracing. 150
5.11 Database interface layer profile parameters . 154
5.12 Performance measurements. 155

5.12.1 Locks and SELECT. 155
5.12.2 Locks and INSERT . 157
5.12.3 UPDATE improvement . 157

Chapter 6. Utilities with LOBs . 159
6.1 UNLOAD . 160
6.2 DSNTIAUL . 169
6.3 LOAD . 171

6.3.1 Loading LOB data as normal data columns . 171
6.3.2 Loading LOB data using file reference variables . 172
6.3.3 Using the cross loader . 172
6.3.4 Impact of logging. 173

6.4 COPY . 177
6.5 COPYTOCOPY. 180
6.6 QUIESCE . 181
6.7 REPORT . 182
6.8 RUNSTATS. 183
6.9 REORG . 185
6.10 RECOVER and REBUILD. 195
6.11 CHECK DATA . 199
6.12 CHECK LOB . 204
6.13 CHECK INDEX . 207
6.14 REPAIR. 208
6.15 DSN1COPY and DSN1PRNT . 210

Chapter 7. Data administration with LOBs . 211
7.1 LOBs in the DB2 catalog. 212

7.1.1 Catalog definitions for LOBs . 212
7.1.2 LOBs defined in DB2 catalog . 217
7.1.3 Real Time Statistics . 218

7.2 Recovery strategies and considerations . 219
7.2.1 LOGGED base table space with LOGGED LOB table space 219
7.2.2 LOGGED base table space with NOT LOGGED LOB table space. 230
7.2.3 NOT LOGGED base table space with NOT LOGGED LOB table space 232
7.2.4 LOBs and SYSTEM RECOVERY . 233
7.2.5 Conclusions on recovery of LOB data. 234

7.3 Altering tables containing LOB columns . 235

Chapter 8. Performance with LOBs . 237
8.1 LOB materialization. 238
 Contents v

8.1.1 The different cases of materialization . 239
8.1.2 Materialization avoidance techniques . 241

8.2 Virtual storage management for LOBs . 242
8.2.1 DB2 subsystem parameters for LOBs. 243

8.3 Buffer pools and group buffer pools . 244
8.3.1 Virtual buffer pools . 244
8.3.2 Considerations for a data sharing environment . 246

8.4 Logging with LOBs . 248
8.5 Accessing LOBs . 248

8.5.1 Reading LOBs. 248
8.5.2 Writing LOBs. 248

8.6 Comparing SQL accounting profiles . 249
8.7 Important I/O aspects . 250
8.8 IFCID enhancements for LOBs . 251
8.9 DRDA LOB flow optimization performance . 255
8.10 LOB recommendations for performance . 256

Appendix A. Additional material . 259
Locating the Web material . 259
Using the Web material . 259

System requirements for downloading the Web material . 261
How to use the Web material . 261

Related publications . 263
IBM Redbooks . 263
Other publications . 263
Online resources . 264
How to get IBM Redbooks . 265
Help from IBM . 265

Abbreviations and acronyms . 267

Index . 271
vi LOBs with DB2 for z/OS: Stronger and Faster

Figures

2-1 Association between base table and auxiliary table . 12
2-2 Base table with two LOB columns and the two associated LOB table spaces 13
2-3 Partitioned base table containing two LOB columns. 14
2-4 Association between base table, ROWID, auxiliary table, and LOB table space 15
2-5 Assigning a LOB locator for a LOB value . 17
2-6 DSNTIPE installation panel. 22
3-1 Catalog description for table BOOK_BASE_TABLE. 33
3-2 SYSIBM.SYSCOLUMNS contents for TBNAME= BOOK_AUX_TABLE 36
3-3 Index keys for an auxiliary index. 37
3-4 LOB structure . 39
3-5 Applying changes to a LOB table space created with NOT LOGGED 49
3-6 Mixed client/server environment with different data types . 53
3-7 Differences between code pages 37 and 500. 54
3-8 LOB value spanned over pages using chunks and non-chunks 62
3-9 LOB data pages chunked together using a space map and LOB map pages 63
4-1 Concurrent LOB access using LOB locators . 75
4-2 Primary chain of locators containing secondary chains . 77
4-3 Progressive reference return of LOB data . 81
4-4 An example of LOAD with file reference variables . 84
4-5 Secondary chain of locators . 91
4-6 Primary chain of locators containing secondary chains . 91
4-7 Lock escalation on LOBs . 95
4-8 SELECT lock sequence . 96
4-9 SELECT lock sequence using uncommitted read. 97
4-10 Insert lock sequence . 98
4-11 Delete lock sequence . 98
4-12 Locks acquired by mass delete. 99
4-13 Lock sequence when updating a LOB column . 100
4-14 Lock escalation for UR readers. 102
4-15 Accessing a LOB without a locator reference using ISOLATION (CS) 111
4-16 Processing a LOB using a locator reference . 112
5-1 Overview of SAP Web AS 6.40 on DB2 for z/OS (c) SAP AG; 2006 127
5-2 Total space usage for SAP MCOD system (c) SAP AG; 2006 129
5-3 REPOLOAD structure (c) SAP AG; 2006 . 130
5-4 REPOSRC structure (c) SAP AG; 2006 . 131
5-5 Transaction SGEN (c) SAP AG; 2006 . 132
5-6 SQL Trace for simple select using locators (c) SAP AG; 2006. 133
5-7 SQL Trace for update using locator (c) SAP AG; 2006 . 134
5-8 SELECT statement with LOB locators (c) SAP AG; 2006. 134
5-9 Modified statement (extended DA) on REPOLOAD (c) SAP AG; 2006 137
5-10 Starting the dbsl trace (c) SAP AG; 2006 . 151
5-11 SAP Performance Optimizer Tool (c) SAP AG; 2006 . 153
5-12 SAP Performance Optimizer Tool DB Trace (c) SAP AG; 2006 153
5-13 SAP R3load test case elapsed time (c) SAP AG; 2006 . 156
5-14 R3load test case reduced locks (c) SAP AG; 2006 . 156
5-15 R3load test case reduced network round-trips (c) SAP AG; 2006 157
5-16 Time to update a row when increasing the numbers of updated rows (c) SAP AG; 2006

158
© Copyright IBM Corp. 2006. All rights reserved. vii

6-1 Heavily updated LOB table space. 187
6-2 LOB Table space REORG with DB2 V8 and prior . 188
6-3 LOB Table space REORG with DB2 9 . 188
6-4 Fragmented LOB table space . 192
6-5 Non-fragmented LOB table space . 193
8-1 DB2 materialization overview illustration. 239
8-2 LOB Materialization In user address space in case of data retrieval 240
8-3 LOB materialization with INSERT . 241
8-4 DSNTIPD installation panel . 243
8-5 Buffer pool strategies . 245
8-6 Separation of LOB buffer pools. 246
8-7 LOB group buffer pool. 247
8-8 Accounting trace report for LOB and VARCHAR applications 250
8-9 Striped versus non-striped LOB table spaces. 251
8-10 Performance of LOB Progressive Streaming . 255
viii LOBs with DB2 for z/OS: Stronger and Faster

Tables

1-1 The LOBs functions that have been introduced after Version 6 5
2-1 Typical average size for large objects. 10
2-2 Maximum number of LOB columns by partitions . 16
2-3 DB2-generated construct . 19
2-4 File option constants . 20
3-1 Attributes for implicit database creation . 27
3-2 Default values for implicitly created table spaces . 27
3-3 Base table space created using automatic object creation. 28
3-4 LOB table space created using automatic object creation . 28
3-5 Auxiliary index created using automatic object creation . 29
3-6 LOB table space created using CURRENT RULES STD . 30
3-7 Auxiliary index created using CURRENT RULES STD. 30
3-8 LOG column values scenarios . 47
3-9 SYSIBM.SYSCOPY values for LOGGED attribute changes. 48
3-10 DB2 Unicode support - Additional useful resources . 55
3-11 Choosing a LOB page size that minimizes getpages . 57
3-12 Choosing a LOB page size for LOBs that are all the same size 58
3-13 Primary and secondary quantity with LOBs . 58
3-14 Summary of data set, partition, and partitioned table space sizes 59
4-1 SQLTYPE and SQLLEN of LOB columns or LOB host variables in the SQLDA 68
4-2 Casting large objects . 72
4-3 Where large objects come from and how . 83
5-1 LOB objects in one SAP system (c) SAP AG; 2006 . 128
5-2 Total size of all LOB columns (c) SAP AG; 2006. 129
5-3 Details of Repo tables’ LOB content (c) SAP AG; 2006 . 132
5-4 SGEN runs on different optimization levels (c) SAP AG; 2006. 138
5-5 DSNZPARMs for V8 (c) SAP AG; 2006 . 144
5-6 Comparison of different databases for aspects of LOBs (c) SAP AG; 2006. 150
5-7 dbsl_lib profile parameters for LOB handling (c) SAP AG; 2006 155
6-1 Impact of logging if base table space is LOGGED . 173
6-2 Impact of logging if base table space is LOGGED . 191
6-3 Resetting pending states using REPAIR . 209
8-1 LOB linked subsystem parameters . 243
8-2 Current IFCIDs providing information regarding LOBs . 252
© Copyright IBM Corp. 2006. All rights reserved. ix

x LOBs with DB2 for z/OS: Stronger and Faster

Examples

2-1 Host variable definitions for LOB locators in COBOL . 17
2-2 What the DB2 precompiler makes of LOB locators. 18
2-3 Host variable definition for BLOB file reference variable in COBOL 20
2-4 What the DB2 precompiler makes of BLOB file reference variable 20
3-1 DDL for a base table resulting in automatic object creation . 25
3-2 Resulting objects for automatic object creation . 25
3-3 DDL for a base table for manual object creation. 31
3-4 Catalog description for a hidden ROWID for LOBs. 32
3-5 Retrieving a generated ROWID value at INSERT time. 33
3-6 Content of LOB indicator columns . 34
3-7 DDL for a LOB table space . 34
3-8 DDL for an auxiliary table . 35
3-9 DDL for an auxiliary table containing data of one base table partition 35
3-10 DDL for an auxiliary Index. 36
3-11 Displaying a database for LOBs . 37
3-12 Adding a ROWID column . 38
3-13 Adding a LOB column . 38
3-14 DDL for a table containing a ROWID column . 41
3-15 Inserting a row in CUSTOMER table . 41
3-16 ROWID value of a table created with ROWID column . 41
3-17 DB2 9 DSN1PRNT of ROWID in hex value . 41
3-18 DB2 V8 DSN1PRNT of ROWID in hex value . 42
3-19 ALTER TABLE adding a ROWID column . 42
3-20 ROWID value of a table where a ROWID column was added 42
3-21 DB2 9 DSN1PRNT of ROWID in hex value after adding and updating a row. 43
3-22 DB2 V8 DSN1PRNT of ROWID in hex value after adding and updating a row 43
3-23 ROWID values of updated and inserted columns . 43
3-24 DB2 9 DSN1PRNT of updated and inserted ROWIDs in hex value 43
3-25 DB2 V8 DSN1PRNT of updated and inserted ROWIDs in hex value 44
3-26 DISPLAY DATABASE sample output . 47
3-27 DSN1LOGP output for logged LOB insert . 50
3-28 DSN1LOGP output for not logged LOB insert . 51
4-1 Usage example of XML2CLOB function . 72
4-2 Example output from XML2CLOB function . 73
4-3 Syntax for FREE locator and HOLD locator . 76
4-4 Loading LOB data using File Reference Variable. 85
4-5 Rows tied together in one variable . 87
4-6 Host variable declaration for a LOB column . 87
4-7 What the DB2 precompiler makes of your host variable declaration 87
4-8 Inserting a single LOB value using one host variable . 87
4-9 Pseudo code inserting LOBs with one locator chain. 88
4-10 Pseudo code inserting LOBs with multiple locator chains. 92
4-11 IMPORT command . 93
4-12 EXPORT command . 94
4-13 Comparison of RLSN and LSN to reclaim space . 104
4-14 Unloading LOB data using a file reference variable . 107
4-15 What the DB2 precompiler generates for LOB files . 108
4-16 Unloading LOB data using one host variable . 109
© Copyright IBM Corp. 2006. All rights reserved. xi

4-17 Unloading a LOB using locators . 110
4-18 FETCH CONTINUE with dynamic SQL . 115
4-19 FETCH CONTINUE with static SQL . 118
4-20 Finding a specific occurrence of a string. 119
4-21 Delete Chapter 8 of book CLOB using locators . 120
4-22 Updating a part of a CLOB . 121
4-23 Inserting new text at a particular position . 122
5-1 CLI trace for REPOLOAD Select using SQLGetSubString() (c) SAP AG; 2006. 135
5-2 Pseudo code for chaining (c) SAP AG; 2006 . 138
5-3 Chaining on insert (c) SAP AG; 2006 . 139
5-4 R3load log files for dbs_db2_chaining=20 (c) SAP AG; 2006 139
5-5 R3load log files for dbs_db2_chaining=0 (c) SAP AG; 2006 139
5-6 LOB access with JDBC driver (c) SAP AG; 2006 . 140
5-7 Insert using progressive reference (c) SAP AG; 2006 . 142
5-8 Table definition for test table TSTLOBDDL in XML format (c) SAP AG; 2006 145
5-9 DDL for LOB table DB2 V8 (c) SAP AG; 2006 . 146
5-10 DDL for LOB table DB2 9 (c) SAP AG; 2006 . 146
5-11 Bind command for UNIX system (c) SAP AG; 2006 . 147
5-12 DBSL trace displaying all LOB data (c) SAP AG; 2006 . 151
5-13 Locks taken by simple SELECT on LOB table V8 (c) SAP AG; 2006. 154
5-14 Locks taken by simple SELECT on LOB table with DB2 9 (c) SAP AG; 2006 154
6-1 DDL for table ##T.NORMEN00. 160
6-2 Unload LOB data as normal data columns with UNLOAD TABLESPACE 161
6-3 UNLOAD exceeding a 32 KB row size . 162
6-4 Unload LOB data as normal data columns with UNLOAD TABLE 162
6-5 Unload LOB data as normal data columns in DELIMITED format 162
6-6 Unload LOB data as normal data columns in DELIMITED format 163
6-7 Unload LOB data as normal data columns in truncated format 163
6-8 Unload LOB data as normal data columns in truncated format 163
6-9 Unload LOB data to a PDS . 165
6-10 Unload LOB data to a PDS . 165
6-11 Contents of the SYSREC file . 166
6-12 Unload LOB data to a PDSE. 166
6-13 Contents of the SYSREC file . 167
6-14 Unload LOB data to a HFS directory . 167
6-15 Contents of the HFS directory /u/DB9B . 167
6-16 Contents of the SYSREC file . 168
6-17 DSNTIAUL with SQL parameter . 169
6-18 DSNTIAUL output with SQL parameter . 169
6-19 DSNTIAUL with LOBFILE parameter . 170
6-20 DSNTIAUL output with LOBFILE parameter. 171
6-21 LOAD LOB data with input from DSNTIAUL. 174
6-22 LOAD LOB data with input from DSNTIAUL. 174
6-23 Entries in SYSIBM.SYSTABLESPACE. 175
6-24 LOAD with LOG YES on NOT LOGGED table spaces. 175
6-25 LOAD LOB input file not found . 176
6-26 LOAD LOB data with cross loader . 176
6-27 COPY LOB data . 179
6-28 Common START_RBA in SYSIBM.SYSCOPY. 179
6-29 CONCURRENT COPY of LOB data . 180
6-30 CONCURRENT COPY entries in SYSIBM.SYSCOPY. 180
6-31 CONCURRENT COPY of LOB data to one dump data set 180
6-32 CONCURRENT COPY entries in SYSIBM.SYSCOPY with FILTERDDN 180
xii LOBs with DB2 for z/OS: Stronger and Faster

6-33 COPYTOCOPY . 181
6-34 Primary and COPYTOCOPY entries in SYSIBM.SYSCOPY 181
6-35 QUIESCE a base table space and all LOB table spaces . 182
6-36 QUIESCE entries in SYSIBM.SYSCOPY . 182
6-37 QUIESCE a table space set . 182
6-38 REPORT TABLESPACESET on automatic created objects. 183
6-39 REPORT TABLESPACESET report . 183
6-40 REPORT RECOVERY . 183
6-41 RUNSTATS on LOB data . 184
6-42 REORG SHRLEVEL NONE of one LOB table space . 186
6-43 REORG SHRLEVEL NONE of all LOB objects. 186
6-44 REORG SHRLEVEL REFERENCE . 189
6-45 REORG SHRLEVEL REFERENCE output . 189
6-46 REORG SHRLEVEL REFERENCE with LISTDEF. 190
6-47 REORG INDEX auxiliary index . 190
6-48 RTS DSNACCOX query for REORG TABLESPACE . 194
6-49 RTS DSNACCOX query for REORG INDEX . 194
6-50 Recover table spaces an indexes . 198
6-51 Recover table spaces and rebuild indexes . 198
6-52 REBUILD SHRLEVEL CHANGE of the indexes . 199
6-53 Using RECOVER to reallocate a single VSAM cluster of a LOB table space. 199
6-54 Examples of CHECK DATA . 203
6-55 Examples of CHECK LOB . 206
6-56 Example of CHECK INDEX using a LISTDEF . 208
6-57 DUMP or DELETE an entire LOB value . 209
7-1 DDL for table ##T.NORMEN00. 212
7-2 Select from SYSIBM.SYSAUXRELS . 213
7-3 Select from SYSIBM.SYSCOLUMNS . 214
7-4 Select from SYSIBM.SYSLOBSTATS . 215
7-5 Select from SYSIBM.SYSTABLEPART . 215
7-6 Select from SYSIBM.SYSTABLES . 215
7-7 Select from SYSIBM.SYSTABLESPACE . 217
7-8 DB2 9, automatic creation of objects . 217
7-9 Select from SYSIBM.SYSTABLESPACE . 217
7-10 DB2 catalog query . 217
7-11 Creating a common recoverable point of consistency using COPY 219
7-12 Common START_RBA in SYSIBM.SYSCOPY. 219
7-13 SPUFI delete. 220
7-14 Delete VSAM clusters . 220
7-15 RECOVER to current point in time . 220
7-16 RECOVER to current point in time . 220
7-17 Display database command . 221
7-18 Creating a common recoverable point of consistency using QUIESCE 222
7-19 SPUFI delete. 222
7-20 Point in time recovery to a common recoverable point of consistency 222
7-21 Point in time recovery to a recoverable quiesce point . 222
7-22 Point in time recovery with consistency in DB2 9 . 224
7-23 SPUFI delete. 225
7-24 Point in time recovery of base table only . 225
7-25 Base table space in ACHKP . 225
7-26 CHECK DATA SHRLEVEL REFERENCE AUXERROR REPORT. 226
7-27 Result of CHECK DATA AUXERROR REPORT . 226
7-28 CHECK DATA SHRLEVEL CHANGE AUXERROR REPORT 226
 Examples xiii

7-29 CHECK DATA AUXERROR INVALIDATE . 227
7-30 Point in time recovery of the LOB table space . 227
7-31 State of the table spaces afterwards. 227
7-32 State of the table spaces after CHECK DATA . 228
7-33 SPUFI delete. 228
7-34 Point in time recovery of LOB table space only . 229
7-35 CHECK DATA AUXERROR INVALIDATE SHRLEVEL REFERENCE. 229
7-36 Identification and Invalidation of orphan LOBs . 229
7-37 Use of REPAIR to delete orphan LOBs . 230
7-38 SPUFI Insert . 230
7-39 LOB table space in AUXW . 231
7-40 CHECK LOB output . 231
7-41 SPUFI update invalid LOB . 232
7-42 RECOVER of NOT LOGGED objects . 232
8-1 Omegamon XE for DB2 Performance Expert output . 242
8-2 LOB buffer pool allocation size . 246
xiv LOBs with DB2 for z/OS: Stronger and Faster

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. xv

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
ibm.com®
iSeries™
z/OS®
zSeries®
z9™
AIX®
CICS®
Database 2™
DB2 Connect™
DB2 Extenders™
DB2 Universal Database™
DB2®

DFSMSdss™
DFSMShsm™
DRDA®
Enterprise Storage Server®
ESCON®
FlashCopy®
FICON®
Geographically Dispersed Parallel

Sysplex™
GDPS®
IBM®
IBM WebSphere® MQ
IMS™

Language Environment®
MVS™
OS/390®
Parallel Sysplex®
PR/SM™
QMF™
Redbooks™
RACF®
System/390®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in
Germany and in several other countries all over the world.

EJB, Java, Java Naming and Directory Interface, JDBC, JVM, J2EE, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Visual Studio, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others. Data contained in
this document serves informational purposes only. National product specifications may vary
xvi LOBs with DB2 for z/OS: Stronger and Faster

Preface

The requirements for a database management system (DBMS) have included support for
very large and complex data objects.

DB2® UDB for OS/390® Version 6 introduced the support for large objects (LOBs): they can
contain text documents, images, or movies, and can be stored directly in the DBMS with sizes
up to 2 gigabytes per object and 65,536 TB for a single LOB column in a 4,096 partition table.
The introduction of these new data types has implied some changes in the administration
processes and programming techniques. The Redbook Large Objects with DB2 for z/OS and
OS/390, SG24-6571, introduced and described the usage of LOBs with DB2 for z/OS® at
Version 7 level.

Major enhancements for LOB manipulation have been introduced with DB2 UDB for z/OS
Version 8 and DB2 Version 9.1 for z/OS (DB2 9 in this IBM Redbook). These enhancements
include performance functions such as the avoidance of LOB locks and DRDA® LOB flow
optimization, usability functions such as file reference variables, FETCH CONTINUE, and the
automatic creation of objects. DB2 utilities provide integrated support with LOAD and
UNLOAD, cross-loader, REORG, CHECK DATA, and CHECK LOB.

In this IBM® Redbook, we provide a totally revised description of the DB2 functions for LOB
support as well as useful information about how to design and implement them. We also offer
examples of their use, programming considerations, and the enhanced processes used for
their administration and maintenance. We also detail how SAP solutions use LOBs.

This IBM Redbook replaces the previous IBM Redbook Large Objects with DB2 for z/OS and
OS/390, SG24-6571, for DB2 Version 8 and Version 9.1.

The team that wrote this IBM Redbook
This IBM Redbook was produced by a team of specialists from around the world working at
the International Technical Support Organization, San Jose Center.

Paolo Bruni is a DB2 Information Management Project Leader at the ITSO, San Jose
Center. He has authored several IBM Redbooks™ about DB2 for z/OS and related tools, and
has conducted workshops and seminars worldwide. During Paolo’s many years with IBM in
development and in the field, his work has been mostly related to database systems.

Patric Becker is an Application Programming Department Manager with Sparkassen
Informatik GmbH and Co. KG in Germany. He has over eight years experience with DB2 and
holds a degree in Computer Science from FOM University of Applied Sciences in Essen.
Since joining the company in 1997, Patric has been responsible for several high availability,
Customer Relationship Management, DB2, and IMS™ applications. For DB2, he has also
assumed the role of database administrator and he was involved in evaluating and applying
the new functions of DB2 for OS/390 Version 6 and Version 7. He is also co-author of the IBM
Redbooks DB2 for z/OS Using Large Objects, SG24-6571, and DB2 UDB for z/OS:
Application Design for High Performance and Availability, SG24-7134.

Tim Bohlsen is an SAP, DB2, and z/OS Specialist. He has worked in various locations
worldwide with SAP with DB2 for z/OS customers during the last eight years, as well as
instructing for IBM Learning Services on this topic during this time. He has ten years
experience with SAP and 19 years experience in the IT industry. Prior to working with SAP
© Copyright IBM Corp. 2006. All rights reserved. xvii

R/3, Tim was an MVS™ System Programmer in Australia for five years, specializing in large
system performance and automation. He holds an Honors degree in Computer Engineering
from Newcastle University. Tim is also co-author of the IBM Redbook DB2 UDB for z/OS V8:
Through the Looking Glass and What SAP Found There, SG24-7088.

Burkhard Diekmann is a Senior Developer in the SAP NetWeaver Database Platform
organization at SAP's Headquarters in Walldorf. He joined SAP in 1996 and has ten years of
experience in DB2 interfacing SAP applications. His areas of expertise include SAP database
interface, SAP middleware, and technology development.

Dima Etkin is a DB2 System Administrator and a senior DB2 Consultant in Israel. He has ten
years of experience in the DB2 System Administration field, as well as instructing for BLUE
Education Center (Israel) and IBM Learning Services (Israel). His areas of expertise include
DB2 administration and system tuning.

Davy Goethals is a Belgian systems engineer. He works for Arcelor Technologies, a
subsidiary of Arcelor, a steel producing company. He has experience as a DB2 system
administrator since DB2 Version 1 in 1985. He participated in multiple DB2 ESP and QPP
programs from DB2 V2.1 up to DB2 V7. Davy is also co-author of the IBM Redbook DB2 for
z/OS and OS/390 Version 7 Using the Utilities Suite, SG24-6289. Currently, he is DB2 team
leader within the Arcelor Technologies z/OS department, located in Dunkerque, France,
responsible for supporting more than 45 DB2 systems for steel plants all over Europe.

A photo of the team is in Figure 1. Patric Becker is missing from the group picture.

Figure 1 Left to right: Davy, Dima, Burkhard, Tim and Paolo in SVL

Thanks to the following people for their contributions to this project:

Rich Conway
Bob Haimowitz
xviii LOBs with DB2 for z/OS: Stronger and Faster

Emma Jacobs
Leslie Parham
Deanna Polm
Sangam Racherla
International Technical Support Organization

Terry Allen
Jeff Berger
Ben Budiman
Larry Cowdery
Bill Franklin
Koshy John
Jeff Josten
Brandon Lee
Li-Mey Lee
Chao-Lin Liu
Bruce McAlister
Patrick Malone
Roger Miller
Esther Mote
Haakon Roberts
Akira Shibamiya
Bryan Smith
Bart Steegmans
James Teng
Frances Villafuerte
Maryela Weihrauch
Allen Yang
Jay Yothers
Maureen Zoric
IBM DB2 for z/OS Development, Silicon Valley Lab, USA

Muni Bandlamoori
Roger Lo
Manfred Olschanowsky
Helmut Roesner
Yeong Soong
IBM/SAP Integration Center, IBM Silicon Valley Lab, USA

Brenda Beane
Seewah Chan
System Performance Evaluation Test, Poughkeepsie, USA

Namik Hrle
Johannes Schuetzner
IBM Systems and Technology Group, Germany

Bernhard Heininger
Jennifer Johnson
Bernd Kohler
Peter Mohrholz
SAP AG, Walldorf, Germany

Rick Butler
BMO Financial Group, Toronto, Canada
 Preface xix

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll have the opportunity to team with IBM technical professionals, Business
Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review IBM Redbook form found at:

ibm.com/redbooks

� Send your comments in an E-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xx LOBs with DB2 for z/OS: Stronger and Faster

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

The implementation of object-relational in DB2 for z/OS allows you to define custom data
types and functions based on the previously existent ones. Some of the data objects you want
to model might well be very large and complex. DB2 for z/OS Version 6 has introduced the
foundation of object-relational extension, with, on one hand, support for large objects (LOBs),
and, on the other one, support for user-defined functions (UDFs), user-defined distinct types
(UDTs), and triggers. In this chapter, we outline the implemented functions for
object-relational, including extenders, we mention the main changes in DB2 9 for z/OS, and
we introduce the LOB-related topics described in this IBM Redbook.

This chapter contains:

� Object-relational in DB2 for z/OS
� Changes with DB2 9
� DB2 for z/OS and large objects
� The IBM Redbook contents
� Pointers to LOB functions after DB2 Version 6

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 Object-relational in DB2 for z/OS

The object extensions introduced in DB2 UDB for OS/390 Version 6 and beyond offer the
benefits of object-oriented technology while increasing the strength of your relational
database with an enriched set of data types and functions:

� Large objects

The VARCHAR, VARGRAPHIC, and VARBINARY DB2 data types have a size limit of 32
KB. Although this can be sufficient for small- to medium-size data, applications often need
to store large text documents. They might also need to store a wide variety of additional
data types such as audio, video, drawings, mixed text, graphics, and images. DB2
provides data types to store these large data objects (LOBs) as strings of up to 2 GB in
size.

LOBs are well suited to represent large, complex structures in DB2 tables. You can make
effective use of multimedia by storing objects such as complex documents, videos,
images, and voice.

� User-defined types

User-defined types (UDTs), like built-in data types, describe the data that is stored in
columns of tables where the instances (or objects) of these data types are stored. They
ensure that only those functions and operators that are explicitly defined on a distinct type
can be applied to its instances.

A distinct type is a user-defined data type that shares its internal representation with a
built-in data type, but it is considered to be a separate and incompatible type for semantic
purposes. For example, you might want to define a picture type or an audio type which
has different semantics but uses the built-in data type BLOB for its internal representation.

� User-defined functions

User-defined functions (UDFs), like built-in functions or operators, support the
manipulation of distinct type instances (and built-in data types) in SQL queries.

The built-in functions that are supplied with DB2 are a useful set of functions, but they
might not satisfy all of your requirements. You can write user-defined functions to meet the
specific needs for your installation. For example, a built-in function can perform a
calculation you need, but the function does not accept the distinct types you want to pass
to it. You can then define a function based on a built-in function, called a sourced
user-defined function, that accepts your distinct types. You might need to perform another
calculation in your SQL statements for which there is no built-in function. In that situation,
you can define and write an external user-defined function.

New and extended built-in functions improve the power of the SQL language with a lot of
new built-in functions, extensions to existing functions, and sample user-defined functions.

� Triggers

Triggers bring application logic into the database. Triggers automatically execute a set of
SQL statements whenever a specified event occurs. These statements can validate and
edit database changes, read and modify the database, and invoke functions that perform
operations inside and outside the database.

For more information about UDFs, UDTs, and triggers, refer to DB2 for z/OS Application
Programming Topics, SG24-6300, and DB2 for z/OS Data Integrity, SG24-711.

� Extenders

When you ordered DB2 V8, as part of the obvious base product, you also received the
following extenders:
2 LOBs with DB2 for z/OS: Stronger and Faster

– IAV Extenders - Image, Audio, and Video extenders
– Text Extender
– XML Extender

Text Extender adds full-text retrieval to SQL queries by making use of features available in
DB2 that let you store unstructured text documents of up to 2 GB in databases.

You can use the DB2 Extenders™ feature of DB2 to store and manipulate image, audio,
video, and text objects. The extenders automatically capture and maintain object
information and provide a rich body of APIs.

These extenders define new data types and functions using DB2's built-in support for
user-defined types and user-defined functions. You can couple any combination of these
data types, that is, image, audio, and video, with a text search query.

The extenders exploit DB2’s support for large objects of up to 2 GB, and for triggers that
provide integrity checking across database tables ensuring the referential integrity of the
multimedia data.

1.2 Changes with DB2 9

The main change in this area is DB2’s native XML support.

DB2 V8 had started including XML functions into the DB2 engine by integrating XML
publishing functions.

DB2 9 for z/OS goes way beyond by introducing a new infrastructure to support XML. It lets
your client applications manage XML data in DB2 tables. You can store well-formed XML
documents in their hierarchical form, and retrieve all or portions of those documents. Because
the stored XML data is fully integrated into the DB2 database system, you can access and
manage the XML data by leveraging DB2 functionality.

To efficiently manage traditional SQL data types and XML data, DB2 uses two distinct storage
mechanisms. However, the underlying storage mechanism that is used for a given data type
is transparent to the application. The application does not need to explicitly specify which
storage mechanism to use, or to manage the physical storage for XML and non-XML objects.
For more information about XML support, see DB2 Version 9.1 for z/OS XML Extender
Administration and Programming, SC18-9857, and DB2 Version 9.1 for z/OS XML Guide,
SC18-9858.

The XML Extender is still shipped with DB2 9 for z/OS, but not the other (Text and IAV)
Extenders. The XML Extender requires Language Environment® and the IBM XML Parser for
z/OS, C++ Edition to be available at run time. The required parser is provided with Release 6
of the XML Toolkit for z/OS (5655-J51). XML Extender is deprecated in DB2 V9 for z/OS and
may be removed in the future. Consider using the XML native support.

DB2 9 for z/OS also introduces INSTEAD OF triggers.

They provide a mechanism to unify the target for all read/write access by an application while
permitting separate and distinct actions to be taken for the individual read and write actions.
INSTEAD OF triggers are triggers that are processed instead of the update, delete, or insert
statement that activates the trigger. Unlike other forms of triggers that are defined only on
tables, INSTEAD OF triggers can only be defined on views. For more information about
INSTEAD OF TRIGGERS, see DB2 Version 9.1 for z/OS Application Programming and SQL
Guide, SC18-9841.
Chapter 1. Introduction 3

1.3 DB2 for z/OS and large objects

Large objects can contain pictures, images, text-documents, or even movies, and can be
stored directly in DB2 with sizes up to 2 GB per object. Because you might have 254 data
sets and 4,096 partitions, that is approximately 65,536 TB for one column.

Normally, large objects are used and manipulated through graphical user interfaces (GUI) via
a workstation. So with the implementation of LOBs, we can exploit the server capacity that
DB2 for z/OS provides today while displaying and feeding them through a user friendly
interface.

The introduction of these data types, with their peculiarities, have shaken the DBAs’ worlds
and made them adjust to the new, larger environment and new programming techniques.
Today, with DB2 9 level of support for LOBs, we get high performance and full operational
management.

1.4 The IBM Redbook contents

In this IBM Redbook, we describe the various data types and the management functions
introduced from DB2 Version 6 up to DB2 Version 9.1 for z/OS for LOBs support. We provide
useful information about how to design, create, and manage LOBs, and we offer examples of
their use, programming considerations, and the new processes which are necessary for their
implementation, administration, and maintenance.

This IBM Redbook is based on DB2 Version 9.1 for z/OS, but throughout the book, we point
out the differences between functionality and syntax of V9 and the previous versions of DB2
for z/OS (mostly V8, but also V7). Notice that all of the examples are given in DB2 9 for z/OS
new syntax, but the old syntax is still supported and that some of the new DB2 9 level
functions have been made available in V8 and even V7 by APARs.

� Chapter 2, “Large objects with DB2” on page 9, introduces the new data types and the
new infrastructure designed to support the large objects.

� Chapter 3, “Creating LOBs” on page 23, provides examples of defining LOBs and their
associated DB2 data elements.

� Chapter 4, “Using LOBs” on page 65, gives details about how to load and manipulate
LOBs using locators and file reference variables.

� Chapter 5, “SAP usage of LOBs” on page 125, is a peek into the way this widely used set
of solutions exploits LOB for its application structures.

� Chapter 6, “Utilities with LOBs” on page 159, shows how the individual utilities, old and
new, have been enriched to deal with the characteristics of LOBs.

� Chapter 7, “Data administration with LOBs” on page 211, puts together what you have
learned so far and looks at more general scenarios of data administration with LOBs.

� Chapter 8, “Performance with LOBs” on page 237, is an section with preliminary
information about LOBs measurements and general best practice recommendations.

1.5 Pointers to LOB functions after DB2 Version 6

In Table 1-1 on page 5, we provide a summary of the most important enhancements to LOB
support that have been introduced after V6 and where you can find their descriptions.
4 LOBs with DB2 for z/OS: Stronger and Faster

Table 1-1 The LOBs functions that have been introduced after Version 6

Function Where described Version 7 Version 8 Version 9.1

JDBC™ functions and DB2 catalog changes
for Java™ support requiring LOBs in DB2
catalog

See Chapter 3 of DB2
UDB Server for OS/390
and z/OS Version 7
Presentation Guide,
SG24-6121.

Y Y Y

DB2 Extenders using LOBs See Chapter 4 of DB2
UDB Server for OS/390
and z/OS Version 7
Presentation Guide,
SG24-6121.

Y Y XML
Extender
only

LISTDEF to allow LOAD
and UNLOAD to support LOBs < 32 KB and
account for them with a 4 byte length field

See Chapter 5 of DB2
UDB Server for OS/390
and z/OS Version 7
Presentation Guide,
SG24-6121.

Y Y Y

File reference variables in LOAD and
UNLOAD

See 6.3, “LOAD” on
page 171 and 6.1,
“UNLOAD” on page 160.

UK13720
(PK22910)

UK13721
(PK22910)

Y

LOB support in the cross-loader See 6.3.3, “Using the
cross loader” on
page 172.

UK03226
(PQ90263)

UK03227
(PQ90263)

Y

INSERT and UPDATE performance See 5.12, “Performance
measurements” on
page 155.

UK15036
(PK22887)

UK15037
(PK22887)
OPEN
PK25241

Y
(integrated)

ROWID transparency See 4.25 of DB2 UDB for
z/OS Version 8:
Everything You Ever
Wanted thing to Know, ...
and More, SG24-6079.

Y Y

Virtual storage change (LOBVALS and
LOBVALA)

See 2.28 of DB2 UDB for
z/OS Version 8:
Everything You Ever
Wanted thing to Know, ...
and More, SG24-6079,
and
8.2.1, “DB2 subsystem
parameters for LOBs” on
page 243.

Y Y

 XML2CLOB See 5.4 of DB2 UDB for
z/OS Version 8:
Everything You Ever
Wanted thing to Know, ...
and More, SG24-6079,
and 4.1.5, “Functions such
as XML2CLOB” on
page 72.

Y Y
Chapter 1. Introduction 5

SQL stored procedures and LOB variables See 8.3.7 of DB2 UDB for
z/OS Version 8:
Everything You Ever
Wanted thing to Know, ...
and More, SG24-6079,
and DB2 for z/OS Stored
Procedures: Through the
CALL and Beyond,
SG24-7083.

Y Y

Java API enhanced for LOBs See 5.1.13 of DB2 UDB for
z/OS Version 8:
Everything You Ever
Wanted thing to Know, ...
and More, SG24-6079
and DB2 for z/OS Stored
Procedures: Through the
CALL and Beyond,
SG24-7083.

Y Y

Long SQL statements as CLOBs. Using
dynamic SQL, SQL statements up to 2 MB
are passed to DB2 as a CLOB or DBCLOB,
because a “normal” character string can only
be up to 32 KB

See 2.37 of DB2 UDB for
z/OS Version 8:
Everything You Ever
Wanted thing to Know, ...
and More, SG24-6079.

Y Y

CHECK LOB sort enhancement: SYSUT1
and SORTOUT DD statement for sort input
and output are no longer needed

See 9.14.2 of DB2 UDB for
z/OS Version 8:
Everything You Ever
Wanted thing to Know, ...
and More, SG24-6079.

Y Y

New samples for LOBs See the DB2 Installation
Guide for each DB2
Version and Appendix A,
“Additional material” on
page 259.

Y Y

Avoidance of LOB locks See 4.5.2, “Locking for
LOBs with DB2 9” on
page 101.

Y

DRDA LOB flow optimization See 5.3.2, “CLI Streaming
Interface” on page 134.

Y

FETCH CONTINUE See 4.6.2, “Using FETCH
CONTINUE” on page 113.

Y

Automatic creation of objects See 3.1.1, “Example of
automatic creation of
objects” on page 24.

Y

Removed requirement that 1 GB or greater
LOBs be in a NOT LOGGED LOB table
space

See 3.3.1, “LOGGED and
NOT LOGGED attributes”
on page 44.

Y

REORG SHRLEVEL REFERENCE for a
LOB table space

See 6.9, “REORG” on
page 185.

Y

Online CHECK LOB See 6.12, “CHECK LOB”
on page 204.

Y

Function Where described Version 7 Version 8 Version 9.1
6 LOBs with DB2 for z/OS: Stronger and Faster

Online CHECK DATA See 6.11, “CHECK DATA”
on page 199.

Y

DSNTEJ7 now creates the sample LOB
database using LOAD utility and file
reference variables

See the DB2 9 for z/OS
Installation Guide.

Y

DSNTIAUL to extract LOB data into files and
generate a LOAD statement

See 6.2, “DSNTIAUL” on
page 169.

Y

Function Where described Version 7 Version 8 Version 9.1
Chapter 1. Introduction 7

8 LOBs with DB2 for z/OS: Stronger and Faster

Chapter 2. Large objects with DB2

In this chapter, we provide introductory information about large objects, starting with the data
types that were introduced in DB2 V6 for LOB support, the general structure of LOB table
spaces as well as the LOB manipulation components, including the new 2.4, “LOB file
reference variables” on page 18 introduced with DB2 9 for z/OS.

This chapter contains:

� Introduction to LOB data types
� The LOB table spaces
� LOB locators
� LOB file reference variables

2

© Copyright IBM Corp. 2006. All rights reserved. 9

2.1 Introduction to LOB data types

Multimedia application environments rely on many types of large data objects. Those objects
can be large text documents, X-ray images, audio messages, pictures, and many other types
of images.

Table 2-1 shows some representative sizes of various objects. These are outlined just for
comparison purposes. Overall, they just give you some idea of the storage requirements of
various types of objects that you may have to deal with.

Table 2-1 Typical average size for large objects

The data types provided by DB2, such as VARCHAR or VARBINARY (V9), are not large
enough to hold this amount of data, because of their limit of 32 KB. LOB support is based on
the set of data types which were introduced with DB2 V6. With large object support, DB2
stores and manipulates data objects that are much larger.

DB2 provides data types to store large data objects (LOBs), which support strings of up to 2
GB in size, well beyond the 32 KB supported by a varchar column. Techniques for storing and
retrieving these huge amounts of data have also been created within DB2.

The LOB data types allow you to store directly in DB2 tables objects in size of up to 2 GB, and
65,536 Terabytes (TB) per LOB column. Their characteristics depend on the way they are
stored in your DB2 subsystem:

� Character Large Objects (CLOBs)
� Binary Large Objects (BLOBs)
� Double-byte Character Large Objects (DBCLOBs)

For internal structure support, DB2 also uses the data type:

� ROWIDs

DB2 also provides host variables and data types that are used for manipulating LOBs:

� LOB locators
� LOB file reference variables

Object From To

Bank checks 30 KB 40 KB

Small image 30 KB 50 KB

Large image 200 KB 3 MB

Color image 20 MB 40 MB

Radiology image 40 MB 60 MB

Video .5 GB/hour -

Feature length movie 1 GB/hour -

High resolution video 3 GB/hour -

High resolution movie 5 GB/hour 6 GB

High definition TV 720 GB/hour -
10 LOBs with DB2 for z/OS: Stronger and Faster

Locators and file reference variables are described later at 2.3, “LOB locators” on page 16
and 2.4, “LOB file reference variables” on page 18.

We now briefly introduce the data types available in DB2 for LOB support.

CLOBs
A character large object (CLOB) is a varying-length string with a maximum length of
2,147,483,647 bytes (2 gigabytes minus 1 byte). A CLOB is designed to store large SBCS
data or mixed data, such as lengthy documents. For example, you can store information such
as an employee resume, the script of a play, or the text of a novel in a CLOB. Alternatively,
you can store such information in UTF-8 in a mixed CLOB. A CLOB is a varying-length
character string, which can be thought of as a varchar field of (almost) unlimited length.

Most text documents stored on other platforms cannot be converted to a CLOB value easily
because most known editing applications save data using their own format. This format
usually contains an interspersed amount of control information used for font types, font sizes,
and layout purposes. If you want to store this data as a CLOB value and access it via DB2
functions such as SUBSTR or POSSTR, you might have to convert the data from its format
on your client platform to a plain or tagged text file before inserting into a CLOB column. You
can consider using a CLOB column for storing large text documents. If you plan to store your
PC documents in DB2 for z/OS without converting them, because you want to access them
from your client applications for further processing, you need to store them as BLOBs to avoid
loss of font and layout control information.

BLOBs
A binary large object (BLOB) is a varying-length string that has a maximum length of
2,147,483,647 bytes (2 gigabytes minus 1 byte). A BLOB contains a binary string
representing binary data, which is a sequence of bytes and typically unreadable. A BLOB is
designed to store various data such as pictures, voice, and mixed media. BLOBs can also
store structured data for use by distinct types and user-defined functions.

Although BLOB strings and FOR BIT DATA character strings might be used for similar
purposes, the two data types are incompatible. The BLOB function or CAST function can be
used to change a FOR BIT DATA character string into a BLOB string.

Normal character strings defined with the FOR BIT DATA option cannot be assigned a
CCSID, and the same rule applies to BLOB strings.

DBCLOBs
A double-byte character large object (DBCLOB) is a varying length string of double-byte
characters that can be up to 2 GB long. Using a DBCLOB column, you can store up to
1,073,741,823 double-byte characters in a single DBCLOB value. A DBCLOB is used to store
large double-byte character set (DBCS) character-based data such as documents written
with a double-byte CCSID. A DBCLOB is considered to be a graphic string. You can find
double-byte CCSIDs for languages such as Japanese (extended Katakana or
Katakana-Kanji), Korean, or Chinese (simplified or traditional).

ROWIDs
The ROWID data type (and column) definition was introduced with DB2 V6 to uniquely and
permanently identify a row in a table. To understand the role of the ROWID, and why DB2
creates a value for a ROWID column whenever a row is inserted in a table containing this new
data type, you must first understand the overall picture of the DB2 objects involved in
supporting LOBs, as described first at 2.2, “The LOB table spaces” on page 12, and then in
more detail at 3.2, “Defining ROWIDs” on page 39.
Chapter 2. Large objects with DB2 11

2.2 The LOB table spaces

CLOBs, BLOBs, and DBCLOBs are the data types provided by DB2 for storing large objects.
DB2 also provides different techniques to accommodate storing these potentially huge
amounts of data within the DB2 physical structures. In fact, a large object (LOB) in DB2, even
though it can be compared to a more familiar string element, such as a CHAR or a VARCHAR
column in terms of type of contents, can reach the size of 2 GB minus one byte
(2,147,483,647 bytes). This requires different storing and handling techniques in order to
minimize the impact on usability and performance.

2.2.1 Single LOB column table space

Generally, non-LOB columns are stored in what we refer to as a base table. LOBs belong to a
base table and are related to it, but they are not stored in the same table with the other
non-LOB columns, they are stored in a LOB table space. The table, where the rows of a LOB
column live and which is embedded in the LOB table space, is called an auxiliary table. See
Figure 2-1. Each LOB value is assigned to a different page.

Figure 2-1 Association between base table and auxiliary table

2.2.2 Multiple LOB column table space

Each LOB column in a base table requires its own LOB table space, so LOB columns are also
separated from other LOB columns belonging to the same base table. Each LOB table space
and auxiliary table will contain the values of the same LOB column. It is important to know
that each page can only contain a LOB or a portion of a LOB; it never contains values of two
LOBs or two LOB columns. For a pictorial view of the different LOB columns and their
associated LOB table spaces, see Figure 2-2 on page 13.

Col 1 Col 2 LOB Col 1

Vala Valb

Valc Vald

 Base Table Space
 Base Table

Picture
1

Picture
2

LOB Table Space
Auxiliary

Table
12 LOBs with DB2 for z/OS: Stronger and Faster

Figure 2-2 Base table with two LOB columns and the two associated LOB table spaces

2.2.3 Partitioned LOB table space

If the base table is partitioned, every LOB column in every partition has its own LOB table
space. This means up to 4,096 LOB table spaces per LOB column if the base table has 4,096
partitions. Figure 2-3 on page 14 gives you a better understanding of a partitioned multi-LOB
column base table and the required LOB table spaces.

The LOB column itself is referred to as an auxiliary column, because it is not stored in the
base table. The rows in the base table are associated to the LOB columns residing in the
auxiliary table in the LOB table space using the ROWID as a pointer from the base table to
the auxiliary table. For further information about ROWIDs, see 3.2, “Defining ROWIDs” on
page 39.

Col 1 Col 2 LOB Col 1 LOB Col 2

Vala Valb

Valc Vald

 Base Table Space Movie
1

Movie
2

LOB Table Space 2
Auxiliary

Table

Picture
1

Picture
2

LOB Table Space 1

 Base Table

Auxiliary
Table
Chapter 2. Large objects with DB2 13

Figure 2-3 Partitioned base table containing two LOB columns

2.2.4 The full LOB implementation structure

In order to quickly locate the proper LOB value in the auxiliary table, an auxiliary index must
be created on the auxiliary table. This index includes the ROWID as its only column.
Additionally, a LOB indicator is also stored in the base table. You can find more information
about this indicator in “A few more details about the base table” on page 31. See Figure 2-4
on page 15 for a summary picture of all the objects mentioned here and how they work
together.

Movie
1

Movie
2

LOB Table Space 2
Auxiliary

Table

Col 1 Col 2 LOB Col 1 LOB Col 2

Vale Valf

Valg Valh

Col 1 Col 1 LOB Col 1 LOB Col 2

Vala Valb

Valc Vald

Partition 1 - Base Table Space

Picture
1

Picture
2

LOB Table Space1

Movie3

LOB Table Space 4

LOB Table Space 3

Auxiliary
Table

Picture
4

Picture
3

Auxiliary
Table

Auxiliary
Table

Partition 2 - Base Table Space

 Base Table

 Base Table

Movie
4

14 LOBs with DB2 for z/OS: Stronger and Faster

Figure 2-4 Association between base table, ROWID, auxiliary table, and LOB table space

An important reason for the separation of LOB columns is performance. The decision was
made during the design phase of large object support, based on experiences using
middleware systems and LOBs. Assuming table space scans on the base table, LOB values
do not have to be processed during these scans. Probably most of the scanning time would
be spent in scanning LOB columns if the LOB columns resided in the same table as the
non-LOB columns.

Based on the nature of LOBs, they can be larger than the biggest available page size, which
is still 32 KB in DB2 9 and is also valid for LOB table spaces. Therefore, a single LOB value
can span pages.

Because each data set of a LOB table space can grow up to 64 GB, and there can be up to
254 data sets per table space, the maximum size of a non-partitioned LOB table space is
16,256 GB (16 TB) in total. Because the number of partitions can grow up to 4,096 in the
base table, there are 4,096 single LOB table spaces, each holding up to 16 TB of data as a
maximum size. This gives a grand total of 4,096 x 16 TB = 65,536 TB available for a single
column of LOB data.

A single database can hold a maximum of 65,535 objects, or to be more specific, X’FFFF’
object identifiers (OBDs).

Regardless of the number of partitions, you use one OBD for each auxiliary relationship per
LOB column. Furthermore, DB2 uses 5 OBDs per LOB column per partition. Therefore, this
gives us a maximum of 3 LOB columns for a 4,096 partition table, not exceeding 65,535
OBDs. According to these values:

3 + n + 5np <= 65535

Col 1 Col 2 LOB Col 1 LOB Col 1
Flags

Vala Valb ABCDEFG... ...

Valc Vald 1234567... ...

 Base Table Space

 Base Table

Row ID

Row ID LOB Value

ABCDEFG... Picture 1

 1234567... Picture 2

 LOB Table Space

 Auxiliary
Index

 Auxiliary Table
Chapter 2. Large objects with DB2 15

with n as the number of LOB columns in your base table and p as the number of partitions.
The formula gives you the number of partitions and LOB columns that can reside inside one
database.

The values are summarized in Table 2-2.

Table 2-2 Maximum number of LOB columns by partitions

2.3 LOB locators

In general, when the application is accessing data, DB2 has to deal with the materialization of
data on the layers involved: auxiliary storage, central storage, data buffers, and the movement
of data across them. The materialization of LOB values consists of placing LOB data in
contiguous storage. Because LOB values can be very large, DB2’s actions are inspired by
the objective of avoiding materialization of LOB data until it becomes absolutely necessary.
Furthermore, if the application is running on a client machine, distinct from the database
server, the transfer of LOB values from the server to the client adds a sizable time and
resource consumption. Application programs typically process LOB values a piece at a time,
rather than as a whole. For all of those cases where an application does not need (or want)
the entire LOB value stored in application memory, the application can reference a LOB value
using the large object locator (LOB locator) and avoid materialization.

A LOB locator is a host variable with a value that represents a single LOB instance in the
database server. LOB locators have been developed to provide users with a mechanism by
which they could easily manipulate very large objects in application programs without
requiring them to store the entire LOB value in the application’s memory.

You can consider locators roughly as cursors that reference remote data. Locators, and the
structures associated to them, are contained in virtual storage blocks allocated by DB2 in the
DBM1 address space. The LOB data referenced by the locators is allocated by DB2 in
memory structures, which are dynamically created for the duration of the request.

2.3.1 Purpose of LOB locators

A LOB locator is a value generated by DB2 when a LOB string is assigned to a host variable
that was previously specified as a LOB locator in your application program. Every LOB
locator, also called host-identifier, is a special type of SQL object materialized as a four-byte
token used to represent the LOB. This representation allows the value of the large object
strings to be contained in the host-identifier, rather than the actual string of bytes of the large
object. Figure 2-5 on page 17 provides an example of LOB locator usage.

Partitions Data sets Maximum number of LOB
columns

250 12,250 48

1,000 13,000 12

4,096 16,384 3
16 LOBs with DB2 for z/OS: Stronger and Faster

Figure 2-5 Assigning a LOB locator for a LOB value

A LOB locator is an association between a host variable and its corresponding LOB value in
DB2 at a point in time. The application only accesses the locator while the entire LOB value
resides in DB2 and is not propagated to the application program. Using this technique, an
application does not need to acquire a buffer large enough to contain the entire LOB value.
Instead, the application deals only with LOB locators, therefore largely reducing the amount
of resources to be allocated. The definition and usage are not mandatory; however,
considerations on performance soon lead you to the conclusion that it might be a better idea
for the applications to use them, because locators dramatically reduce the movement of data
between the different address spaces involved in LOB data management as well as greatly
reducing connectivity issues.

2.3.2 Different types of LOB locators

Each LOB format (BLOB, CLOB, and DBCLOB) has its own type of locator, so currently there
are three different types of LOB locators:

� Binary Large Object locator, which is associated with large binary strings
� Character Large Object locator, which is associated with large character strings
� Double-byte Character Large Object locator, which is associated with large graphic strings

The definition of a LOB locator depends on the language you choose for developing programs
for LOB usage. The syntax for defining LOB locators in COBOL is shown in Example 2-1.

Example 2-1 Host variable definitions for LOB locators in COBOL

01 BLOB-LOCATOR USAGE IS SQL TYPE IS BLOB-LOCATOR.
01 CLOB-LOCATOR USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 DBCLOB-LOCATOR USAGE IS SQL TYPE IS DBCLOB-LOCATOR.

The DB2 precompiler converts the locator structure into the COBOL structure as reported in
Example 2-2 on page 18.

 1 GB BOOK_TEXT

DB2

Internal pointer

123454321

SELECT BOOK_TEXT
 INTO :BOOK_TEXT_LOCATOR
 FROM BOOK_BASE_TABLE
WHERE BOOK_NO = :HV_BOOK_NO

 :BOOK_TEXT_LOCATOR

Application

123454321
Chapter 2. Large objects with DB2 17

Example 2-2 What the DB2 precompiler makes of LOB locators

01 BLOB-LOCATOR PIC S9(9) COMP.
01 CLOB-LOCATOR PIC S9(9) COMP.
01 DBCLOB-LOCATOR PIC S9(9) COMP.

The locator 4-byte value is then stored in a host variable; the program, as already shown in
Figure 2-5 on page 17, can use it to refer to a LOB value. Even if every LOB locator shows up
identically for all definitions of host variables, DB2 knows the associated LOB type and does
not let you use a locator with a different type of LOB. If you define a CLOB locator and try to
use it for a BLOB, SQLCODE -171 is issued.

You can only use LOB locators inside an application program; you cannot deal with them
interactively. This means that you cannot use them, for instance, with SPUFI or QMF™.

For more information about LOB locators, refer to 4.2, “LOB locators” on page 73 and 8.1.2,
“Materialization avoidance techniques” on page 241.

LOB locator disadvantages
There are some disadvantages for using LOB locators. Their coding is pretty cumbersome,
and in the long run, they can cause problems in the application. The code becomes
complicated and hard to maintain. The need to chain the locators when dealing with
extremely large objects and limited storage in a user address space can cause the program to
abend due to lack of storage in a user address space.

Though LOB locators are a good alternative to LOB materialization, we can safely state that a
better alternative was introduced to replace them in most circumstances. When no
complicated manipulations on LOBs are required, or the application is not for usage in a
distributed environment, we recommend that you program using LOB file reference variables
as described in 2.4, “LOB file reference variables” on page 18.

2.4 LOB file reference variables

The purpose of file reference variables is to import or export data between a LOB column and
an external file outside of the DB2 system. In the past, if you used a host variable to
materialize the entire LOB in the application, your application would not only need adequate
storage but would also incur poor performance, because the file I/O time would not be
overlapped with any DB2 processing or network transfer time.

Locator variables used in conjunction with the SUBSTR function can be used to overlap the
file I/O time with DBM1 processing time or network transfer time and also to avoid
materializing the whole LOB in the application. However, there is still some CPU overhead to
transfer pieces of the LOB between DBM1 and the application.

LOB file reference variables accomplish the same function using less CPU time and avoiding
the use of any application storage for the LOBs. LOB file references are also easier to use
than locator variables. LOB file reference variables are supported within a DB2 for z/OS
system or in a distributed configuration between DB2 for z/OS subsystems.

In DB2 9, three new SQL host variables have been introduced:

� BLOB_FILE
� CLOB_FILE
� DBCLOB_FILE
18 LOBs with DB2 for z/OS: Stronger and Faster

File reference host variables can be used in applications to insert a LOB from a file into a DB2
table or to select a LOB from a DB2 table into a file. They can be used to update a LOB from
a file as well. When you use a file reference variable, you can select or insert an entire LOB
value without contiguous application storage to contain the entire LOB. In other words, LOB
file reference variables move LOB values from the database server to an application or from
an application to the database server without going through the application’s memory.
Furthermore, LOB file reference variables bypass the host language limitation on the
maximum size allowed for dynamic storage to contain a LOB value.

2.4.1 DB2-generated file reference variable constructs

For each LOB file reference variable that an application declares, DB2 generates an
equivalent construct that uses the host language data types. When an application refers to a
LOB file reference variable, the application must use the equivalent construct that DB2
generates. If the construct is not used, the DB2 precompiler issues an error. The construct
describes properties of the file as shown in Table 2-3.

Table 2-3 DB2-generated construct

2.4.2 Language support for LOB file reference variables

Encoding scheme
The encoding scheme CCSID of the file name is based on the application’s encoding
scheme. The CCSID of the LOB (contents of the file) can be set by the application by using
the SQL DECLARE host variable CCSID statement if it is different from the application
encoding scheme. DB2 performs any character conversion required prior to inserting LOB
data into a DB2 table or placing a LOB into a file.

Data type BLOB, CLOB, or DBCLOB. This property is specified when the variable is
declared using the BLOB_FILE, CLOB_FILE, or DBCLOB_FILE data type.

File name This property must be specified by the application program at run time. The
file name property can have the following values:
� The complete path name of the file. We recommend this.
� A relative file name. If a relative file name is provided, it is appended to

the current path of the client process.
A file should be referenced only once in a file reference variable.

File name length This property must be specified by the application program at run time.

File options An application must assign one of the file options to a file reference variable
before the application can use that variable. File options are set by the
INTEGER value in a field in the file reference variable construct. One of the
following values must be specified for each file reference variable:
� Input (from application to database):

SQL-FILE-READ. A regular file that can be opened, read, and closed.
� Output (from database to application):

SQL-FILE-CREATE. If the file does not exist, a new file is created. If the
file already exists, an error is returned.
SQL-FILE-OVERWRITE. If the file does not exist, a new file is created. If
the file already exists, it is overwritten.
SQL-FILE-APPEND. If the file does not exist, a new file is created. If the
file already exists, the output is appended to the existing file.

Data length The length, in bytes, of the new data written to the file, provided by DB2
server.
Chapter 2. Large objects with DB2 19

Programming support for LOB file reference variables
You can declare a LOB file reference variable or a LOB file reference array for applications
that are written in C, COBOL, PL/I, and Assembler. The LOB file reference variables do not
contain LOB data. They represent a file that contains LOB data. Database queries, updates,
and inserts can use file reference variables to store or retrieve column values. As with other
host variables, a LOB file reference variable can have an associated indicator variable.

The definition of a LOB file reference variable depends on the language you choose for
developing programs for LOB usage. The syntax for defining LOB file reference variables in
COBOL is shown in Example 2-3.

Example 2-3 Host variable definition for BLOB file reference variable in COBOL

01 MY-BLOB-FILE SQL TYPE IS BLOB-FILE.

The DB2 precompiler converts the declaration into the COBOL structure as reported in
Example 2-4.

Example 2-4 What the DB2 precompiler makes of BLOB file reference variable

01 MY-BLOB-FILE.
49 MY-BLOB-FILE-NAME-LENGTH PIC S9(9) COMP-5.
49 MY-BLOB-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 MY-BLOB-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 MY-BLOB-FILE-NAME PIC X(255).

Table 2-4 shows the precompiler generated file option constant declarations. You can use
these constants to set the file option variable when you use file reference host variables.

Table 2-4 File option constants

NULL indicator support for file reference variables
Like all other host variables, a LOB file reference variable can have an associated indicator
variable. Indicator variables for LOB file reference behave differently from indicator variables
of normal host variables. Because the file name can never be NULL for either input or output,
a negative indicator variable value indicates that the LOB value represented by the file
reference variable is NULL.

When a NULL value of a LOB column is returned from the database, the indicator variable is
set and the file associated with the variable is not opened by DB2.

When a NULL value is set by an application to place a LOB file reference into a DB2 LOB
column, the file is not opened for writing.

ODBC API support of LOB file reference
Two new APIs are added to support LOB file reference.

Constant name Constant value

SQL-FILE-READ 2

SQL-FILE-CREATE 8

SQL-FILE-OVERWRITE 16

SQL-FILE-APPEND 32
20 LOBs with DB2 for z/OS: Stronger and Faster

The new APIs are:

� SQLBindFileToCol

SQLBindFileToCol is used to bind a LOB column in a result set to a file reference allowing
the column data to be transferred into a file when the row is fetched.

� SQLBindFileToParam

SQLBindFileToParam is used to bind a parameter marker to a file reference allowing the
data from the file to be transferred into a LOB column.

An ODBC application can use either the statement attributes or the keyword
CURRENTAPPENSCHEM to override the default CCSID setting. If both are specified, the
statement attributes override the setting of CURRENTAPPENSCHEM in the INI file. ODBC
converts the input file name to the application’s encoding scheme before passing it to DB2 for
processing.

2.4.3 File local/client support

The DB2 support of LOB file reference is on the local side (non-distributed environment) or on
the client side (distributed environment) in a DB2 to DB2 (both z/OS) connection. The file
referenced by a LOB file must reside on the system on which program is running, or it must be
accessible by the system on which the program is running. If a remote stored procedure that
issues an SQL statement that uses a LOB file reference is called, the file must reside on the
system on which the stored procedure is running or be accessible by the system on which a
stored procedure is running.

A LOB file reference cannot be used in the stored procedure or user-defined function as an
input or output parameter. If a LOB file reference is used in the stored procedure or
user-defined function as an input or output parameter, SQLCODE -104 is issued.

DB2 9 for z/OS SQL supports sequential files (DSORG=PS), Hierarchical File System (HFS)
files, Partition Data Set (PDS) files, and Partition Data Set Extended (PDSE) files.

Utilities support of LOB file reference
LOAD and UNLOAD utilities support the capability of LOB file reference variables introduced
in DB2 9, and support is retrofitted to V7 and V8 with APARs PK10278 and PK22910. More
information is available in Chapter 6, “Utilities with LOBs” on page 159.

DSNZPARMs affected
DB2 9 introduces the new parameter MAXOFILR (MAX OPEN FILE REFS) to control the
maximum number of data sets that can be open concurrently for processing of LOB file
reference. The value setting for the parameter appears on the installation panel DSNTIPE as
shown on Figure 2-6 on page 22.

Though the default value is 100, the highest number in the range is also effectively limited to
the setting of the CTHREAD (MAX USERS) parameter. This limitation exists because a
thread can hold at most one file open using file references. With z/OS 1.7, DSMAX can be
64K and even get up to 100K, as you note below.

Restriction: Utilities do not support sequential (BSAM or QSAM) data sets for LOB file
reference variables.
Chapter 2. Large objects with DB2 21

Figure 2-6 DSNTIPE installation panel

Because some storage needs to be allocated for file processing, the parameter also has
some effect on the consumption of storage below the 2 GB bar.

 DSNTIPE INSTALL DB2 - THREAD MANAGEMENT
 ===>
Check numbers and reenter to change:
 1 DATABASES ===> 100 Concurrently in use
 2 MAX USERS ===> 200 Concurrently running in DB2
 3 MAX REMOTE ACTIVE ===> 200 Maximum number of active
 database access threads
 4 MAX REMOTE CONNECTED ===> 10000 Maximum number of remote DDF
 connections that are supported
 5 MAX TSO CONNECT ===> 50 Users on QMF or in DSN command
 6 MAX BATCH CONNECT ===> 50 Users in DSN command or utilities
 7 SEQUENTIAL CACHE ===> BYPASS 3990 storage for sequential IO.
 Values are SEQ or BYPASS.
 8 MAX KEPT DYN STMTS ===> 5000 Maximum number of prepared dynamic
 statements saved past commit points
 9 CONTRACT THREAD STG ===> NO Periodically free unused thread stg
 10 MANAGE THREAD STORAGE ===> NO Manage thread stg to minimize size
 11 LONG-RUNNING READER ===> 0 Minutes before read claim warning
 12 PAD INDEXES BY DEFAULT===> NO Pad new indexes by default
 13 MAX OPEN FILE REFS ===> 100 Maximum concurrent open data sets

 PRESS: ENTER to continue RETURN to exit HELP for more information

Note: APARs PK13287 and PK29281 and z/OS 1.7 GRS SPE allow support of up to
100,000 open data sets.
22 LOBs with DB2 for z/OS: Stronger and Faster

Chapter 3. Creating LOBs

In this chapter, we provide information about how to define and load LOBs. We discuss the
following topics:

� Alternatives in defining LOBs
� Defining ROWIDs
� LOBs and LOG activity
� Additional considerations for creating LOB objects
� LOBs are different DB2 objects
� Physical layout of LOBs

3

© Copyright IBM Corp. 2006. All rights reserved. 23

3.1 Alternatives in defining LOBs

In this section, we show how LOBs are created through practical examples.

We provide you with sample DDL needed for the creation of all LOB dependent objects
including a base table, a LOB table space, an auxiliary table, and an auxiliary index. We also
discuss the way DB2 stores the data at page level and how buffer pools are associated with a
LOB table space. We point out the differences between DB2 V8 and DB2 9.

In our example, we assume that we need to set up a new table containing non-LOB columns
and two LOB columns: a CLOB and a BLOB column. We create a base table containing
information about a book, storing the book itself as a CLOB, and the image of the book cover
as a BLOB.

DB2 supports three different approaches for creating all of the necessary objects for a LOB
environment:

� Automatic creation of objects by DB2

The automatic creation of objects is supported starting with DB2 9.

If you do not specify an IN clause or a database name on a CREATE TABLE statement,
DB2 assumes automatic creation of all necessary objects. For a CREATE TABLE
statement, DB2 implicitly creates a database and a table space to hold the table. If the
containing table space is implicitly created, DB2 creates all of the system required objects
for the user. For any base table containing at least one LOB column, the objects
automatically created are the LOB table space, the auxiliary table, and the auxiliary index.

� Setting CURRENT RULES special register

You can let DB2 create all necessary LOB objects by setting CURRENT RULES special
register value to STD.

� Manual creation of objects

In this case, you have the most flexibility and the opportunity to comply with existing
naming standards.

We look at the automatic creation of objects provided by DB2 9 closely, then we investigate
the CURRENT RULES special register, and finally, we look at the manual creation of objects.
For ROWID definition, see 3.2, “Defining ROWIDs” on page 39.

3.1.1 Example of automatic creation of objects

DB2 9 provides the ability for the user to only create the base table, including the definition of
all LOB columns. When you decide to let DB2 create all the necessary objects for you, the
only item that you have to define is the base table containing one or more LOB columns.

By omitting the IN clause on your CREATE TABLE statement for the base table, DB2 creates
the following objects for you implicitly if at least one LOB column is specified:

� Database for the base table space and the LOB table space

� Table spaces for the base table and the auxiliary table

� Enforcing primary key index

� Enforcing unique key index

� Index on ROWID column on the base table if ROWID GENERATED BY DEFAULT was
specified
24 LOBs with DB2 for z/OS: Stronger and Faster

� Auxiliary table

� Auxiliary index

If no LOB column is specified, DB2 does not create any auxiliary objects.

See Example 3-1 for a DDL to invoke automatic object creation. This creates a table named
BOOK_BASE_TABLE with four columns: two fixed length character (CHAR) columns and two
LOB columns. The IN database-name.table-space-name clause defined the table space. The
absence of the IN clause now triggers the automatic creation mechanism.

Example 3-1 DDL for a base table resulting in automatic object creation

CREATE TABLE BOOK_BASE_TABLE
(BOOK_NO CHAR(10) NOT NULL WITH DEFAULT
, DESCRIPTION CHAR(32) NOT NULL WITH DEFAULT
, BOOK_TEXT CLOB(500M) NOT NULL
, BOOK_COVER BLOB(1M) NOT NULL);

If you use the DDL shown in Example 3-1, DB2 creates the objects listed in Example 3-2.

Example 3-2 Resulting objects for automatic object creation

DSNT360I -DB9B ***********************************
DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB9B ***********************************
DSNT362I -DB9B DATABASE = DSN00050 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB9B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
BOOKRBAS TS 0001 RW
L99TVXZL LS RW
L99TW33X LS RW
IBOO1ITW IX RW
IBOOKRBO IX RW
******* DISPLAY OF DATABASE DSN00050 ENDED **********************
DSN9022I -DB9B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

DB2 implicitly creates two LOB table spaces named L99TVXZL and L99TW33X, and the
auxiliary indexes named IB001ITW and IBOOKRBO. Because we have not specified a base
table space, a partitioned-by-growth table space named BOOKRBAS is implicitly created as
well. All objects are placed in database DSN00050.

Note: Automatic creation of objects does not apply to explicitly partitioned tables. An
implicitly created table space always defaults to a partitioned-by-growth table space.

Note: If the ROWID column is omitted during the CREATE TABLE statement for the base
table, DB2 generates a hidden ROWID column for you. See “A few more details about the
base table” on page 31 for a detailed description.

Tip: Use REPORT utility to find out about the names DB2 has chosen after you have
retrieved the table space name for the base table using SYSIBM.SYSTABLES. For details,
see 6.7, “REPORT” on page 182.
Chapter 3. Creating LOBs 25

Note that even if you create more than one table inside one unit of work using automatic
creation of objects, all tables are placed in different databases; therefore, they are also
placed in different table spaces.

Parts of the names are chosen randomly, so that issuing the DDL in your system most likely
results in different names of the affected objects.

Dropping implicitly created objects
If DROP TABLE is issued and the residing table space was implicitly created by DB2, DB2
drops all the related system required objects that are explicitly or implicitly created, including:

� Enforcing primary key index
� Enforcing unique key index
� Index on ROWID column on the base table if applicable
� Auxiliary table
� Auxiliary index
� Table spaces for the base table and the auxiliary table

If a table has a LOB column defined and the base table or the base table space is dropped,
the LOB table space is implicitly dropped.

If the base table space is explicitly created and the LOB table space is implicitly created,
DROP is allowed.

Implicit databases
If you do not specify a database name, DB2 implicitly creates a database and generates a
name for it. If the number of existing implicitly created databases reaches 60 000, DB2 wraps
around and uses an existing database that has been implicitly created by DB2 instead of
implicitly creating a new one. Each database that is created implicitly by DB2 can contain
multiple table spaces. Trying to create your own objects in automatically created databases
or table spaces is not allowed and results in SQLCODE -2035, because this involves one or
more implicitly created objects.

If you issue a CREATE TABLE statement without specifying a database name, DB2 does not
roll back a successful implicitly created database if any failure occurs during the table or table
space creation in this database.

Table 3-1 on page 27 shows the attributes used for automatic database creation.

Note: You cannot create your own table in an implicitly created table space nor can you
create your own table space in an implicitly created database.

Note: If the base table is dropped, all dependent objects created implicitly, including the
base table space, are dropped, too. If the last object inside the automatically created
database is dropped, the database still remains in your DB2 subsystem and can be
explicitly dropped by using a DROP DATABASE statement if you prefer.

Restriction: Only an implicitly created table space is allowed to be created in an implicitly
created database.

Note: On an implicit database creation, DB2 uses SYSIBM as the database creator.
26 LOBs with DB2 for z/OS: Stronger and Faster

Table 3-1 Attributes for implicit database creation

The names of implicitly created databases start with DSN followed by exactly five digits,
providing a name range from DSN00001 to DSN60000. If your number of implicitly created
databases exceeds 60 000, DB2 looks for an existing DSN00001 and creates all the
necessary objects in it. If DSN00001 does not exist, DB2 creates a DSN00001 database and
creates the objects in it. DB2 then continues with DSN00002 the next time DB2 objects are
created implicitly, and DB2 resumes the incrementing of the last digits, either creating a
database or adding another set of objects to the existing database.

Implicit table spaces
If you do not specify the IN clause or a table space name in your CREATE TABLE statement,
DB2 implicitly creates a partitioned-by-growth table space for you.

When DB2 implicitly creates a table space, the table spaces in an implicitly created database
are to be created as partitioned-by-growth. A partitioned-by-growth table space uses 4 GB as
DSSIZE, 256 for MAXPARTITIONS, and LOCKSIZE ROW as its default values.

The DSNZPARM parameter IMPDSDEF corresponds to DEFINE YES / DEFINE NO on a
CREATE TABLESPACE statement and allows you to specify whether the underlying data set
is to be defined when a table space is created in an implicitly created database.

Parameter IMPTSCMP lets you choose if you want the implicitly created table space using
compression or not. The MGEXTSZ subsystem parameter specifies whether to use a sliding
scale for optimizing secondary extent allocations for DB2-managed data sets.

See Table 3-2 for default values you can influence for implicitly created table spaces.

Table 3-2 Default values for implicitly created table spaces

A buffer pool is associated with the created table space according to the record size. The next
larger page size can be chosen if the maximum record size reaches approximately 90% of
the capacity of the smaller page size when the default buffer pool is not large enough to
support future extensions.

The implicitly created table space CCSID is the same as the table CCSID if it is specified in
the CREATE TABLE statement. Otherwise, the CCSID associated with the table space is set
as the DECP default CCSID value.

NAME BUFFERPOOL INDEXBP

DSNnnnnn (nnnnn = 00001 -
60000)

Default: 4 KB Default: IDXBPOOL setting

STOGROUP IMPLICIT ENCODING_SCHEME

SYSDEFLT ‘Y’ Default: DECP setting

SBCS_CCSID DBCS_SSID MIXED_CCSID

Default: DECP setting Default: DECP setting Default: DECP setting

DEFINE YES / NO COMPRESS YES / NO Optimizing secondary extent
allocations

Default specified using
IMPDSDEF

Default specified using
IMPTSCMP

Default specified using
MGEXTSZ
Chapter 3. Creating LOBs 27

See Table 3-3 for the default values used by DB2 for the automatic creation of our base table
space. The only parameter you can influence using automatic object creation is the buffer
pool specified in DSNZPARM TBSBPOOL, which specifies the default buffer pool for user
data and, which was set to BP0 in our system. The other attributes used for implicitly created
objects cannot be changed and can only be altered after the object is created.

Table 3-3 Base table space created using automatic object creation

The SQTY of -1 indicates that DB2 uses a sliding scale algorithm to allocate an appropriate
amount of space as a secondary extent. See Disk storage access with DB2 for z/OS,
REDP-4187, for details about the sliding algorithm used for extent allocation.

Implicit auxiliary table space
You can find the parameters used by DB2 during automatic object creation for the LOB table
space reported in Example 3-4. Again, note the BUFFERPOOL has been picked up from
TBSBPOOL, which is BP0 in our test system.

Table 3-4 LOB table space created using automatic object creation

Again, the only controlling parameter is the buffer pool specified in DSNZPARM TBSBPOOL.
All other parameters can only be altered after the object is created. The name of the LOB
table space is an 8-character string every time DB2 creates it for you. For the name of the
table space, the first character is an “L”, followed by seven random characters.

Because implicitly created base table spaces and LOB table spaces use the same buffer pool
as specified using DSNZPARM TBSBPOOL, both table spaces use the same page size.
Altering a table space buffer pool to a different page size is not supported and requires a
DROP TABLESPACE and CREATE TABLESPACE statement. Note that dropping the base
table space also drops the auxiliary table and the auxiliary index.

The TBSBPOOL default is 4 KB. This value is generally acceptable for the base table but
could be considered small for the LOB table. If you have small LOBs, for instance, a 4,000
byte LOB maximum size, because only one LOB can be stored in one page, larger pages
waste disk storage. So, this default is good. If you have large LOBs with recent zSeries®
hardware and software, the I/O performance difference between a 4 KB page and a 32 KB
page is disappearing with MIDAW, so the default is acceptable. However, if you have large
LOBs and no MIDAW, it might be worthwhile assigning them to large pages and large CI

TSNAME BUFFERPOOL LOCKSIZE LOG CLOSE

BOOKRBAS BP0 ROW YES YES

DSSIZE PQTY/SQTY FREEPAGE PCTFREE GBPCACHE

4194304 3 / -1 0 5

MAXROWS MAXPARTITIONS SEGSIZE

255 256 4

TSNAME BUFFERPOOL LOCKSIZE LOG CLOSE

L99TVXZL BP0 ANY YES YES

DSSIZE PQTY/SQTY FREEPAGE PCTFREE GBPCACHE

4194304 50 / -1 0 0
28 LOBs with DB2 for z/OS: Stronger and Faster

sizes and considering striping for best performance. See also 3.4.2, “Buffer pools and LOB
table spaces” on page 56.

Implicit auxiliary table
Because an auxiliary table is the only table residing in an auxiliary table space, it only
contains the information about which LOB column is stored inside. No additional parameters
are available, because the CREATE AUXILIARY TABLE only specifies the name of the LOB
column to be stored inside.

Implicit auxiliary index
An implicitly created auxiliary index on the auxiliary table has the parameters assigned as
reported in Table 3-5.

Table 3-5 Auxiliary index created using automatic object creation

One more time, the only parameter you can influence is the index buffer pool specified in
DSNZPARM IDXBPOOL. All other attributes used for implicitly created objects cannot be
changed. The name of the auxiliary index is also 18 characters long. The first character of the
name is an ‘I’. The next ten characters are the first ten characters of the name of the auxiliary
table. The last seven characters are generated randomly.

The most important reason for DB2 coming up with cryptic names for implicitly created
objects is to avoid naming collisions with already existing objects. You should be aware of
these conventions so that you can plan for any consequences caused by your existing
naming conventions, such as SMS ACS routine refinement and so forth.

3.1.2 Using CURRENT RULES STD
CURRENT RULES is a data server register where you can specify whether certain SQL
statements are executed in accordance with DB2 rules or the rules of the SQL standard.
The valid values are 'DB2' and 'STD'. If the server is not the local DB2, the initial value of the
register is 'DB2'. Otherwise, the initial value is the same as the value of the SQLRULES bind
option. You can change the value of the register by executing the statement SET CURRENT
RULES. See the DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426, for details on the
scope of CURRENT RULES.

In this section, we examine the impact on CREATE and DROP when using the CURRENT
RULES STD setting. In general, we recommend using CURRENT RULES DB2, because this
allows you more flexibility in setting up the LOB environment more appropriately to your
needs and in complying with naming standards.

CREATE necessary LOB objects
If you specify CURRENT RULES DB2, you have to create all required objects by yourself.
You can then specify all the parameters mentioned in “Creating the LOB table space” on
page 34, and in the following sections.

Note: Automatic creation of objects only supports partition-by-growth table spaces.

IXNAME IXSPACE BUFFERPOOL CLOSE

IBOOK_BOOK_99TWUYZ IBOOKRBO BP0 YES

PIECESIZE PQTY/SQTY FREEPAGE PCTFREE

4194304 -1 / -1 0 10
Chapter 3. Creating LOBs 29

If you specify CURRENT RULES STD, DB2 creates all the needed auxiliary objects at the
time it processes the CREATE statement for your base table.

Note that you do not have to explicitly specify a ROWID column, DB2 creates it for you,
regardless if you use STD or DB2 as a value for CURRENT RULES special register.
However, CURRENT RULES STD implies that DB2 creates an index for a ROWID column
that is defined with GENERATED BY DEFAULT.

DB2 creates the LOB table space, the auxiliary table, and the auxiliary index for you. If the
auxiliary objects defined in Example 3-1 on page 25 were created using CURRENT RULES
STD, they would look like Table 3-6 for the LOB table space and Table 3-7 for the auxiliary
index.

Table 3-6 LOB table space created using CURRENT RULES STD

The name of the LOB table space is an 8-character string every time DB2 creates it for you.
The first character is an L, followed by seven random characters. The auxiliary table is
created as PAOLO.CLOB_DOCUM1LXA0LID. The table name of the auxiliary table is an
18-character string. The first five characters of the name are the first five characters of the
name of the base table. The second five characters are the first five characters of the name of
the LOB column. The last eight characters are randomly generated. If a base table name or a
LOB column name is fewer than five characters, DB2 adds underscore characters to the
name to pad it to a length of five characters.

The buffer pool for the auxiliary table space is the default buffer pool for user data defined in
your system for 32 KB data pages.

Table 3-7 Auxiliary index created using CURRENT RULES STD

The name of the auxiliary index is also 18 characters long. The first character of the name is
an I. The next ten characters are the first ten characters of the name of the auxiliary table.
The last seven characters are generated randomly. The index has the COPY NO attribute,
therefore, full image copies and recover utilities are not allowed.

You can also modify an existing table for holding a LOB column using the ADD column option
in the ALTER TABLE statement. First, you ADD the ROWID column to your designated base
table, then, at the time you ADD the appropriate LOB column with the ADD LOB column
statement, DB2 also creates all the needed auxiliary objects, if CURRENT RULES STD is
chosen. If CURRENT RULES DB2 is not chosen, you have to create the objects on your own.

TSNAME BUFFERPOOL LOCKSIZE LOG CLOSE

L9WY757H BP32K ANY YES YES

DSSIZE PQTY/SQTY FREEPAGE PCTFREE GBPCACHE

4 GB 3 / -1 0 0

IXNAME IXSPACE BUFFERPOOL CLOSE

ICLOB_DOCUM9WBL
NG3

ICLOBRDO BP0 YES

PIECESIZE PQTY/SQTY FREEPAGE PCTFREE

4194304 -1 / -1 0 10
30 LOBs with DB2 for z/OS: Stronger and Faster

DROP base object
Whenever you drop a base table or a base table space, the associated objects are dropped
depending on the way they were created. If you have created the auxiliary objects using
CURRENT RULES STD, the LOB table space is implicitly dropped when you drop the base
table or the base table space. The auxiliary table and the auxiliary index are dropped as well.
Dropping the LOB table space or the auxiliary table is not allowed if they were created using
CURRENT RULES STD.

If you have created the auxiliary objects by yourself, only the auxiliary table and the auxiliary
index are dropped when you either drop the base table space or the base table. The LOB
table space remains in your system.

Note that dropping the auxiliary table space is not allowed when it is used to store LOB data.
Dropping the auxiliary table is allowed.

3.1.3 Manual creation of objects

DB2 still allows you to create all of the necessary objects for a LOB environment on your own.

Creating the base table
The first step is creating the base table in a table space already existing in the same database
where the LOB table spaces are stored. There are no special suggestions for a base table
space: it is just a normal table space. But we recommend that you have only one base table
in a base table space. This simplifies your recovery procedures by dealing independently with
each LOB table space.

The base table for our example is created with the DDL statement reported in Example 3-3.

Example 3-3 DDL for a base table for manual object creation

CREATE TABLE BOOK_BASE_TABLE
(BOOK_NO CHAR(10) NOT NULL WITH DEFAULT
, DESCRIPTION CHAR(32) NOT NULL WITH DEFAULT
, BOOK_TEXT CLOB(500M) NOT NULL
, BOOK_COVER BLOB(1M) NOT NULL)
IN LOBDB.BASETS;

Note that a ROWID column is omitted and created as a hidden column by DB2.

A few more details about the base table
DB2 currently requires that a ROWID column is included in tables which have one or more
LOB columns. The additional column containing the data type ROWID simply contains unique
values related to the auxiliary tables in the LOB table spaces. DB2 generates a hidden
ROWID column if a ROWID column is not explicitly specified, as shown in Example 3-3. This
column is not included in the result set of a SELECT * from a base table, but by selecting the
column explicitly by name, you can retrieve its content.

If DB2 detects a LOB column in your CREATE TABLE statement, the definition of a ROWID
column is added implicitly as shown in Example 3-4 on page 32. This is called ROWID
transparency and was introduced in DB2 V8.
Chapter 3. Creating LOBs 31

Example 3-4 Catalog description for a hidden ROWID for LOBs

---------+---------+---------+---------+---------+---------+---------+---------+
NAME COLTYPE HIDDEN LENGTH UPDATES DEFAULT
---------+---------+---------+---------+---------+---------+---------+---------+
DOCUMENT_NR CHAR N 10 Y Y
DESCRIPTION CHAR N 32 Y Y
DOCUMENT BLOB N 4 Y N
DB2_GENERATED_ROWID_FOR_LOBS ROWID P 17 N A

DB2 creates the column with a name of DB2_GENERATED_ROWID_FOR_LOBSnn. DB2
appends nn only if the column name already exists in the table, replacing nn with 00 and
incrementing by 1 until the name is unique within the row. The implicitly added column is
appended to the end of the row after all of the other explicitly defined columns.

For the DB2-generated column containing the ROWID, the value of ’P’ for the attribute
’HIDDEN’ indicates that the ROWID column is not visible in SQL statements except for
explicit reference by column name. Updates for that specific column are not allowed, and
it is also created with the GENERATED ALWAYS clause.

A new message warns about possible conflicting specifications in the definition:

DSNT408I SQLCODE = -857, ERROR: CONFLICTING OPTIONS HIDDEN ROWID HAVE BEEN
 SPECIFIED

The data type ROWID is stored as a VARCHAR (17) column in the base table. It is implicitly
one part of the unique index for each auxiliary table containing the LOB columns in the LOB
table spaces, where the LOB columns are stored.

Even if a base table contains more than one LOB column, only one ROWID column is
needed. So, all LOB columns in one row are associated with the same ROWID value.
Regarding this procedure, the ROWID column is a unique and permanent identifier for each
row in the base table. A ROWID is not the same as a record identifier (RID), which is
internally used by DB2 to reflect the position of a row in a table. But you can find the RID as a
part of the externalized ROWID when you select the ROWID column.

There are three ways of assigning a ROWID to a base table, and these are described in more
detail in 3.2, “Defining ROWIDs” on page 39.

In case a ROWID is generated by DB2 at the time when you insert your data, you might need
to immediately determine the value that has been generated and inserted into the table for
you. The INSERT with SELECT statement provides this capability, enhancing the usability
and power of SQL. The associated benefits include reduced network costs and simplified
procedural logic in stored procedures, because you are decreasing the number of SQL calls
from within your application. See Example 3-5 on page 33 for an example of how to retrieve a
generated ROWID value during INSERT processing. Note that the example is based on the
DDL provided in Example 3-3 on page 31.

Note: The ROWID transparency enhancement includes the capability of hiding the
ROWID column from DML and DDL. This way, applications running on other platforms that
do not have a ROWID data type can avoid the special code to handle ROWID and use the
same code path for all platforms.
32 LOBs with DB2 for z/OS: Stronger and Faster

Example 3-5 Retrieving a generated ROWID value at INSERT time

SELECT DB2_GENERATED_ROWID_FOR_LOBS FROM FINAL TABLE
(INSERT INTO BOOK_BASE_TABLE
(BOOK_NO, DESCRIPTION)
VALUES

('SG24-7270-00', 'LOBs - Stronger and Faster'));

If there is a requirement in your application to retrieve the rows in the same sequence that
they are inserted, the application can use the INPUT SEQUENCE keywords with the ORDER
BY clause of the SELECT statement. For more detailed information about this topic, refer to
DB2 UDB for z/OS Version 8: Everything You Ever Wanted to Know, ... and More,
SG24-6079.

In the table definitions of the new data types CLOB (500 MB) and BLOB (1 MB) in
Example 3-3 on page 31, DB2 implicitly puts two LOB indicators into the base table definition.
Only indicator columns are stored in the base table in place of the actual LOB columns.

Note that the only supported default value for a LOB column is NULL.

For CLOBs, you can also specify the parameters FOR SCBS, MIXED, or BIT DATA. A
CCSID EBCDIC or ASCII can also be specified for CLOBs. For BLOBs and DBCLOBs, this is
not supported, because BLOBs contain binary data and DBCLOBs have a graphic CCSID
associated with them.

A LOB indicator for a LOB column consists of six bytes, and it provides useful information
about the stored LOB to DB2 when it accesses the column. The LOB indicators are stored
like VARCHAR (4) columns, resulting in a total of 6 bytes, including the length field. Figure 3-1
illustrates the catalog information for the created table.

Figure 3-1 Catalog description for table BOOK_BASE_TABLE

The LOB indicator bytes are made up of a 2-byte length field, a 2-byte flag, and a 2-byte
string containing the number of the currently stored version of the LOB. The flag bytes contain
a NULL flag, which has the information about a NULL, or even a NOT NULL value assigned
to a specific LOB value. Further information retrieved from the flag bytes is the zero length
flag, which indicates that a LOB column does not contain any data. Invalid LOB values are
also marked invalid using the flag bytes. By referring to this information, DB2 does not have
to read the auxiliary table when any of these conditions are true. The remaining two bytes
contain the current version of the LOB value. This is stored to detect mismatch situations
between the base table and the auxiliary table. For further information about possible
mismatches, see 6.12, “CHECK LOB” on page 204.

Catalog description

Stored as
VARCHAR (4)

Book_No Description Book_Text Book_Cover DB2_GENERATED_
ROWID_FOR_LOBS

CHAR (10) CHAR (32) CLOB (4) BLOB (4) ROWID (17)

Stored as
VARCHAR (4)

Stored as
VARCHAR (17)
Chapter 3. Creating LOBs 33

See Example 3-6 for a brief description of the content of a LOB indicator column.

Example 3-6 Content of LOB indicator columns

Length (Hex) Flags (Binary) Version (Hex)
00 04 1110 0000 0000 0000 00 02

At this stage, we have only created the base table using manual object creation. Trying to
access the base table now, by using SELECT, UPDATE, INSERT, or DELETE, results in
DB2 issuing SQLCODE -747. Access to the base table is not allowed, because the base table
is marked as incomplete if at least one dependent object is not defined.

The information when a table definition is incomplete is stored in column TABLESTATUS in
SYSIBM.SYSTABLES. A value of ‘L’ indicates a missing auxiliary index or auxiliary table for a
LOB column. When the content of the value is ‘R’, you have used the GENERATED BY
DEFAULT clause for your ROWID column and have not yet created the required single
column unique index on that particular column in your base table. A value of blank states a
complete table definition.

Creating the LOB table space
After the base table is created, we define the LOB table space containing the LOB column. In
our example, we need two LOB table spaces, one for the CLOB column and the other one for
the BLOB column.

Both LOB table spaces can be created using the sample statement shown in Example 3-7.

Example 3-7 DDL for a LOB table space

CREATE LOB TABLESPACE BLOBATS1
IN LOBDB
USING STOGROUP BLOBSGTS
 PRIQTY 1000000
 SECQTY 1000000
NOT LOGGED
LOCKSIZE LOB
BUFFERPOOL BP32K
DSSIZE 64G
GBPCACHE SYSTEM;

The keyword LOB tells DB2 to create the table space with the new format. You cannot store
LOB values in any other than LOB table spaces (for instance, the generic LARGE table
space). Specifying the free space parameter (FREESPACE and PCTFREE) has no influence
with LOBs.

Note: You cannot access the base table using SQL until all dependent objects (LOB table
space, auxiliary table, and the auxiliary index) are defined.

Note: The table space containing the base table has to be in the same database as every
associated LOB table space. If the base table space has the NOT LOGGED attribute, the
same is mandatory for the associated auxiliary table space. It is overridden by DB2 to NOT
LOGGED if specified otherwise.

The syntax for creating the auxiliary table space in DB2 9 has changed from ‘LOG YES’ to
‘LOGGED’ and from ‘LOG NO’ to ‘NOT LOGGED’. For compatibility reasons, the syntax
used in former versions before DB2 9 is still supported.
34 LOBs with DB2 for z/OS: Stronger and Faster

The second LOB table space holding the CLOB column is created in a similar way.

Every LOB column needs its own LOB table space. Partitioning of LOB table spaces is not
allowed, but they are divided in pagesets in accordance with the partitioned base table
definition.

Compression is not supported for LOB table spaces. For a more detailed description of how
the data is stored in a LOB table space, see 3.6, “Physical layout of LOBs” on page 62.

Creating the auxiliary table
The third step is creating an auxiliary table, holding the data of a LOB column. There can only
be one auxiliary table per LOB table space.

The DDL for creating an auxiliary table in a LOB table space is shown in Example 3-8.

Example 3-8 DDL for an auxiliary table

CREATE AUXILIARY TABLE BLOB_AUX_TABLE_1
 IN LOBDB.BLOBATS1
 STORES BOOK_BASE_TABLE
COLUMN BOOK_COVER;

This statement creates the auxiliary table BLOB_AUX_TABLE_1 in the LOB table space
created in “Creating the LOB table space” on page 34. The other auxiliary table storing the
CLOB column is created in a similar way.

There is no need to specify column names or column types for auxiliary tables. Using the
STORES clause tells DB2 what column of which base table you want to store in the created
auxiliary table. The associated table consists of only one column, the LOB column.

If the referenced base table is partitioned, there must be a LOB table space and an auxiliary
table for each LOB column in each partition of the base table. In this case, Example 3-9
shows sample DDL for creating the auxiliary table.

Example 3-9 DDL for an auxiliary table containing data of one base table partition

CREATE AUXILIARY TABLE BLOB_AUX_TABLE_1
 IN LOBDB.BLOBATS1
 STORES BOOK_BASE_TABLE
COLUMN BOOK_COVER
PART n;

The PART clause indicates which partition’s BOOK_COVER column you want to store in this
auxiliary table, where n is the number of the partition.

FIELDPROCs, EDITPROCs, VALIDPROCs, and check constraints cannot be defined on
LOB columns.

Note: You cannot create a LOB table space inside a work file database.

Note: A LOB table space and its associated base table space must be stored in the same
database. Otherwise, SQLCODE -764 is issued.
Chapter 3. Creating LOBs 35

How DB2 locates the assigned LOB values
We have only defined one column for the auxiliary table, but DB2 requires two more columns
for the table: a column containing the ROWIDs of the base table and one column storing the
current version number of the LOB. We report the information stored in the catalog for the
three columns of the auxiliary table in Figure 3-2. Using this redundant data, DB2 is able to
quickly locate rows in the auxiliary table. In order to do so, we need to define another and the
last new object: the auxiliary index.

Figure 3-2 SYSIBM.SYSCOLUMNS contents for TBNAME= BOOK_AUX_TABLE

The auxiliary index
The last step when creating LOBs is to define an auxiliary index for the LOB table space, as
shown in Example 3-10. An auxiliary table must have exactly one index, and there cannot be
any additional column in the index.

Example 3-10 DDL for an auxiliary Index

CREATE UNIQUE INDEX LOBDB.BLOBAIX1
ON BLOB_AUX_TABLE_1
USING STOGROUP BLOBSGIX

PRIQTY 100
SECQTY 10;

No index columns are defined within this index, because DB2 automatically creates the key
definition. The index definition consists of a two key value: The 17-byte system generated
ROWID stored as VARCHAR, and a 2-byte version of the LOB stored as SMALLINT, for 21
bytes in total (including the 2-byte length field for VARCHAR columns). No index keys can be
defined. If you even try to specify a key column, DB2 issues SQLCODE -767, missing or
invalid column specification for an index. Figure 3-3 on page 37 shows the key columns of an
auxiliary index.

Catalog description

LENGTH2 =
1,048,576

AUXID AUXVER AUXVALUE

VARCHAR (17) SMALLINT (2) BLOB (4)
36 LOBs with DB2 for z/OS: Stronger and Faster

Figure 3-3 Index keys for an auxiliary index

DB2 V7 uses the index on the auxiliary table to locate a LOB value for a particular row
containing a LOB within the base table.

An index defined on an auxiliary table is automatically defined as a unique index, fed by a
ROWID from the base table. The buffer pool that you might want to assign to this index does
not need any special considerations, because the index only contains two relatively small
columns.

Displaying LOB objects
For our base table containing one BLOB column and one CLOB column, the display
database looks like Example 3-11.

Example 3-11 Displaying a database for LOBs

DSNT360I -DB9B ***********************************
DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB9B ***********************************
DSNT362I -DB9B DATABASE = LOBDB STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB9B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ---- ------------------ -------- -------- -------- -----
BASETS TS RW
BLOBATS1 LS RW
CLOBATS1 LS RW
BLOBAIX1 IX RW
CLOBAIX1 IX RW
******* DISPLAY OF DATABASE LOBDB ENDED **********************

3.1.4 Adding a LOB column to an existing table
Another possible situation is the need for adding a particular LOB column to an already
existing table; this table becomes the base table for your LOB columns.

Note: You cannot define an index on a LOB column.

AUXID VARCHAR (17)

AUXVER SMALLINT

Auxiliary Index
Chapter 3. Creating LOBs 37

Before a LOB column can be added, we have to be sure that a column of data type ROWID is
already in the table. If it is not, we have to add it using the statement reported in
Example 3-12.

Example 3-12 Adding a ROWID column

ALTER TABLE NEW_LOB_TABLE
ADD ROW_ID ROWID NOT NULL GENERATED ALWAYS;

A table can only have one ROWID column, and you cannot add a ROWID column to a
created temporary table.

As described in 3.2, “Defining ROWIDs” on page 39, we recommend that you always
generate ROWIDs by using DB2’s mechanism. Specifying GENERATED BY DEFAULT
generates a ROWID only if no value for the ROWID column is provided while inserting into
the table. If a value for a ROWID column is provided, DB2 takes it and inserts the value into
the base table. By providing a value for a ROWID column, for instance, when moving data
across two DB2 subsystems, it is unlikely, but it might happen, that DB2 generates a ROWID
that is already stored in the table. Because the GENERATED BY DEFAULT clause always
requires a unique index on that column, an insert with a DB2-generated ROWID value can
result in SQLCODE -803. In this case, it is your responsibility to resolve the duplication.

Once a column of data type ROWID is added, you can proceed with creating the LOB
columns using the alter table statement shown in Example 3-13.

Example 3-13 Adding a LOB column

ALTER TABLE NEW_LOB_TABLE
ADD PICTURE BLOB(1M) NOT NULL WITH DEFAULT;

Adding a LOB column is not allowed for created temporary tables. The same is true when
adding ROWID columns.

Instead of specifying BLOB (1M), such as in this example, you can use the ALTER to define
any other possible LOB column type to DB2.

After you have added the designated LOB columns to the base table, you should continue
with the same actions shown earlier starting with “Creating the auxiliary table” on page 35.
Remember that only one ROWID column is needed, even if you want to add more than one
LOB column to the base table.

We recommend setting up your LOB environment using manual creation of all necessary
objects if you want to influence the parameters that are involved. For most other needs, use
automatic object creation to reduce the overhead of creating all the necessary objects by
yourself since it fits most needs.

Important: If you add a LOB column prior to a ROWID column, DB2 generates a hidden
ROWID column.

Note: When you add one or more LOB columns to the base table, the table is marked
incomplete until all dependent objects are created.
38 LOBs with DB2 for z/OS: Stronger and Faster

3.2 Defining ROWIDs

The ROWID data type (and column) definition was introduced with DB2 V6 to uniquely and
permanently identify a row in a table. To understand the role of the ROWID, and why DB2
creates a value for a ROWID column whenever a row is inserted in a table containing this new
data type, you must first understand the overall picture of the DB2 objects involved in
supporting LOBs, as illustrated in Figure 3-4.

LOB data is contained in a LOB column, which is conceptually part of the base table, but it is
physically stored in a separate table. Because it is not part of the base table, it is called a LOB
table or auxiliary table. The auxiliary table resides in a separate LOB table space.

Figure 3-4 LOB structure

A base table can be associated with many LOB or auxiliary columns of different types and
lengths. Each auxiliary column is stored in its own auxiliary LOB table in its own LOB table
space. An auxiliary index must be created on every auxiliary table before it can be used. To
create a base table that contains a LOB column, you must define a ROWID column. The
ROWID acts as, but it is not, a bidirectional pointer to the LOB data associated with the
particular row: the LOB column values are associated with the proper base table row in both
directions using the base table row’s ROWID value. The auxiliary index, whose key is based
on the ROWID, is used to navigate to LOB data associated with the row.

If a base table that contains LOB data is partitioned, you create a separate LOB table space
and auxiliary table for each LOB column in each partition. A LOB table space can have a
page size of 4, 8, 16, or 32 KB. Because the length of a LOB can exceed 32 KB, it is clear that
a LOB can span physical pages, and because there is only one row per page, with LOBs,
rows can span pages. LOB pages only contain one LOB value, or row.

Starting from DB2 V8, users have the choice of defining a ROWID explicitly or leaving it to be
defined implicitly by DB2 during creation of the table. This functionality is frequently referred
to as ROWID transparency feature.

Base table space

Key ROWID Column_2 LOB indicator

 A LOB 1 value user data A LOB indicator 1
 B LOB 2 value user data B LOB indicator 2

Base table

Auxiliary
index:

based on ROWID
used to navigate to

LOB data LOB table space

ROWID LOB data
LOB 1 value LOB data for user data row A
LOB 2 value LOB data for user data row B

Auxiliary table

Rows represent LOBs
LOBs stored outside base table in auxiliary table
Base table space may be partitioned

If so, separate LOB table space for each part

Chapter 3. Creating LOBs 39

3.2.1 Creating the ROWID column

There are three different ways of actually defining a column to be a ROWID data type in a
CREATE TABLE statement:

� Omitting an explicit ROWID definition while a LOB column is contained in your CREATE
TABLE statement

� Using COLNAME ROWID GENERATED ALWAYS

� Using COLNAME ROWID GENERATED BY DEFAULT

If you omit an explicit ROWID definition while a LOB column is present in your CREATE
TABLE statement, DB2 creates a ROWID column using GENERATED ALWAYS method for
you.

Using the GENERATED ALWAYS keyword, DB2 always generates a ROWID when inserting
a row. Applications and users are not allowed to insert a ROWID.

If you use GENERATED BY DEFAULT, users and applications can supply a value for a
ROWID column as long as the value was previously generated by DB2 and a unique, single
column index that exists on the ROWID column. DB2 checks that the value you are going to
insert is a valid ROWID. It is not sufficient to provide unique numbers yourself. You should
only use this parameter when inserting data from another table for the purpose of moving
data.

The recommended usage is GENERATED ALWAYS, either explicitly specified or implicitly by
omitting ROWID from the CREATE TABLE statement.

As mentioned, you have to create a unique index on the ROWID column when you specify
GENERATED BY DEFAULT.

Make sure that it is not possible to use the GENERATED ALWAYS clause before
implementing GENERATED BY DEFAULT, because the additional index on a table can
increase your response time for inserting and deleting transactions on the base table. The
index is not affected by an UPDATE statement, because the ROWID is not updateable. If you
try to update a ROWID column, DB2 issues SQLCODE -151, because the catalog description
indicates that this column cannot be updated.

Be aware that a ROWID column implies some restrictions, preventing the values in the
column from being manipulated:

� Users are not allowed to update a ROWID column.

� Null values cannot be assigned to ROWID columns.

� EDITPROCs, FIELDPROCs, and CHECK CONSTRAINTs are not allowed for ROWIDs.

� It is not allowed to load a single partition or a range of partitions if a column of data type
ROWID is part of the partitioning key.

Important: When you specify GENERATED BY DEFAULT for a ROWID column, make
sure that a single column unique index exists on your ROWID column. ROWID values can
never contain null values, so the ROWID column has to be defined as NOT NULL.
40 LOBs with DB2 for z/OS: Stronger and Faster

A value for ROWID is stored in the base table data page even if all LOB columns are NULL.
The ROWID column is stored as a VARCHAR (17) column. The length of a ROWID column
as described in the LENGTH column of catalog table SYSCOLUMNS is the internal length,
which is 17 bytes. The length as described in the LENGTH2 column of catalog table
SYSCOLUMNS is the external length, which is 44 bytes. A value for a ROWID is never
subject to character conversion, because it is considered to contain BIT data.

To give you a better understanding of the different occurrences of a ROWID, consider the
following scenarios:

Case 1: A new table is created including a ROWID column
First, we have a look at a table where the CREATE TABLE statement already contains a
ROWID column (for all examples, it does not matter if the ROWID column is defined using
GENERATED ALWAYS or GENERATED BY DEFAULT) as shown in Example 3-14.

Example 3-14 DDL for a table containing a ROWID column

CREATE TABLE CUSTOMER
 (CUSTNO CHAR(10) NOT NULL WITH DEFAULT

, CUSTNAME CHAR(32) NOT NULL WITH DEFAULT
 , ROW_ID ROWID NOT NULL GENERATED ALWAYS);

Now you insert a row into the CUSTOMER table, as shown in Example 3-15, without
providing the ROWID column, because it is generated by DB2 at insert time.

Example 3-15 Inserting a row in CUSTOMER table

INSERT INTO CUSTOMER (CUSTNO, CUSTNAME)
VALUES (‘0000001406’, ‘REGINA RICHARDSON’);

After a new table is created, all CUSTNOs being inserted are associated with a unique
ROWID value. After you insert a row (at this point in time, a ROWID is associated with the
inserted row), a SELECT CUSTNO,CUSTNAME,ROW_ID returns the result set shown in
Example 3-16.

Example 3-16 ROWID value of a table created with ROWID column

---------+---------+---------+---------+---------+---------+---------+---------+
CUSTNO CUSTNAME ROW_ID
---------+---------+---------+---------+---------+---------+---------+---------+
0000001406 REGINA RICHARDSON D6DE97EE118FD4252104015C56300100000000004201

The generated ROWID is externalized as a 44 byte value (40 bytes of data plus length fields),
but stored as VARCHAR (17).

Example 3-17 shows the output of the DSN1PRNT utility of the HEX values for the ROWID
with DB2 9 for z/OS.

Example 3-17 DB2 9 DSN1PRNT of ROWID in hex value

002C D6DE97EE 118FD425 2104015C 5630

Note that the value 0100000000004201 is generated at SELECT time.

In DB2 9 for z/OS, the value of 002C in our example gives you the offset within the row of the
variable length column containing the ROWID. It varies, depending on the other columns
defined in your table, since DB2 9 introduces Reordered Row Format (RRF), a performance
improvement for access to data in tables that contain columns of varying length. The format in
Chapter 3. Creating LOBs 41

which the row is stored in the table is changed from V8 to optimize column location for data
retrieval and for predicate evaluation.

In DB2 V8, the output of DSN1PRNT is similar to the output in Example 3-18.

Example 3-18 DB2 V8 DSN1PRNT of ROWID in hex value

000E D6DE97EE 118FD425 2104015C 5630

In DB2 V8, the value 000E declares the length of the ROWID column, which is 000E in HEX
and 14 in decimal.

Comparing the information stored in the DB2 catalog for DB2 V8 and DB2 9, ROWIDs are
stored as VARCHAR (17) columns: in both versions of DB2, there are three bytes left for
future extensions of ROWIDs.

Case 2: Adding a ROWID column using ALTER TABLE
Things look different if a ROWID column is added when a table already contains many rows.
Consider the table mentioned in Example 3-14 on page 41 without a ROWID column and that
the table already contains lots of rows. Let us issue an ALTER TABLE statement as shown in
Example 3-19.

Example 3-19 ALTER TABLE adding a ROWID column

ALTER TABLE EXAMPLE ADD ROW_ID ROWID NOT NULL GENERATED ALWAYS;

The ALTER TABLE statement does not affect any columns stored in the table, so no ROWID
is stored up to now. If you do a SELECT on CUSTNO,CUSTNAME,ROW_ID...FETCH FIRST
1 ROW, you receive the result set of Example 3-20.

Example 3-20 ROWID value of a table where a ROWID column was added

---------+---------+---------+---------+---------+---------+---------+---------+
CUSTNO CUSTNAME ROW_ID
---------+---------+---------+---------+---------+---------+---------+---------+
0000001406 REGINA RICHARDSON 4200000080000106000D020100000000004201

The ROWID now only consists of 38 bytes, compared to the previously mentioned ROWID of
44 bytes.

If you use DSN1PRNT again to look into your table space, you do not find any value for the
ROWID column inside your table space. When you select the ROWID value, it is only
generated at SELECT time, and stored inside your host variable. You can select the ROWID
for a specific row several times, and the value in the ROWID column never changes.

The first time you update the row, the ROWID is physically stored in the table, with the same
value delivered to you by DB2 when you selected the row before.

This behavior is the same for DB2 V8 and DB2 9.

When you use DSN1PRNT again after you have performed an UPDATE on the row, in DB2 9
you see the results of Example 3-21 on page 43.

Note: A ROWID column must be defined using NOT NULL. When you add a ROWID
column, the NOT NULL attribute contradicts the normal usage of ALTER. In fact when
ALTERing non-ROWID columns, you must specify NOT NULL WITH DEFAULT.
42 LOBs with DB2 for z/OS: Stronger and Faster

Example 3-21 DB2 9 DSN1PRNT of ROWID in hex value after adding and updating a row

002C 42000000 80000106 000D02

Again, the value 002C declares the offset of the ROWID column. If other VARCHAR columns
are stored in your table after the ROWID, other offsets follow the 002C before the ROWID
value begins.

You can find the output of DSN1PRNT in DB2 V8 for the same scenario in Example 3-22.

Example 3-22 DB2 V8 DSN1PRNT of ROWID in hex value after adding and updating a row

000B 42000000 80000106 000D02

In case you use DB2 V8, the value of 000B declares the length of the ROWID column, which
means 11 in a decimal value. Adding the two byte length field, as usual, we now have a
ROWID column made of 13 bytes.

So, if an already existing row is updated and no ROWID value is stored for the updated row
up to now, the new ROWID is at least 11 bytes plus the two byte length field.

Let us now have a close look at the new rows, which are inserted after the ROWID column
was added to the table. All rows that are inserted after the ROWID column was added to the
table have a ROWID of length of 14 bytes plus two additional bytes for the length field.

The first row shown in Example 3-23 represents the ROWID value for an old row being
updated after ROWID was added to the table. It is important to know that this row already had
been in the table before the ROWID column was added. The second row shows the ROWID
value for a new row inserted after the ROWID column was added.

Example 3-23 ROWID values of updated and inserted columns

---------+---------+---------+---------+---------+---------+---------+---------+
CUSTNO CUSTNAME ROW_ID
---------+---------+---------+---------+---------+---------+---------+---------+
0000001406 MRS. RICHARDSON 4200000080000106000D020100000000004201
0000001423 MR. KLINGEN 647667FA918FDE192104015C56300100000000004202

If a number of n rows have been in the table before a ROWID column is added, there is a
number of n different ROWIDs after ALTER. Each “updated” row existing before the ALTER
has its own unique value.

In Example 3-24, you can find the DSN1PRNT output for both ROWID values:

Example 3-24 DB2 9 DSN1PRNT of updated and inserted ROWIDs in hex value

002C 42000000 80000106 000D02
002C 647667FA 918FDE19 2104015C 5630

In conclusion, it is possible that no ROWID value is stored in the table space even if a ROWID
column exists in the table, and you can find two different lengths of ROWIDs even if they are
stored in the table, depending on when the ROWID column was added to the table and
whether or not the row existed at that time.

Be careful when altering a table to have a ROWID column, because pre-ALTER rows might
never have a value that can be used by code that relies on ROWID value to go directly to the
row. ROWID should then be selected and stored somewhere and used for future access
when contained in a host variable. After CREATE TABLE, INSERT n ROWS, ALTER ADD
Chapter 3. Creating LOBs 43

ROWID, you SELECT ROWIDs and store them, then the application selects data using the
ROWIDs retrieved by the previous SELECT.

The output in DB2 V8 is in Example 3-22 on page 43, again preceded by the current length
fields 000B and 000E.

Example 3-25 DB2 V8 DSN1PRNT of updated and inserted ROWIDs in hex value

000B 42000000 80000106 000D02
000E 647667FA 918FDE19 2104015C 5630

ROWID is a data type that can be used outside LOBs. ROWID gives you guaranteed unique
values. This can be useful for applications and table designs where artificial keys have to be
generated by the application to ensure uniqueness of a particular row. Using a ROWID
column, DB2 is able to handle this special requirement for you. The ROWID behavior, that the
first bytes in general appear to be pseudo-random, has made a ROWID column a solution for
a partitioning key, which spreads your data randomly across partitions. However, with the
separation of attributes for indexes in DB2 V8 and the introduction of new partition definitions
in DB2 9, there are other means to obtain similar results. Using a ROWID as a partitioning
key is not a good idea when you have to process your data in the order of another key value.

3.3 LOBs and LOG activity

Logging LOB data can become an issue for your DB2 subsystem. The amount of data to be
logged grows according to the actual size of the manipulated LOBs and the number of LOBs
being processed in parallel. Prior to DB2 9, LOB auxiliary table spaces were the only table
spaces which allowed the LOG YES\NO option, and this option was disabled for LOBs
exceeding 1 GB. This logging attribute for the LOB table space was therefore independent of
the implied LOG YES attribute of the correspondent base table space.

Two major changes are introduced by DB2 9 in new function mode:

� LOGGED and NOT LOGGED attributes for all table spaces
� Logging for all LOB sizes, up to the maximum of 2 GB -1

3.3.1 LOGGED and NOT LOGGED attributes

In DB2 9, the CREATE TABLESPACE syntax is changed from LOG YES/NO to
LOGGED/NOT LOGGED. The old syntax is still supported for LOB tables spaces for
compatibility reasons. For more information:

� LOGGED

Specifying LOGGED for a LOB table space tells DB2 to log almost all data manipulations
on LOB columns stored in the associated LOB table space, except delete operations.
When you delete a LOB value, no LOB data is written to the log, only LOB system pages
are written to the log data sets, because a LOB delete internally is translated into only
deallocation of the pages where the LOB is stored. The deallocation of a LOB is flagged in
the space map pages for all pages containing the LOB information, including the LOB map
pages. For more information about the structure of a LOB table space, refer to 3.6,
“Physical layout of LOBs” on page 62.

When you insert a LOB, DB2 writes the entire LOB value to the log. The entire LOB is also
written to the log even when you update a LOB value, because updates consist of one
singleton delete (where DB2 does not write data in the log) and one insert into the
auxiliary table.
44 LOBs with DB2 for z/OS: Stronger and Faster

Depending on the size of your LOBs and the frequency with which you regularly insert or
update them, the data to be logged can grow rapidly. When you plan to use the LOGGED
option, make sure that writing the redo log records does not become a critical factor!

If your logging becomes I/O-constrained, you can benefit from striping the log data sets.

� NOT LOGGED

To prevent your system from the possible overhead caused by logging large amounts of
LOB data, DB2 9 allows you to turn off logging for all table spaces, including LOB table
spaces, base, and auxiliary. NOT LOGGED for the LOB table space tells the DB2
subsystem to suppress writing redo log records for every LOB column in your LOB table
space. The force at commit protocol ensures that LOB values persist after a unit of work is
committed, because NOT LOGGED LOB values are written at COMMIT. LOB data
associated with a LOB table space defined with LOGGED option is written to disk, like for
other data, when buffer pool thresholds are reached.

LOGGED is the default value when you create your LOB table space.

For information about the logging impact when running the Load utility, see 6.3, “LOAD” on
page 171.

Logging combinations of base table space and LOB table spaces
With DB2 V8, you had the LOB base table logged and the LOB table space possibly not
logged. In DB2 9, however, a LOB table space logging attribute is not completely
independent of its associated base table logging attribute. It is a requirement that if the base
table space has the NOT LOGGED logging attribute, all associated LOB table spaces must
also have the NOT LOGGED logging attribute.

Therefore, the logging options for the base table space and the LOB table spaces are
somewhat connected, as shown in this paragraph.

If the base table space has the LOGGED attribute, the logging attribute of the LOB table
space continues to be independent of the base table space. In this case, the LOB table space
can have either a LOGGED or a NOT LOGGED attribute. Furthermore, the LOB table space
logging attribute can be altered without restriction. This was also true previously to DB2 9.

However, if the base table space has a NOT LOGGED attribute, the LOB table space must
also have a NOT LOGGED attribute. The LOB table space can acquire the NOT LOGGED
attribute either independently or as linked to its associated base table space’s attribute. When
the base table space has a NOT LOGGED attribute, the LOB table space attribute might not
be altered to LOGGED (DB2 issues SQLCODE -763, SQLSTATE 560A1), regardless of how
it was acquired.

To alter the LOGGED attribute, you use the ALTER TABLESPACE command. The detailed
syntax is in DB2 Version 9.1 for z/OS SQL Reference, SC18-9854.

Altering LOGGED to NOT LOGGED
When a base table space logging attribute is altered from LOGGED to NOT LOGGED, all
associated LOB table spaces with the LOGGED logging attribute are also implicitly altered to
force their logging attribute to NOT LOGGED to match the base table space. When a LOB
table space logging attribute is implicitly altered in this way, its logging attribute is said to be
linked to the base table logging attribute.

It remains NOT LOGGED and linked to the base table space logging attribute until the base
table space logging attribute is altered back to LOGGED.
Chapter 3. Creating LOBs 45

Altering NOT LOGGED to LOGGED
A LOB table space containing LOBs can have its logging attribute explicitly altered from NOT
LOGGED to LOGGED only if its logging attribute is not linked to the base table logging
attribute (SQLCODE -763, SQLSTATE 560A1).

A LOB table space can have its logging attribute implicitly changed from NOT LOGGED to
LOGGED when it is linked to the base table logging attribute.

Should the base table space logging attribute be subsequently altered back to LOGGED, all
linked LOB table spaces are also implicitly altered to return their attribute to LOGGED. At this
point, the table spaces are no longer linked. When a LOB table space logging attribute is
linked to its base table space logging attribute, the link can also be broken by explicitly
altering the LOB table space attribute to NOT LOGGED, even though it already has been
implicitly given the NOT LOGGED attribute when its base table space attribute was altered to
NOT LOGGED. While it might seem redundant to alter a NOT LOGGED LOB table space to
NOT LOGGED, this is provided to allow you to break the link between the logging attributes
of a LOB table space and its base table space.

If the LOG column of the SYSIBM.SYSTABLESPACE catalog table record for a LOB table
space has the value of ‘X’, it means that the logging attributes of the LOB table space and its
base table space are linked, and that the logging attribute of both table spaces is NOT
LOGGED. To break the link, alter the base table space attribute back to LOGGED, which
results in both table spaces’ logging attribute being changed back to LOGGED.

Table 3-8 shows the progression of the DB2 catalog SYSIBM.SYSTABLESPACE LOG
column values through a set of ALTER TABLESPACE statements that alter the logging
attribute of a base table space and two LOB table spaces associated with a table in the base
table space. The values are:

� Y - Logged
� N - Not Logged
� X - Not Logged, linked to base

In our scenario, we assume that initially all table spaces have been created using the
LOGGED attribute.
46 LOBs with DB2 for z/OS: Stronger and Faster

Table 3-8 LOG column values scenarios

If the table space is opened for update while it has the NOT LOGGED attribute, the table
space is placed in the Informational Copy Pending state. The DISPLAY DATABASE
ADVISORY command is enhanced to display the Informational Copy Pending state for table
spaces in the database as shown in Example 3-26.

Example 3-26 DISPLAY DATABASE sample output

DSNT360I -DB9B ***********************************
DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * ADVISORY
DSNT360I -DB9B ***********************************
DSNT362I -DB9B DATABASE = DSN8D91L STATUS = RW
 DBD LENGTH = 8066
DSNT397I -DB9B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
TPIQUQ01 TS 001 RW,AUXW
TPIQUQ01 TS 002 RW,AUXW
TPIQUQ01 TS 003 RW,AUXW
TPIQUQ01 TS 004 RW,ICOPY

LOGGED attribute

ALTER Base table
space

LOB table space
1

LOB table space
2

Notes

Initially all
LOGGED

Y Y Y

LOB 2 NOT
LOGGED

Y Y N

Base to NOT
LOGGED

N X N LOB 1 linked to
base

LOB 2 to
LOGGED

N X N Rejected,
SQLCODE -763

Base to
LOGGED

Y Y N LOB 1 link
dissolved

LOB 2 to
LOGGED

Y Y Y

Base to NOT
LOGGED

N X X LOB 1 and LOB 2
linked to base

Base to logged Y Y Y LOB 1 and LOB 2
link dissolved

Base to NOT
LOGGED

N X X LOB 1 and LOB 2
linked to base

LOB 2 to NOT
LOGGED

N X N LOB 2 link
dissolved

Base to
LOGGED

Y Y N LOB 1 link
dissolved
Chapter 3. Creating LOBs 47

Other CATALOG tables
The following other DB2 catalog tables are influenced by the change of LOGGED attribute:

� SYSIBM.SYSLGRNX

DB2 does not maintain SYSLGRNX entries for NOT LOGGED objects.

� SYSIBM.SYSCOPY

The new column LOGGED is added to the SYSIBM.SYSCOPY catalog table. The values
can be:

– Y - to indicate the logging attribute is LOGGED.
– N - to indicate the logging attribute is NOT LOGGED.
– blank - to indicate that the row was inserted prior to DB2 9.

For a non-LOB table space or an index space, this is an indication that the logging
attribute is LOGGED. No assumptions are made about the logging attribute of LOB
table spaces.

Table 3-9 reflects the contents of the ICTYPE and STYPE columns in the SYSIBM.SYSCOPY
catalog table.

Table 3-9 SYSIBM.SYSCOPY values for LOGGED attribute changes

The LRSN in these SYSIBM.SYSCOPY records reflects the point in the log at which the
logging attribute was altered.

When updates on a NOT LOGGED object are rolled back or the thread is canceled prior to
commit, the space state of base tables and auxiliary indexes is changed to RECP (Recovery
Pending) and the affected pages are added to the LPL list. To remove these objects from the
LPL and reset recover pending (RECP), use any of the following:

� The RECOVER utility, to recover either to most recent recoverable point or to a prior
image copy.

� LOAD REPLACE or LOAD REPLACE PART, either with an input data set to repopulate
the table, or without one so that INSERT can repopulate the table.

� Drop and recreate the table space and repopulate the table.

� Use Delete without a WHERE clause or new TRUNCATE statement (restrictions apply).

For more information about the recovery issues, see 7.2, “Recovery strategies and
considerations” on page 219.

See 7.1, “LOBs in the DB2 catalog” on page 212 for more information about the recognition of
LOBs in the DB2 catalog.

Action LOGGED ICTYPE STYPE

CREATE TABLESPACE Y C L

CREATE TABLESPACE N C O

ALTER TABLESPACE Y A L

ALTER TABLESPACE N A O
48 LOBs with DB2 for z/OS: Stronger and Faster

DB2 rollback without undo log records
Because new pages are allocated while inserting a LOB, they are simply deallocated if DB2
does a rollback. If a LOB is deleted, pages are also simply reallocated as available in the LOB
table space. Because updating a LOB means deleting a LOB (deallocating pages) and
inserting a new one (allocating new pages), at rollback time, already allocated pages are
deallocated and previously deallocated pages are reallocated again. This mechanism is
known as Shadow Copy Recovery, see “Shadow Copy Recovery” on page 100.

Because of allocation and deallocation of data pages, no UNDO logs are written for LOBs,
regardless of which LOG parameter you use.

Header pages, space map pages, and the new LOB map pages are logged even though NOT
LOGGED is specified. They are backed out using the same procedure used for other types of
table spaces. The same rule applies if an application terminates abnormally after changing
the database. Even in this case, those changes made in the current unit of work are backed
out along with all other changes, too.

If NOT LOGGED is specified, DB2 does not log any changes applied to any LOBs in the
associated LOB table space. Therefore, recovery of LOB table spaces can be more difficult
than recovering any other table space. Let us assume the scenario depicted in Figure 3-5 on
page 49.

Figure 3-5 Applying changes to a LOB table space created with NOT LOGGED

This can be a DB2 V8 scenario where you have chosen not to log the LOB table space, while
the base table is logged anyway. A full Image Copy is taken of a base table space and the
associated LOB table spaces. After completion of the full Image Copies, one LOB is inserted,
another one is deleted, and a third one is updated. Assume now that you have to recover the
base table space and the LOB table space after all updates are done because of a system
failure. For the base table, DB2 can apply all necessary changes from the log. Recovering the
LOB table space for DB2 is more difficult with a specified NOT LOGGED option.

Base
Table
Space

Insert
LOB 1

Update
LOB 3

Full
Image
Copy

Delete
LOB 2

Recover
to

currency

Full Image Copy,
+ log apply

LogLogLogLog

t

LOB
Table
Space
LOGNO

Insert
LOB 1

Update
LOB 3

Full
Image
Copy

Delete
LOB 2

Recover
to

currency

Only Full Image Copy,
no logs to apply

Log

t

Chapter 3. Creating LOBs 49

Inserted LOB
After using the full image copy, DB2 notices that a new LOB was inserted without writing any
logs about its value. So the new LOB is marked invalid in the auxiliary table.

Deleted LOB
DB2 knows from the logged system pages what has happened and marks the pages formerly
used by LOB number 2 as available. So recovery is possible for deleted LOBs.

Updated LOB
Since UPDATE consists of DELETE and INSERT, the pages are deallocated in the LOB table
space. Not having log records to apply for the new LOB value, it is also marked as invalid in
the LOB table space.

In our case, the LOB table space is set in a new AUX WARNING (AUXW) state for the
inserted and updated LOB values. Trying to access an invalid LOB value results in
SQLCODE -904. For more information about recovery scenarios, see 7.2, “Recovery
strategies and considerations” on page 219.

If you decide to use the NOT LOGGED option on the base table, make sure that image
copies of the base table space and all its auxiliary table spaces you take are in sync.

3.3.2 Logging for all LOB sizes

The limitation that logging was possible only for LOBs under 1 GB is removed with DB2 9.
From the very beginning, this limitation was introduced in order to prevent excessive I/O on
the LOG data sets.

Customers demand high availability of their data. In order to achieve this goal, all objects
must have an option to be recovered to any point in time, thus, making logging a crucial
aspect.

To reduce the volume of logging, you can specify NOT LOGGED in your CREATE LOB
TABLESPACE statement or alter the table space to the NOT LOGGED attribute. This
suppresses writing redo records. There are no UNDO records for LOB updates (except for
system pages, space map) even with LOG YES. DB2 always inserts the new LOB value at a
different place and deletes the old LOB at commit, marking the old space as free.

To give you an idea of the amount of data being written to the log, look at Example 3-27,
which shows the DSN1LOGP output for a LOB insert into a LOGGED table space.

Example 3-27 DSN1LOGP output for logged LOB insert

0000893EABE2 URID(0000893EABE2) LRSN(BF3BF2C96624)
 TYPE(UR CONTROL) SUBTYPE(BEGIN UR)

 0000893EB068 URID(0000893EABE2) LRSN(BF3BF2C966C8) DBID(014A)
 OBID(0007) PAGE(00000007) TYPE(UNDO REDO)
 SUBTYPE(ALLOC/DEALLOC OF SPACE IN LOB SPACE MAP PAGE)
 CLR(NO) PROCNAME(DSNODEAL)

Recommendation: COPY base table space, COPY YES indexes, and COPY LOB table
spaces (and XML table spaces) in the same COPY invocation with SHRLEVEL
REFERENCE to ensure that they all share the same recoverable point.

COPY does not allow SHRLEVEL(CHANGE) on NOT LOGGED table spaces.
50 LOBs with DB2 for z/OS: Stronger and Faster

 0000893EB1B4 URID(0000893EABE2) LRSN(BF3BF2C966CB) DBID(014A)
 OBID(000B) PAGE(00000003) TYPE(REDO)
 SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO)
 PROCNAME(DSNKPDGB)

 0000893EB2A6 URID(0000893EABE2) LRSN(BF3BF2C966CB) DBID(014A)
 OBID(000B) PAGE(00000003) TYPE(UNDO REDO)
 SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO)
 PROCNAME(DSNKDLE)

 0000893EB321 URID(0000893EABE2) LRSN(BF3BF2C966CE) DBID(014A)
 OBID(0007) PAGE(00000005) TYPE(UNDO REDO)
 SUBTYPE(ALLOC/DEALLOC OF SPACE IN LOB SPACE MAP PAGE)
 CLR(NO) PROCNAME(DSNOALLO)

 0000893EB3AF URID(0000893EABE2) LRSN(BF3BF2C966CF) DBID(014A)
 OBID(0007) PAGE(00000006) TYPE(UNDO REDO)
 SUBTYPE(ALLOC/DEALLOC OF SPACE IN LOB SPACE MAP PAGE)
 CLR(NO) PROCNAME(DSNOALLO)

 0000893EB41F URID(0000893EABE2) LRSN(BF3BF2C966D0) DBID(014A)
 OBID(0007) PAGE(00000085) TYPE(REDO)
 SUBTYPE(LOB MAP CHANGE) CLR(NO) PROCNAME(DSNOFLMP)

 0000893EB4E8 URID(0000893EABE2) LRSN(BF3BF2C966D1) DBID(014A)
 OBID(0007) PAGE(00000085) TYPE(REDO)
 SUBTYPE(LOB DATA PAGE CHANGE) CLR(NO)
 PROCNAME(DSNOLINS)

.

.

.
000089452DC8 URID(0000893EABE2) LRSN(BF3BF2C9674B) DBID(014A)
 OBID(0007) PAGE(000000EB) TYPE(REDO)
 SUBTYPE(LOB DATA PAGE CHANGE) CLR(NO)
 PROCNAME(DSNOLINS)

0000894601CB URID(0000893EABE2) LRSN(BF3BF2C96FE9)
 TYPE(UR CONTROL) SUBTYPE(BEGIN COMMIT1)

 000089460235 URID(0000893EABE2) LRSN(BF3BF2C96FED)
 TYPE(UR CONTROL) SUBTYPE(PHASE 1 TO 2)

 000089460269 URID(0000893EABE2) LRSN(BF3BF2C97061)
 TYPE(UR CONTROL) SUBTYPE(END COMMIT2)

On the other hand, the NOT LOGGED table space update looks as shown in Example 3-28.
You can also see the pageset indicated as Information Copy pending.

Example 3-28 DSN1LOGP output for not logged LOB insert

0000894FAD8D URID(0000894FAD8D) LRSN(BF3BF3D57D02)
 TYPE(UR CONTROL) SUBTYPE(BEGIN UR)

0000894FB1BA URID(0000894FAD8D) LRSN(BF3BF3D5900E) DBID(014A)
 OBID(0007) TYPE(REDO)
Chapter 3. Creating LOBs 51

 SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

 REDO: DSN8D91L.DSN8S91L
 ICOPY

 0000894FB239 URID(0000894FAD8D) LRSN(BF3BF3D59010) DBID(014A)
 OBID(0007) PAGE(00000005) TYPE(UNDO REDO)
 SUBTYPE(ALLOC/DEALLOC OF SPACE IN LOB SPACE MAP PAGE)
 CLR(NO) PROCNAME(DSNODEAL)

 0000894FB2C7 URID(0000894FAD8D) LRSN(BF3BF3D59034) DBID(014A)
 OBID(0007) PAGE(00000001) TYPE(UNDO REDO)
 SUBTYPE(LOB HIGH LEVEL SPACE MAP PAGE UPDATE) CLR(NO)
 PROCNAME(DSNODEAL)

 0000894FB307 URID(0000894FAD8D) LRSN(BF3BF3D5905A) DBID(014A)
 OBID(0007) PAGE(00000006) TYPE(UNDO REDO)
 SUBTYPE(ALLOC/DEALLOC OF SPACE IN LOB SPACE MAP PAGE)
 CLR(NO) PROCNAME(DSNODEAL)

 0000894FB421 URID(0000894FAD8D) LRSN(BF3BF3D59061) DBID(014A)
 OBID(0007) PAGE(00000005) TYPE(UNDO REDO)
 SUBTYPE(ALLOC/DEALLOC OF SPACE IN LOB SPACE MAP PAGE)
 CLR(NO) PROCNAME(DSNOALLO)

 0000894FB4C3 URID(0000894FAD8D) LRSN(BF3BF3D59061) DBID(014A)
 OBID(0007) PAGE(00000001) TYPE(UNDO REDO)
 SUBTYPE(LOB HIGH LEVEL SPACE MAP PAGE UPDATE) CLR(NO)
 PROCNAME(DSNOALLO)

 0000894FB503 URID(0000894FAD8D) LRSN(BF3BF3D59064) DBID(014A)
 OBID(0007) PAGE(00000015) TYPE(REDO)
 SUBTYPE(LOB MAP CHANGE) CLR(NO) PROCNAME(DSNOFLMP)

0000894FCAB2 URID(0000894FAD8D) LRSN(BF3BF3D5BCD9)
 TYPE(UR CONTROL) SUBTYPE(BEGIN COMMIT1)

 0000894FD155 URID(0000894FAD8D) LRSN(BF3BF3D5BE6C)
 TYPE(UR CONTROL) SUBTYPE(PHASE 1 TO 2)

 0000894FD189 URID(0000894FAD8D) LRSN(BF3BF3D5BEEC)
 TYPE(UR CONTROL) SUBTYPE(END COMMIT2)

3.4 Additional considerations for creating LOB objects

In this section, we describe other important options available when creating LOBs.

3.4.1 Data conversion

DB2 for z/OS is often used as the enterprise server of large client server systems. In these
environments, character representations can vary on clients and servers across different
platforms and across many different geographic locations. In this scenario, you might also
want to deal with data conversion topics. Large objects can also be subject to conversion,
52 LOBs with DB2 for z/OS: Stronger and Faster

depending on the type of data you plan to store in your large objects. See Figure 3-6 on
page 53.

One area where this sort of environment exists is in data centers of multinational companies
and even more in e-business environments. In both of these examples, a geographically
diverse group of users interact with a central server, storing and retrieving data.

Today, there are hundreds of different encoding systems. No single encoding could contain
enough characters: for example, the European Union alone requires several different
encoding schemes to cover all of its languages. Even for a single language such as English,
no single encoding was adequate for all the letters, punctuation, and technical symbols in
common use.

Figure 3-6 Mixed client/server environment with different data types

These encoding systems also conflict with one another. That is, two encoding schemes can
use the same codes for two different characters, or use different codes for the same
character. Figure 3-7 gives you a good example of the described case.

Mixed client/server environment

CCSID
273

CCSID
850

CCSID
500
Chapter 3. Creating LOBs 53

Figure 3-7 Differences between code pages 37 and 500

It is likely that LOBs are being moved to the mainframe from other platforms and even other
geographies, because more businesses are spread geographically all over the world. In
these cases, a verification of the needed data conversion is absolutely necessary, unless you
decide to use the Unicode support as introduced with DB2 Version 8.

Different LOBs are suitable for different tasks. BLOBs are designed to contain binary data. As
such, they have no CCSID associated with them. CLOBs and DBCLOBs are designed to
contain text data. CLOBs have the normal single byte and mixed CCSIDs associated with
them, while DBCLOBs have the graphic CCSID associated with them.

The old mechanism of code page translations is still valid in most of the cases. For encoding
and decoding, DB2 first accesses the SYSIBM.SYSSTRINGS table. If the conversion cannot
be resolved, DB2 turns to z/OS Unicode Conversion Services. This mechanism is constantly
updated and improved to make the conversion more efficient. See DB2 UDB for z/OS Version
8 Performance Topics, SG24-6465, for more information.

Unicode provides a unique number for almost every character, on any platform, in any
language, and by any program. The Unicode character encoding standard is a
character-encoding scheme that includes characters from almost all living languages. It is an
implementation of the ISO-10646 standard.

There are several popular implementations of the Unicode standard such as:

� UCS-2 - Universal Character Set coded in 2 octets.

� UCS-4 - Universal Character Set coded in 4 octets. This becomes UTF-32.

� UTF-8 - Unicode Transformation Format for 8 bit (ASCII safe Unicode). Characters are
encoded in 1 to 6 bytes.

� UTF-16 - Unicode Transformation Format for 16 bits. The format is a superset of UCS-2
and contains an encoding form that allows more than 64 KB characters to be represented.
54 LOBs with DB2 for z/OS: Stronger and Faster

DB2 V7 support for Unicode provides the most popular implementations of Unicode: UTF-8
and UTF-16.

� CHAR, VARCHAR, LONG VARCHAR, and CLOB data for SBCS data is stored as ASCII
(7 bit) CODE CCSID 367.

� CHAR, VARCHAR, LONG VARCHAR, and CLOB data for mixed data is stored as UTF-8
(Unicode CCSID 1208).

� GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB data is stored as
UTF-16 (Unicode CCSID 1200).

If you are working with character string data in UTF-8, you should be aware that ASCII
characters are encoded into one byte lengths. However, non-ASCII characters, for example,
Japanese characters, are encoded into two or three byte lengths in a multiple-byte character
code set (MBCS). Therefore, if you define an 'n' bytes length character column, you can store
strings anywhere from 'n/3' to 'n' characters depending on the ratio of ASCII to non-ASCII
character code elements. DB2 cannot use the table SYSIBM.SYSSTRINGS for conversion to
and from Unicode CCSIDs. Instead, DB2 uses z/OS Conversion Services to manage all of
the conversions to and from Unicode CCSIDs.

Use the links in Table 3-10 on page 55 for additional information about Unicode with DB2:

Table 3-10 DB2 Unicode support - Additional useful resources

Title Link

Unicode site http://www.unicode.org

The Unicode character code charts http://www.unicode.org/charts

DB2 Version 9.1 for z/OS SQL
Reference, SC18-9854, Section on
Character Conversion

http://www.ibm.com/software/data/db2/zos/v9books.html

DB2 Version 9.1 for z/OS Installation
Guide, GC18-9846, Appendix A.
Character conversion

http://www.ibm.com/software/data/db2/zos/v9books.html

DB2 9 for z/OS Internationalization
Guide

http://www.ibm.com/software/data/db2/zos/v9books.html

z/OS support for Unicode: Unicode
Services, SA22-7649

http://publibz.boulder.ibm.com/epubs/pdf/iea2un30.pdf

DB2 V7 and V8 Unicode support ftp://ftp.software.ibm.com/software/db2storedprocedure/db2zos390/te
chdocs/F10.pdf

Unicode performance in DB2 for z/OS http://www.idug.org/idug/_journalpdfarea/IDUG_V11N02.pdf

All for One and One for All - Part 1 http://www.idug.org/idug/_journalpdfarea/IDUG_V10N03.pdf

All for One and One for All - Part 2 http://www.idug.org/idug/_journalpdfarea/IDUG_V11N01.pdf

Note: Character conversion with LOBs causes LOB materialization. Avoid it. For more
information and materialization avoidance tips, refer to 8.1, “LOB materialization” on
page 238.
Chapter 3. Creating LOBs 55

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/charts
http://www.ibm.com/software/data/db2/zos/v9books.html
http://www.ibm.com/software/data/db2/zos/v9books.html
http://www.ibm.com/software/data/db2/zos/v9books.html
http://publibz.boulder.ibm.com/epubs/pdf/iea2un30.pdf
ftp://ftp.software.ibm.com/software/db2storedprocedure/db2zos390/techdocs/F10.pdf
http://www.idug.org/idug/_journalpdfarea/IDUG_V11N02.pdf
http://www.idug.org/idug/_journalpdfarea/IDUG_V10N03.pdf
http://www.idug.org/idug/_journalpdfarea/IDUG_V11N01.pdf

3.4.2 Buffer pools and LOB table spaces

If you want to store huge amounts of data in your LOBs, you should consider using separate
storage groups and buffer pools from your other data in order to avoid interference resulting in
a possible impact on performance. This is because a single LOB value is able to use up to 2
GB of your buffer pool if assigned to the same buffer pool as the non-LOB table spaces. If all
LOBs are going to be read, the content of the buffer pool can mainly consist of LOBs.

If your buffer pool, which is dedicated to hold your LOB values, can only hold a small number
of your average LOBs, DB2 might be idle by flushing out the buffer pool values, because
reading or updating a new LOB value updates the values inside the buffer pool. Therefore, a
small buffer pool can be a good choice to avoid the overhead of recycling the buffer pool’s
data pages with a large LOB column value, which most likely are not being referenced by
someone else before they are erased again from the buffer pool. For further discussion about
the performance implications of buffer pool choice for LOB objects, see 8.3, “Buffer pools and
group buffer pools” on page 244.

3.4.3 Locking with LOBs

There are at least two different types of lock sizes you can choose between. Valid parameters
are LOCKSIZE LOB and LOCKSIZE TABLESPACE. Choosing LOCKSIZE ANY implies the
use of LOCKSIZE LOB for DB2. From DB2 Version 6 until DB2 V8, DB2 uses two types of
locks for ensuring a LOB’s integrity: the S-LOB and the X-LOB locks. They are very similar to
the common S- and X-Locks. There are no U-LOB locks, because of a different update
mechanism taking place for LOBs. See 3.3.1, “LOGGED and NOT LOGGED attributes” on
page 44 for a description of updating techniques for LOBs.

There is no support for Uncommitted Read (UR) on LOBs. Assuming LOCKSIZE LOB,
selecting a LOB acquires an S-LOB lock on the accessed LOB, even if you use ISOLATION
(UR) in a package or WITH UR in your SQL statement. This is because of the new table
space format where physical correctness has to be guaranteed while retrieving the LOB
value, which might be spanned over many pages. Acquiring S-LOB locks prevents the
application from retrieving only partial LOB data.

Deleting a LOB also requests an S-LOB lock on a specific LOB. But how does this work with
other transactions selecting the same LOB? A transaction can delete a LOB that another
transaction is reading at the same time, but the space is not reused until all readers of the
LOB have committed their work.

So S-LOB locks do not prevent a LOB from being deleted.

Inserting a LOB acquires an X-LOB lock on the new LOB, and the lock is released at
COMMIT as usual. If a LOB is locked by an X-LOB lock, no readers can access the LOB
before it is committed.

Because every LOB lock is like a row lock, the number of acquired locks can increase
dramatically, especially when mass-updates occur on LOBs, or many LOBs are inserted
using subselect.

Beginning with DB2 9, the entire locking technique for LOBs has changed, basically using
locks on the base table to guarantee consistency of the LOBs your application accesses. DB2
ensures using a comparison technique of log record sequence from the oldest reader in the
system to make sure that no deleted LOB data pages are reused with new LOB values before
the last reader of this particular value has been removed.

You can find more details about locking for LOBs in 4.5, “Locking” on page 94.
56 LOBs with DB2 for z/OS: Stronger and Faster

3.4.4 Buffer pool and page size considerations

You can assign 4 KB, 8 KB, 16 KB, or 32 KB buffer pools to your LOB table space. But which
one to use depends on several considerations.

Choosing a page size is the common trade-off between minimizing the number of getpages,
which simply maximizes performance, and not wasting space. Because one data page in a
LOB table space never stores data of more than one LOB value, the space not used by the
LOB value in the last page remains unused. To estimate a good average size of a LOB value,
use the formula:

Size of a LOB = (Average length of all LOBs) * 1.1

Use the general rule shown in Table 3-11 to choose a page size that minimizes the number of
getpages.

Table 3-11 Choosing a LOB page size that minimizes getpages

Using this technique, a LOB value of 22 KB means 10 KB of unused space, but only one
getpage request for DB2. Therefore, you have to analyze your data to determine what is best
for you and your LOBs. Normally, you have 32 KB data pages assigned to your LOB table
space, because you should use LOBs only for real large objects.

By using Modified Indirect Addressing Words (MIDAW), the impact of performance for
getpages using different page sizes can be minimized. IBM z/OS 1.7 support for IBM z9™
systems includes a new function that supports MIDAW. The z9 implements a new function for
channel programming called modified indirect addressing words. MIDAWs can be used to
move data over FICON® and ESCON® channels. For FICON channels, this support can
provide substantially better response time while increasing overall channel bandwidth.
MIDAW’s exploitation by z/OS is expected to improve performance for some DB2 table scan,
DB2 sequential prefetch, BSAM, and extended-format data set operations by reducing
system overhead for I/O requests, with no application changes. Therefore, the page size for
the LOB table space can become less important from a performance point of view.

For more information, see How does the MIDAW facility improve the performance of FICON
channels using DB2 and other workloads?, REDP-4201.

If your LOB data is all the same size, it might be easier to choose a page size that makes
more efficient use of data pages without impacting performance. For LOBs that are all the
same size, consider Table 3-12, which maximizes space savings without sacrificing
performance.

Note: Starting with DB2 9, LOBs up to 2 GB in size are eligible for logging, so all LOBs are
able to be logged. Previously, the limit was 1 GB.

Average LOB size (ALS) Recommended page size for LOB table space

ALS < 4 KB 4 KB

4 KB < ALS < 8 KB 8 KB

8 KB < ALS < 16 KB 16 KB

16 KB < ALS 32 KB
Chapter 3. Creating LOBs 57

Table 3-12 Choosing a LOB page size for LOBs that are all the same size

Also, see buffer pool considerations and buffer pool thresholds (DWQT and VDWQT) in 8.3,
“Buffer pools and group buffer pools” on page 244, for more information about this topic.

If you have decided on the page size you want to use, DB2 allocates at least n KB of space
even if you tell DB2 to allocate less than the minimum amount of space for that page size.
Table 3-13 provides information about the minimum space requirements for primary
(PRIQTY) and secondary (SECQTY) quantity, and how they might change from your
specification. This reflects the DB2 expectation that LOB objects are going to be used as they
are intended, that is, for LARGE objects, and prepares the environment accordingly.

Table 3-13 Primary and secondary quantity with LOBs

3.4.5 DSSIZE for LOB table spaces

DSSIZE represents the data set size value passed to DB2 to indicate the maximum allowable
size. With the combination of the DSSIZE parameter and the extended addressability
function of SMS-managed VSAM data sets, data sets can grow up to a size of 64 GB.

Table 3-14 summarizes the partition and partitioned table space sizes for the current DB2
versions.

LOB size (LS) Recommended page size for LOB table space

LS < 4 KB 4 KB

4 KB < LS < 8 KB 8 KB

8 KB < LS < 12 KB 4 KB

12 KB < LS < 16 KB 16 KB

16 KB < LS < 24 KB 8 KB

24 KB < LS < 32 KB 32 KB

32 KB < LS < 48 KB 16 KB

48 KB < LS 32 KB

PRIQTY and SECQTY

Specification in KB Page size Resulting allocation in KB

< 200 4 KB 200

< 400 8 KB 400

< 800 16 KB 800

< 1 600 32 KB 1,600

> 4,194,304 Any 4,194,304

Note: The maximum value allowed for PRIQTY is 64 GB (67,108,864 KB).
58 LOBs with DB2 for z/OS: Stronger and Faster

Table 3-14 Summary of data set, partition, and partitioned table space sizes

Since each LOB table space can consist of 254 data sets, you can reach the maximum
amount of 16,256 GB (approximately 16 TB) for a single LOB column in one LOB table
space. Considering a partitioned base table with 4,096 partitions, these 16,256 GB can occur
up to 4,096 times (one LOB table space for each partition of the base table), so you can have
66,584,576 GB or 65,536 TB for one single LOB column.

For LOB table spaces, if DSSIZE is not specified, the default for the maximum size of each
data set is 4 GB. The maximum number of data sets is 254. This means a maximum value of
1,016 GB (approximately 1 TB) for a non-partitioned base table and 258,064 GB
(approximately 258 TB) for a partitioned base table consisting of 254 partitions.

The maximum amount of space for PRIQTY and SECQTY that you can specify is at least
4,194,304 KB. So, make sure that you have specified PRIQTY, and n times SECQTY, if
allocated, is about 64 GB. The value of n depends on the version of DFSMS running in your
system. Extended addressability for VSAM data sets, leading to a maximum file size of 64
GB, was introduced in DFSMS Version 1 Release 5. To benefit from the maximum size
provided for LOBs, DFSMS Version 1 Release 5 is required.

3.4.6 GBPCACHE parameter

When defining or altering a table space definition, in a data sharing environment,
GBPCACHE specifies what pages of the table space or partition are written to the group
buffer pool. In a non-data-sharing environment, this parameter is ignored. The values are:

� CHANGED

When there is inter-DB2 R/W interest on the table space or partition, updated pages are
written to the group buffer pool.

� ALL

Indicates that pages are to be cached in the group buffer pool as they are read in from
DASD.

� NONE

Indicates that no pages are to be cached to the group buffer pool.

� SYSTEM

The SYSTEM parameter was added for LOBs to prevent LOB data from flooding the
global buffer pool and still help with performance. SYSTEM Indicates that only changed
system pages within the LOB table space are to be cached to the group buffer pool. A
system page is a space map page or any other page that does not contain actual data
values. SYSTEM is the default for a LOB table space.

DB2 version Number of partitions Maximum size each Total maximum size

V8 and 9 4,096 64 GB 65,536 TB

Note: DSSIZE specifies the maximum size for each partition, or for LOB table spaces, for each data set. If you
specify DSSIZE, you must also specify NUMPARTS, MAXPARTITIONS, or LOB clause. DSSIZE and
SMS-managed table spaces are required.

Note: If DSSIZE is greater than 4 GB, make sure that this data set belongs to a DFSMS
class that is defined with the extended addressability attribute, and also, that the automatic
class selection routine associates this data set with this data class. Otherwise, DB2 is not
able to allocate the requested space, and it issues SQLCODE -904.
Chapter 3. Creating LOBs 59

In DB2 V8, in a data sharing environment, GBPCACHE SYSTEM is recommended for large
objects.

In DB2 9, in a data sharing environment, because of the changes in LOB locks management
(see 3.4.3, “Locking with LOBs” on page 56), you might want to consider specifying
CHANGED.

Note that when you change an option by specifying ALTER TABLESPACE GBPCACHE in a
data sharing environment, the table space or partition must be in the stopped state when the
statement is executed.

See 8.3, “Buffer pools and group buffer pools” on page 244, for more information.

3.4.7 Impact on cursors fetching LOB values
In general, an application program declares a cursor and fetches the cursor in a specific
section of an application program. The type of variables you fetch the cursor into cannot vary,
even if you fetch the same cursor in two different sections of your application program for
whatever reasons. Fetching a LOB column now gives you the flexibility to fetch into a large
object host variable or into a large object locator variable. DB2 allows you to make a decision
of the kind of variable you want to fetch the LOB value into, depending on the current value of
special register CURRENT RULES at the time the cursor is opened.

Using CURRENT RULES DB2
� After the cursor is opened, if the first FETCH executed uses a LOB locator to access a

LOB column, no subsequent FETCH for that cursor can fetch that LOB column into a LOB
host variable.

� After the cursor is opened, if the first FETCH executed uses a LOB host variable to access
a LOB column, no subsequent FETCH for that cursor can fetch that LOB column into a
LOB locator.

Using CURRENT RULES STD
� After the cursor is opened, and after the first FETCH executed, regardless of where the

LOB value is fetched into (LOB locator or LOB host variable), a subsequent FETCH for
that cursor can FETCH the LOB column into either a LOB locator or a LOB host variable.

Although a CURRENT RULES special register set to STD gives you more flexibility to let your
application program switch between both methods, you can get better performance if you use
a value of DB2 in distributed environments. When you use the STD option, the server has to
send and receive network messages for each FETCH to indicate whether the data being
transferred is a LOB locator or a LOB value. With the DB2 option, the server knows the size
of the LOB data after the first FETCH, so an extra message about the LOB data size is
unnecessary. The server can send multiple blocks of data to the requester at one time, which
reduces the total time for data transfer.

Using the STD option, DB2 cannot make any assumptions about what the requesting
application might want on the next fetch.

3.5 LOBs are different DB2 objects

In this section, we highlight the main differences between LOBs and standard DB2 objects.
60 LOBs with DB2 for z/OS: Stronger and Faster

Lock sizes
With LOBs, DB2 uses a different approach to store huge amounts of data that can span over
many pages. Common locking techniques acquire locks on table spaces, partitions, tables,
pages, or rows. Considering a LOB table space, there is only one table space, containing one
table, which possibly holds several LOB values. DB2 does not acquire a lock on many LOB
data pages, nor on the entire table space. Therefore, DB2 uses two additional lock sizes to
efficiently handle locking for large objects before DB2 9:

� Shared LOB lock (S-LOB lock)
� Exclusive LOB lock (X-LOB lock)

These types of locks are also acquired by the Internal Resource Lock Manager (IRLM). LOB
locks are not related to any pages at all. DB2 takes both lock types explicitly by a combination
of the LOB table space, the associated ROWID, and the LOB version number.

In general, DB2 9 no longer uses LOB locks to ensure data integrity but locks on the base
table space and information about the oldest reader accessing your LOB data. For a more
detailed description about locking for large objects and lock sequences in DB2 V8 and DB2 9,
see 4.5, “Locking” on page 94.

Update mechanisms for LOBs
When you update a large object, DB2 uses an updating technique that is different from the
updating technique for standard objects in DB2. Updating a LOB for DB2 means deallocation
of used data pages, and allocating and inserting new data pages, which contain the new LOB
value. For lock-related information about this topic, see “Locks with UPDATE” on page 99,
and for rollback-related information, see “Shadow Copy Recovery” on page 100.

Large objects and indexes
For obvious reasons, a LOB column in the auxiliary table is not indexable. Prior to DB2 8, the
maximum length of an index column is 255 bytes. Beginning with DB2 8, the maximum key
length is extended from 255 bytes to 2 000 bytes but LOBs are potentially even bigger.
Therefore, you cannot create an index on a LOB column. With DB2 9, you can create an
index on an expression from a LOB column.

Compression
DB2 does not allow you to specify COMPRESS YES for LOB table spaces. Most objects
stored in a BLOB column could already be compressed anyway, such as JPEG pictures or
ZIP folders. Regardless of compression for a LOB table space, you can specify COMPRESS
YES for the table space containing the base table.

EDITPROCs, FIELDPROCs, and VALIDPROCs
LOB values cannot be compared, except with the LIKE predicate, and because they are not
stored along with other columns, they are not available to any database procedures such as
EDITPROCs, FIELDPROCs, or VALIDPROCs. Note that although they are not available to
these types of procedures, they are available to any triggers that are defined on the base
table.

Check constraints
A check constraint cannot reference a LOB column. Those values are not designed to be
eligible to work with constraints, because they are too large to check when changing a row’s
content in a table.
Chapter 3. Creating LOBs 61

Data capture and data propagation
Even if LOB values have been defined as NOT LOGGED or LOG NO in DB2 V8,
WebSphere® Information Integrator Q Replication is able to replicate those values. The
capture program reads the LOB descriptor to determine if any data in the LOB column has
changed or not, and places an indicator in the capture data table. When the apply program
reads the indicator, it then copies the entire LOB value, not just the changed parts of the LOB
value. The apply program always copies the most current version of a LOB column directly
from the source table, in our case, the auxiliary table. So it replicates only full LOBs, parts of a
LOB are not replicated.

For details about replicating LOBs, refer to WebSphere Information Integrator Q Replication:
Fast Track Implementation Scenarios, SG24-6487.

3.6 Physical layout of LOBs

LOB table spaces have a completely different format compared to other table spaces.
Because a LOB entry in a LOB column can span pages, pages have to be chunked together.
A chunk is referred to as 16 pages of contiguous space acquired in a LOB table space.
Depending on your size of data, a certain number of chunks are allocated. A single LOB
value can be stored using many chunks also using page allocations of fewer than 16
contiguous pages depending on the space available. Figure 3-8 on page 62 illustrates the
distribution of pages for a single LOB value. The LOB in our example is stored in a chunk
containing pages 1 to 16, pages 21 to 28, another chunk beginning at page 49, and the last
four single pages starting at page 83. Keeping the LOB well chunked helps in LOB
processing. See 6.9, “REORG” on page 185 for need to REORG LOBs.

Figure 3-8 LOB value spanned over pages using chunks and non-chunks

1

. .
 .

2
3

4

16

. .
 .

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

1001101011
01011001
011001
 .
 .
 .

21

. .
 .

22
23

24

28

. .
 .

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

1001101011
01011001
011001
 .
 .
 .

49

. .
 .

50
51

52

64

. .
 .

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

1001101011
01011001
011001
 .
 .
 .

83
84

85

86

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

 11
 01
 10
 11
 00

1001101011
01011001
011001
 .
 .
 .
62 LOBs with DB2 for z/OS: Stronger and Faster

LOBs can be stored in chunks of 16 pages and also can be stored using page allocations of
fewer than 16 pages (21 - 28 and 83 - 86 in our example). After inserting, deleting, and
updating LOB values, the pages can be nearly everywhere.

LOB table space organization
Storing LOBs causes the table spaces containing their values to be organized in a slightly
different way in order to support pageset structures for columns spanning the maximum
available page size.

As in every other table space, a LOB table space has only one header page. The header
page contains DB2 internal control information which is needed when you access your LOB
data. The new type of pages are LOB space map pages. They are structured like a multi-level
index, which is an index containing several levels of leaf pages and which is basically a
pointer to chunks and pages. You can find at least one LOB map page for every version of
every single LOB value in your LOB table space. When we talk about deallocation of LOB
pages, the space map pages have set the invalid flag for all pages containing the LOB
information, which includes both LOB map pages and LOB data pages.

LOB map pages contain descriptive information about LOB values. The chunk information
itself is stored in LOB map pages, which point to the associated data pages for a LOB value.
After reading the information stored in the LOB map pages, DB2 knows where to find the
information it has to retrieve to access a particular LOB value. See Figure 3-9 for possible
LOB map page information about a single value.

Figure 3-9 LOB data pages chunked together using a space map and LOB map pages

503
504

505

LOB Data Page

Allocation
Chunk/Page Page #P

Chunk 104 16

Chunk 410 16

Page 503 9

Page 602 8

Page 664 3

 Space Map Page

LOB MAP Pages

104
105

106

LOB Data Page

9

16

LOB MAP Page

. .
 .

. .
 .

}
}

Chapter 3. Creating LOBs 63

You can think of two different allocation units that a LOB map page points to. First, it can point
to a chunk of data pages, which is nothing more than 16 pages of contiguous space
(indicated by #P = 16 in Figure 3-9). As soon as DB2 uses partial chunks to store parts of the
LOB value, it contains the page number where the allocation starts and the number of
contiguous pages used.

For a detailed description of LOB system pages, refer to the licensed documentation DB2
Version 9.1 for z/OS Diagnosis Guide and Reference, LY37-3218.

Note: When using DSN1PRNT, you might also see pages referring to LOB values that
have been already deleted and whose space was not reused up to now.
64 LOBs with DB2 for z/OS: Stronger and Faster

Chapter 4. Using LOBs

This chapter discusses basic considerations when starting to use LOBs in applications.

This chapter contains the following:

� Language considerations
� LOB locators
� DRDA LOB flow optimization
� Feeding a LOB column
� Locking
� Unloading LOBs
� Updating LOBs
� General best practices

4

© Copyright IBM Corp. 2006. All rights reserved. 65

4.1 Language considerations

If you want to use LOBs in your application programs, there are certain differences to take
into account when comparing LOBs to the other DB2 data types. You can handle LOBs in
“classic’’ host languages such as COBOL, PL/I, and REXX but also in more recent languages
such as JAVA.

4.1.1 LOB host variables, locators, and file reference variables

When you write applications to manipulate LOB data, you need to declare host variables to
hold the LOB data, LOB locator, or LOB file reference variables to point to the LOB data. You
can declare LOB host variables, LOB locators, and LOB file reference variables in Assembler,
C, C++, COBOL, Fortran, and PL/I. For each host variable, locator, or file reference variable
of SQL type BLOB, CLOB, or DBCLOB that you declare, DB2 generates an equivalent
declaration that uses host language data types. When you refer to a LOB host variable, LOB
locator, or LOB file reference variable in an SQL statement, you must use the variable that
you specified in the SQL type declaration. When you refer to the host variable in a host
language statement, you must use the variable that DB2 generates.

DB2 supports host variable declarations for LOBs with lengths of up to 2 GB - 1. However, the
size of a LOB host variable is limited by the restrictions of the host language and the amount
of storage available to the program.

To retrieve LOB data from a DB2 table, you can define host variables that are large enough to
hold all of the LOB data. This requires your application to allocate large amounts of storage,
and requires DB2 to move large amounts of data, which can be inefficient or impractical.
Instead, you can use LOB locators. LOB locators let you manipulate LOB data without
retrieving the data from the DB2 table. Using LOB locators for LOB data retrieval is a good
choice in the following situations:

� When you move only a small part of a LOB to a client program

� When the entire LOB does not fit in the application’s memory

� When the program needs a temporary LOB value from a LOB expression but does not
need to save the result

� When performance is important

A LOB locator is associated with a LOB value or expression, not with a row in a DB2 table or
a physical storage location in a table space. Therefore, after you select a LOB value using a
locator, the value in the locator normally does not change until the current unit of work ends.
However, the value of the LOB itself can change. If you want to remove the association
between a LOB locator and its value before a unit of work ends, execute the FREE LOCATOR
statement. To keep the association between a LOB locator and its value after the unit of work
ends, execute the HOLD LOCATOR statement. After you execute a HOLD LOCATOR
statement, the locator keeps the association with the corresponding value until you execute a
FREE LOCATOR statement or the program ends.

Like host variables, each LOB locator can have an associated indicator variable. When you
select a LOB column using a LOB locator and the LOB column contains a null value, the
indicator variable is set to a negative value. However, the value in the LOB locator itself is not
changed and still contains the old value. Therefore, when you use LOB locators to retrieve
data from columns that can contain null values, define indicator variables for the LOB
locators, and first check the indicator variables after you fetch data into the LOB locators. If an
indicator variable is negative after a fetch operation, you cannot use the value in the LOB
locator.
66 LOBs with DB2 for z/OS: Stronger and Faster

In a host application, starting with DB2 9, you can use a file reference variable of type
BLOB_FILE, CLOB_FILE, or DBCLOB_FILE to insert a LOB from a file into a DB2 table or to
select a LOB from a DB2 table into a file. When you use a file reference variable, you can
select or insert an entire LOB value without contiguous application storage to contain the
entire LOB. In other words, LOB file reference variables move LOB values from the database
server to an application or from an application to the database server without going through
the application’s memory.

Furthermore, LOB file reference variables bypass the host language limitation on the
maximum size allowed for dynamic storage to contain a LOB value. You can declare a LOB
file reference variable or a LOB file reference array for applications that are written in C,
COBOL, PL/I, and Assembler. The LOB file reference variables do not contain LOB data;
they represent a file that contains LOB data. Database queries, updates, and inserts can use
file reference variables to store or retrieve column values. As with other host variables, a LOB
file reference variable can have an associated indicator variable.

4.1.2 Use of a double or triple SQLDA in dynamic SQL

If you write a dynamic SQL program, and you want to be able to retrieve LOB values using a
SQLDA, you must use a double SQLDA or triple SQLDA.

The SQLDA is a collection of variables that is required for the execution of the SQL
DESCRIBE statement, and can be optionally used by the PREPARE, OPEN, FETCH,
EXECUTE, and CALL statements. The meaning of the information in an SQLDA depends on
the context in which it is used. For DESCRIBE and PREPARE INTO, DB2 sets fields in the
SQLDA to provide information about the columns of the result set or table to the application
program. For OPEN, EXECUTE, FETCH, and CALL, the application program must set the
fields in the SQLDA to provide DB2 with information about the host variables of the program.

An SQLDA can contain a variable number of occurrences of SQLVAR, each of which is a set
of fields that describes one column in the result table of a SELECT statement. If your program
wants to be able to retrieve n columns, you should at least allocate 2*n SQLVARS if you want
to be able to retrieve LOB columns (double SQLDA) and 3*n SQLVARS (triple SQLDA) if you
want to be able to retrieve LOB columns and have both column names and column labels in
your SQLDA (by using the USING BOTH option in your PREPARE or DESCRIBE statement).

The base SQLVAR contains the following variables when set by DB2 during DESCRIBE or
PREPARE:

� SQLTYPE: Indicates the data type of the column and whether it can contain null values
� SQLLEN: The length attribute of the column
� SQLDATA: The CCSID of the column
� SQLIND: Reserved
� SQLNAME: The name of the column

For LOBs, the following SQLTYPES are returned in the base SQLVAR of the SQLDA as
shown in Table 4-1 on page 68. An even value of SQLTYPE means the column does not allow
nulls, and an odd value means the column does allow nulls. For LOB columns, the SQLLEN
field is always zero (only half word) and the actual length of the LOB columns can be found in
the SQLLONGLEN field of the extended SQLVAR.
Chapter 4. Using LOBs 67

Table 4-1 SQLTYPE and SQLLEN of LOB columns or LOB host variables in the SQLDA

For LOBs, the extended SQLVAR contains following variables:

� SQLLONGLEN: The length attribute of the LOB column
� SQLDATALEN: Not used

The application program should set the following fields in the base SQLVAR during OPEN,
EXECUTE, FETCH, and CALL:

� SQLTYPE: The data type of the host variable and whether an indicator variable is
provided

� SQLLEN: The length attribute of the host variable. Always 0 for LOBs

� SQLDATA: The address of the host variable

� SQLIND: The address of the indicator variable if SQLTYPE is odd

� SQLNAME: The CCSID of the host variable

For LOBs, the extended SQLVAR should be set as follows:

� SQLLONGLEN: The length attribute of the host variable.

� SQLDATALEN: If the value of this field is null, the actual length of the LOB is stored in the
4 bytes immediately before the start of the data, and SQLDATA in the base SQLVAR
points to the first byte of the field length. The actual length indicates the number of bytes
for a BLOB or CLOB, and the number of characters for a DBCLOB. If the value of this field
is not null, the field contains a pointer to a 4-byte long buffer that contains the actual length
in bytes (even for DBCLOBs) of the data in the buffer pointed to from the SQLDATA field
in the matching base SQLVAR.

4.1.3 Working with LOBs in JDBC and SQLJ applications

The IBM DB2 Driver for JDBC and SQLJ includes all of the LOB support in the JDBC 3.0 and
earlier specifications. This driver also includes support for LOBs in additional methods and for
additional data types:

� DRDA LOB flow optimization: If the database server supports progressive streaming, the
IBM DB2 Driver for JDBC and SQLJ can use progressive streaming to retrieve data in
LOB columns. With progressive streaming, the database server dynamically determines
the most efficient mode in which to return LOB data, based on the size of the LOBs. Refer
to 4.3, “DRDA LOB flow optimization” on page 79 for a detailed description.

� LOB locator support: The IBM DB2 Driver for JDBC and SQLJ can use LOB locators to
retrieve data in LOB columns. You should use LOB locators only if the database server
does not support progressive streaming. See 4.2, “LOB locators” on page 73 for more
information.

SQLTYPE Data type SQLLEN

404/405 BLOB 0

408/409 CLOB 0

412/413 DBCLOB 0

916/917 BLOB_FILE 267

920/921 CLOB_FILE 267

924/925 DBCLOB_FILE 267
68 LOBs with DB2 for z/OS: Stronger and Faster

As in any other language, a LOB locator in a Java application is associated with only one DB2
subsystem. You cannot use a single LOB locator to move data between two different DB2
subsystems. To move LOB data between two DB2 subsystems, you need to materialize the
LOB data when you retrieve it from a table in the first DB2 subsystem and then insert that
data into the table in the second DB2 subsystem.

In addition to the methods in the JDBC specification, the IBM DB2 Driver for JDBC and SQLJ
includes LOB support in the following methods:

� You can specify a BLOB column as an argument of the following ResultSet methods to
retrieve data from a BLOB column: getBinaryStream and getBytes

� You can specify a CLOB column as an argument of the following ResultSet methods to
retrieve data from a CLOB column: getAsciiStream, getCharacterStream, getString, and
getUnicodeStream

� You can use the following PreparedStatement methods to set the values for parameters
that correspond to BLOB columns: setBytes and setBinaryStream

� You can use the following PreparedStatement methods to set the values for parameters
that correspond to CLOB columns: setString, setAsciiStream, setUnicodeStream, and
setCharacterStream

� You can retrieve the value of a JDBC CLOB parameter using the following
CallableStatement method: getString

� You can use the following ResultSet methods to retrieve data from a ROWID column:
getBytes and getObject

� You can use the following PreparedStatement methods to set a value for a parameter that
is associated with a ROWID column: setBytes and setObject

4.1.4 Specific SQL support for LOBs

In this section, we describe the enhancements to the SQL language that allow you to handle
LOB values efficiently.

There are some differences between SQL functions when accessing LOBs and when
accessing other normal columns stored in a table. Logically, a row in the base table also
contains the LOB value, and this is true from the application’s point of view. Physically, DB2
stores them in two different table spaces. You cannot access the auxiliary table via SQL
where DB2 stores the LOB values. DB2 protects the auxiliary table by issuing appropriate
negative SQLCODE (for instance -766) when you try to access it directly by using SQL.

In general, LOBs can be referenced in all of the string functions with the exception of those
that relate to date and time. LOBs have the same set of restrictions as other long strings.
Some functions cannot be used on LOB columns for obvious reasons. You cannot use the
following functions on LOB columns:

� GROUP BY clause
� HAVING clause
� ORDER BY clause
� SELECT DISTINCT clause
� Column function
� Datetime function
� DECIMAL or NULLIF function

Restriction: If you are using IBM DB2 Driver for JDBC and SQLJ type 2 connectivity, you
cannot call a stored procedure that has DBCLOB OUT or INOUT parameters.
Chapter 4. Using LOBs 69

� WHEN clause of a CASE expression
� Subselect of a UNION without the ALL keyword

Most of the restrictions on LOB values are due to the fact that LOB values cannot be
compared, except with the LIKE predicate.

LOB functions
One way of manipulating large objects without retrieving the entire object is to use functions.
Many of the string functions also work with LOBs. The built-in functions allow you to
concatenate strings, get a substring, find the LOB length, find the position in the LOB of a
search string, and cast the LOB to another type. UDFs can be used as well.

The list of available LOB functions includes:

� CONCAT
� SUBSTR
� LENGTH
� POSSTR
� IFNULL
� VALUE / COALESCE
� Casts
� UDFs
� LIKE within predicates

In the following sections, we discuss the most important of the functions listed above.

How CONCAT operates
The CONCAT function allows you to put two strings together so that they end up as one
string. You can do the same with your host language, but depending on what language you
use, there are some limits within which you cannot move easily. For example, you might not
be able to concatenate two host variables each containing 80 MB of data, because the
resulting variable would be bigger than the maximum allowed size of a variable, as allowed by
Enterprise COBOL for z/OS. But be aware not to use the CONCAT function every time you
want to string two short variables together (such as two variables of 80 bytes each), because
invocation of SQL is more expensive than a single MOVE statement in COBOL, for example.
Try to avoid unnecessary use of this function and use simple statements in your
host-language as long as you can afford it.

An SQL statement without any data access such as this one uses about 7,500 machine
instructions more than the same MOVE statement without any SQL invocation. The amount
of data being moved is nearly the same, so you can assume the mentioned overhead for
concatenating variables using SQL compared to a MOVE statement.

A few details about SUBSTR
Your application programs can use the SUBSTR function to retrieve part of a LOB value. The
string delivered to your application can consist of up to 2,147,483,647 bytes, so there are no
limits in accessing parts of your LOBs. When your declared LOB column is smaller than 2 GB,
the maximum value returned by the SUBSTR function is the declared size of your large
object.

Note: Specifying SUBSTR for a LOB value forces DB2 to read the LOB value until it finds
the start position of your SUBSTR statement. Depending on the value of the start position,
the statement can affect performance.
70 LOBs with DB2 for z/OS: Stronger and Faster

The built-in function POSSTR
You can use the POSSTR function to locate the starting position of one string within another
string. POSSTR returns the first occurrence of one string. The string you want to locate (the
search string) in the source string can consist of up to 4,000 bytes, which can also be
represented by a host variable. The POSSTR function returns the position of your search
string for BLOB and CLOB values. For DBCLOBs, a returned position is a DBCS character.
For finding the second, third, or nth occurrence of a string using POSSTR, refer to “The
built-in function POSSTR” on page 71.

IFNULL, VALUE, and COALESCE
When you use the IFNULL function in your select statement, you can tell DB2 which value
you want it to return to your application when an accessed LOB value is null. For example,
you can return text saying ‘value unknown’ to your application if a particular LOB value is null.
You can also return the value of an already assigned LOB locator, probably pointing to a
picture saying “Image not found”.

IFNULL (:LOB-LOCATOR, ‘unknown value’)
IFNULL (:LOB-LCATOR, :LOCATOR-IMAGE-NOT-FOUND)

IFNULL is identical to the COALESCE and VALUE functions, except that IFNULL is limited to
two arguments instead of multiple arguments. Because a NULL indicator is one of the two
stored flags in the base table, DB2 does not need to access the auxiliary table at all, if a LOB
column is stored as a null value.

Using CAST for LOBs
You can also use CAST functions on your LOB values or LOB locators, even to convert your
current LOB value into another value. They can be used to get around some of the restrictions
on LOB values. To give you an idea of CASTing between data types, assume the following
statement:

SELECT LOB FROM BASE_TABLE
WHERE SUBSTR (LOB,1,11) = ‘IBM Redbook’

You could expect that the statement returns to you all of the LOB values, which start with ‘IBM
Redbook’. Because large objects are subject to long string column restrictions, DB2 issues
SQLCODE -134, complaining about an improper use of a long string column. To solve this
problem, you can replace the statement using the following syntax:

SELECT LOB FROM BASE_TABLE
WHERE CHAR (SUBSTR (LOB,1,11)) = ‘IBM Redbook’

This statement delivers the result you could have expected when you issued the first
statement.

Table 4-2 on page 72 shows the list of the allowed LOB conversions.
Chapter 4. Using LOBs 71

Table 4-2 Casting large objects

The reason for the length growing up to three times with DBCLOB conversions into a CHAR,
VARCHAR, or CLOB column is to allow for expansion when the data is converted from
UTF-16 to UTF-8. A character that takes two bytes to represent in UTF-16, can take three
bytes in UTF-8.

How does LIKE operate on LOBs
Depending on the value specified for LIKE search arguments, LOB Manager takes different
actions. These actions correspond to common LIKE operations used for non-LOB values.
When you issue LIKE ‘Chapter 8%’, only the first nine bytes of a LOB value according to
qualifying base table rows are scanned to verify the result. A LIKE ‘%Chapter 8%’ clause can
be worse, because now DB2 has to scan the entire LOB value until it finds the first occurrence
of the string to qualify the LOB value for your SQL statement. This kind of statement can be
very time consuming, depending on your average LOB size and the number of touched rows
in the base table.

In general, after issuing an SQL statement against the base table, all base table columns
appearing in the WHERE clause of your statement are checked before a condition on the
auxiliary table is checked, even if the columns in the base table are not indexed. This avoids
unnecessary scans of your LOB values and only those LOB values are scanned, which
already have qualified from the base table point of view.

4.1.5 Functions such as XML2CLOB

DB2 V8 provided the function XML2CLOB to allow the retrieval of data from an XML data
type. The resulting encoding scheme of the character set is UTF-8. The nodes of the XML
data are traversed and the result returned as a character string.

An example of usage of the XML2CLOB function is shown in Example 4-1, where we also use
the XMLELEMENT to create the XML object for conversion.

Example 4-1 Usage example of XML2CLOB function

SELECT c.id,XML2CLOB(
XMLELEMENT (NAME "ID Number",

c.cname || ' ' || c.status
)) AS "Company"

FROM companies c;

The query can result in the following output shown in Example 4-2 on page 73.

BLOB CLOB DBCLOB

CHAR
VARCHAR
CLOB
GRAPHIC
VARGRAPHIC
DBCLOB
BLOB

CHAR
VARCHAR
CLOB
GRAPHIC (*)
VARGRAPHIC (*)
DBCLOB (*)

CHAR (**)
VARCHAR (**)
CLOB (**)
GRAPHIC
VARGRAPHIC
DBCLOB

(*) CAST is only supported if the data is Unicode.
(**) CAST is only supported if the data is Unicode. The result length for these casts is 3 * LENGTH (graphic string)
72 LOBs with DB2 for z/OS: Stronger and Faster

Example 4-2 Example output from XML2CLOB function

id Company
0002344 Onesteel Ltd
0012311 Intradata Ltd

DB2 9 introduces the XMLSERIALIZE function to produce the XML data in string format, and
this replaces the XML2CLOB functionality. The XML2CLOB function however remains for
compatibility.

4.1.6 Stored procedures

All stored procedures support LOBs as parameters. When LOBs are passed as an argument
to a stored procedure or a user function, they are materialized.

Although LOB file reference variables are supported in host languages, they were not
implemented in native SQL language. LOB file references are not data types, just constructs,
thus, they cannot be used in native SQL stored procedures. If you still want to use them in
your stored procedures, you have to code your stored procedure in any other supported
language and pass the file name as a character parameter to a stored procedure.

We recommend using LOBs in stored procedures to manipulate the LOBs within stored
procedures, and avoid externalizing them. One example of bad programming would be
retrieving LOBs to the program using a stored procedure and not a standard SELECT SQL
statement. In this case, the object is materialized twice - once in DBM1 region above the 2
GB bar and once in the program address space. The whole LOB is moved between DBM1
address space to WLM stored procedures address space and back to DBM1.

Note that, with DB2 9, stored procedures implemented with Stored Procedure language
execute in the DBM1 address space, rather than in address spaces managed by WLM.

4.2 LOB locators

You can use locators everywhere in your application program where you can access a LOB
value by itself. The idea behind locators is that an application program only deals with a
reference to a particular LOB and DB2 performs the real operations on the LOB value. Using
this method, the LOB value is not stored in the application’s memory. To deal with a locator
instead of the entire value, an application program simply selects the LOB column into a LOB
locator host variable, not into the generated LOB host variable. By selecting into a locator
variable, DB2 assigns a 4-byte value to the locator, which is delivered to the application. The
entire LOB value is not retrieved or delivered to the application. By selecting the whole LOB
into a locator variable, you avoid materialization of the LOB, because DB2 does not have to
access every page of the LOB, it just keeps the reference.

For example, when selecting a LOB value, an application program could select the entire
LOB value and place it into a host variable of the same size as the LOB (which is acceptable
if the application program is going to process the entire LOB value at once), or it could instead
select the LOB value into a LOB locator. Then, using the LOB locator, the application
program can issue further database operations on the LOB value (such as applying scalar
functions SUBSTR, CONCAT, LENGTH, doing an assignment, searching the LOB with LIKE
or POSSTR, or applying UDFs against the LOB) by supplying the locator as input. The
resulting output of the locator operation, for example, the amount of data assigned to the
application’s host variable, would then typically be only a subset of the input LOB value.
Chapter 4. Using LOBs 73

Once a locator is set to a particular LOB value, there is no action you can take within the
database to change that value from the application’s point of view until the locator is freed.
You can free a locator by issuing a FREE LOCATOR statement or by completing the current
unit of work.

But how does this work? Locators do not force extra copies of the data in order to provide this
function, but maintain a relationship to the underlying data pages. The data remains
consistent despite other activity in the system, with the underlying mechanism varying
according to the DB2 version.

DB2 V8 uses an S-LOB lock when you assign a locator to a specific LOB value (see 4.5.1,
“Locking for LOBs with DB2 V8” on page 95 for a description of LOB locks); the LOB value is
released only at COMMIT time or when you explicitly free the locator using the FREE
LOCATOR statement. Therefore, the data pages containing the LOB value cannot be
overwritten with different content as long as they are referenced.

When you issue the HOLD LOCATOR statement, an assigned locator survives the current
unit of work and is valid until the thread terminates or a FREE LOCATOR statement is passed
to DB2. Either one of these events releases the S-LOB lock taken on the LOB value in the
auxiliary table.

DB2 9 does not allow space reuse for LOB data pages before the oldest reader in the system
has completed its workload using RLSN comparison techniques; therefore, your application
can access the referenced LOB value to finish its work. You can find more details in 4.5.2,
“Locking for LOBs with DB2 9” on page 101.

4.2.1 Getting to know LOB locators

You assign a locator to a LOB value when selecting a LOB column into a LOB locator. Using
this method, DB2 detects that the entire LOB is going to be selected into a locator column,
and therefore, it does not materialize the associated LOB value and also does not provide the
LOB value to your application program. Instead, DB2 provides a value for your locator into
your locator host variable where your application is selecting the LOB value into. You can use
a LOB locator anywhere a LOB value can be used, for instance, in expressions where you
would normally use an entire LOB value.

Can the LOB value change while a locator is assigned
Simply speaking, yes, it can. But it does not change for your application program, once you
have associated a locator to a particular LOB value. So what is DB2 doing when you have a
locator assigned to a LOB value (remember, a locator represents a LOB value at a point in
time) and someone else is updating or deleting the LOB? DB2 ensures that the locator still
represents the original value that existed at the time the locator was set. See Figure 4-1 on
page 75.

Note: In DB2 V8, the space in a LOB data page can be reused if the S-LOB lock is
released using, for example, a FREE LOCATOR statement. In DB2 9, DB2 relies on the
oldest reader in the system to decide if LOB data pages can be reused, because there is
no more S-LOB lock in the auxiliary table space for SELECT operations, except for the
unconditional lock for UR readers.
74 LOBs with DB2 for z/OS: Stronger and Faster

Figure 4-1 Concurrent LOB access using LOB locators

In this example, transaction 1 selects a non-LOB column into a host variable and also a LOB
column into a locator variable. After the SELECT is completed in transaction 1, transaction 2
updates the LOB column, which is already referenced by a locator in transaction 1. After the
LOB is updated by transaction 2, a new value is inserted into the VIDEOLIB table in
transaction 1, using the previously assigned locator for the LOB value by DB2. But the value
referenced by the locator is still the same as before the updating transaction has updated the
LOB value. How is this possible?

Operations on the original LOB value have definitely no effect on the value referenced by a
locator.

Let us first have a look at LOB delete. A DELETE statement only deallocates pages in the
auxiliary table where the LOB data is stored. But the data still remains in the pages; it is not
deleted.

Now let us have a close look at how a LOB is updated. Updating a LOB consists of DELETE
and INSERT, so the pages are deallocated and the data still remains in the auxiliary table.

The INSERT statement cannot reuse the previously deallocated pages because of the
different mechanisms DB2 uses to prevent space reuse for currently accessed data regarding
locators.

The conclusion is that these data pages to which a locator is pointing cannot be allocated
again, even if they are going to be deallocated by a DELETE statement, as long as an S-LOB
lock persists on the referenced LOB value in DB2 V8 or a reader possibly accesses the value
in DB2 9.

01 movie-loc ... IS SQL TYPE IS
BLOB-LOCATOR

SELECT MOVLENGTH, LOBMOVIE
INTO :length, :movie-loc
FROM LITERATURE
WHERE TITLE = 'The Maltese Falcon';

INSERT INTO VIDEOLIB (LENGTH, FILM, DESC)
VALUES(:length, :movie-loc, 'Uncut/Original');

UPDATE LITERATURE
SET LOBMOVIE=:edited-version
WHERE TITLE = 'The Maltese Falcon';

TRANSACTION 1

TRANSACTION 2
Chapter 4. Using LOBs 75

Using locators across multiple units of work
A LOB locator is only a mechanism used to refer to a LOB value during a unit of work.
Ordinarily, a locator is freed, implying release of acquired space in DBM1 if the locator is not
referenced further, when the application COMMITs its data or the associated thread
terminates. Acquired locks are also released at COMMIT time as usual. To increase locator
durations beyond COMMIT points, a HOLD locator statement can be issued. This statement
increases the duration of the specified locator, and the locks held on the locator, until a FREE
locator statement is issued for the same locator. SQL ROLLBACK also frees every locator
having the hold property. If no FREE locator statement is issued, the locator is valid until the
thread terminates. In Example 4-3, you can find the syntax of FREE locator and HOLD
LOCATOR statements.

Example 4-3 Syntax for FREE locator and HOLD locator

Hold beyond COMMIT:

EXEC SQL
HOLD LOCATOR :HV-LOCATOR-1, :HV-LOCATOR-2

END-EXEC

Free the locator if it is not needed any more:

EXEC SQL
FREE LOCATOR :HV-LOCATOR-1, :HV-LOCATOR-2

END-EXEC

A locator is freed when one of the following conditions occur:

� An SQL FREE LOCATOR statement occurs
� An SQL ROLLBACK statement occurs
� The associated thread terminates

If a locator has the hold property, it survives the SQL COMMIT statement. Without the hold
property, it does not survive the SQL COMMIT statement. A locator obtains the hold property
by the SQL HOLD LOCATOR statement.

If you receive SQLCODE -423 (INVALID LOCATOR VALUE) after you have specified more than
one host variable for a FREE LOCATOR statement, only those locators up to the invalid
locator are freed. According to this result, when you receive SQLCODE -423 after issuing a
HOLD LOCATOR statement, all locators listed in the statement after the first invalid locator
are not held.

Can I free a referenced locator
Assume two locators as shown in Figure 4-2 on page 77, where LOCATOR-2 references
LOCATOR-1. When you now free LOCATOR-1 using the FREE LOCATOR statement, it does
not release any DB2 resources in this case, because LOCATOR-2 still refers to LOCATOR-1.
The locator is only freed externally. This means that the application cannot refer to it; when it
does, it probably gets SQLCODE -423 indicating an invalid locator. Internally, DB2 keeps
LOCATOR-1 around as long as it is referenced.
76 LOBs with DB2 for z/OS: Stronger and Faster

Figure 4-2 Primary chain of locators containing secondary chains

When to use locators
If LOBs are not too large, they can be managed as other data. LOBs can be retrieved,
inserted, and updated, just like any other type of data. Everything works well as long as you
have enough main storage space to store the LOB. If you think of a CLOB containing a book’s
text and of an application which has to extract only a single chapter of the book, without the
use of locators you have to retrieve the whole object (potentially up to 2 GB of data) in your
application and then to extract the data you need. Because of their size, LOBs might be
unmanageable for a single application. Huge amounts of storage might be needed to buffer
their values, and it might not be possible to acquire contiguous buffers of sufficient size,
because this storage must reside within the region size of the address space in which the
application program is running. To give you an easy method to deal with LOB columns, DB2
provides locators to make LOB access manageable.

Using a locator can be a good choice in the following situations:

� Only a part of a LOB is needed by the application.
� Only a part of a LOB is moved to a client.
� The entire LOB does not fit into the application’s memory.
� A temporary LOB value is needed, but it does not have to be stored in DB2.

You cannot use any of the locators mentioned above in mathematical operations. The reason
is the need to prevent the locators from getting corrupted by the application.

Materialization when using locators
If you do not use the locator technique to access your LOBs, then DB2 has to materialize the
value represented by a large object when you access it. In this case, DB2 materializes the
LOB by moving it through the buffer pool into the user’s address space. Basically,
materialization is avoided when you select LOBs or parts of their values into locators. When
an application retrieves a LOB value, whether it is assigned to a locator or not, it goes through
the buffer pool into the user address space. As soon as a LOB value has to be materialized
and a locator is involved, materialization of a LOB takes place in DBM1 above the bar.

This mainly occurs when you update a LOB value by using locators. In this case, the DBM1
address space only contains the LOB’s control structure. DB2 tries to avoid materialization
wherever it is possible, but if it is no longer possible, it materializes a certain value in DBM1

host variable
3

LOCATOR-1
Version 3

host variable
6

LOCATOR-1
Version 6

host variable
2

LOCATOR-1
Version 2

host variable
5

LOCATOR-1
Version 5

host variable
1

LOCATOR-1
Version 1

host variable
4

LOCATOR-1
Version 4

LOCATOR-2
Version 1

LOCATOR-2
Version 1

LOCATOR-2
Version 2
Chapter 4. Using LOBs 77

above the bar or in the user’s allied address space, depending on the way a LOB is accessed.
For more information about materialization, see 8.1, “LOB materialization” on page 238.

Locators and expressions
LOB locators can also represent more than just base values. They can also represent the
value associated with a LOB expression. For example, a LOB locator can represent the value
associated with:

EXEC SQL
SET LOCATOR = SUBSTR (LOB1, :START1, :LENGTH1) CONCAT

 SUBSTR (LOB2, :START2, :LENGTH2)
END-EXEC

The same statement can also be issued even if LOB1 and LOB2 are referenced by locators.
You are also able to use other LOB functions for further reference in an expression.
Regarding this implementation, DB2 provides you with the opportunity to build new locators
using other locators and expressions of LOBs or locators. This gives you the flexibility to deal
with large objects in various scenarios without allocating huge amounts of storage when you
deal with LOBs.

Using locators and SUBSTR considerations
The use of the SQL SUBSTR function to retrieve pieces of the LOB value (for example,
VALUES(SUBSTR(:xClobLocator, :xFrom, :xLength)) INTO :szClob:sIndicator) means that
the requester must account for the possibility for a partial character in the last few bytes of the
chunk of data (due to code page conversion) when it sets the position for the next chunk.
Locators, in the current design, can remain active for longer than necessary when not
explicitly freed, consuming valuable server resources. For locators referencing a column of a
Unicode table in a non-Unicode database, a UTF-8 to database code page conversion is
required at the server, and the data is sent to the requester in the database code page with
the possibility of data loss. Current workarounds to this problem have their disadvantages,
including the possibility of double conversion for certain code pages.

4.2.2 Examples of using locators

A LOB locator is also allowed to represent LOB expressions, this means substrings of an
entire LOB value. A LOB expression is defined as any expression that refers to a LOB column
or results in a LOB data type. LOB functions can also be part of a LOB expression. Also, LOB
expressions can reference other LOB locators, which does not simplify this topic at all. A LOB
expression is any string expression that contains a LOB value. It is possible to associate the
result of a LOB expression to a LOB locator. Because a LOB locator can be used anywhere a
LOB value can be used, the LOB expression associated with a LOB locator could make
reference to other LOB locators.

Concatenating two strings using locators
When you plan to use any string expressions on a LOB value, you can also use a locator
instead of the entire LOB value. For example, when you try to concatenate two LOBs of 10
MB each, you do not have to read them both into two large host variables and string them
together, you can instead let DB2 do the work for you.

Assume that LOCATOR-1 is pointing to a CLOB value containing a 10 MB string, and
LOCATOR-2 is pointing to another CLOB value of another 10 MB. After assigning both
locators, you can simply issue this to string them together:
78 LOBs with DB2 for z/OS: Stronger and Faster

EXEC SQL
SET :LOCATOR-3 = CONCAT (:LOCATOR-1, :LOCATOR-2)

END-EXEC

The new value of both strings, now a total 20 MB, is assigned to the new locator
LOCATOR-3, to which you can now refer. To store the new value in a table, you can insert a
LOB using the locator as a reference in an insert statement or perform other operations such
as SUBSTR.

Referring to a block of data inside of a CLOB
If you want to refer to a single chapter in a document, you can do this also by simply using
locators. The first thing an application has to do is to assign a locator to a particular LOB
value. The starting position of the chapter you want to refer to is easily determined by the
integer value resulting from the POSSTR function as follows:

EXEC SQL
SET :START-POSITION = POSSTR (:LOB-LOCATOR, ‘Chapter 8’)

END-EXEC

You can determine the end of the chapter you want to deal with in the same way using the
POSSTR function. In our example, the position of the beginning of Chapter 9:

EXEC SQL
SET :END-POSITION = POSSTR (:LOB-LOCATOR, ‘Chapter 9’)

END-EXEC

After issuing this statement, the locator END-LOCATOR points to the beginning of Chapter 9.
When your application wants to deal with Chapter 8 directly, you can set the content of the
chapter to a host variable that is large enough to contain the entire text for Chapter 8.
Otherwise, simply set the string containing Chapter 8 to a new LOB locator as shown below:

EXEC SQL
SET :CHAPTER-8-LOCATOR = SUBSTR (:LOB-LOCATOR

 ,:START-POSITION
 ,:END-POSITION - START-POSITION)

END-EXEC

The SUBSTR function uses the LOB locator (instead of the whole LOB value) as a
string-expression. The START-POSITION represents a starting-position, and the expression
END-POSITION - START-POSITION is provided as a length value.

4.3 DRDA LOB flow optimization

Database applications increasingly store character data in LOB columns and use distributed
environments. LOB columns provide additional capacity for the data to grow, as compared to
varchar or long varchar columns. LOB columns may be used to store small character strings,
serialized Java objects, and XML documents.

The processing of LOBs in a distributed environment with Java Universal Driver on the client
side has been optimized for the retrieval of larger amounts of data. This dynamic data format
is only available for the JCC T4 driver (Type 4 Connectivity). The Call Level Interface (CLI) of

Note Try to avoid the use of string expressions (such as SUBSTR) of BLOB values,
because binary documents might not be usable in parts, such as pictures, executable files,
or even movies. The use of parts for further processing depends on the type of data you
store in your LOB columns.
Chapter 4. Using LOBs 79

DB2 for Linux®, UNIX® and Windows® also has this client-side optimization. Many
applications effectively use locators to retrieve LOB data regardless of the size of the data
being retrieved. This mechanism incurs a separate network flow to get the length of the data
to be returned, so that the requester can determine the proper offset and length for SUBSTR
operations on the data to avoid any unnecessary blank padding of the value. For small LOB
data, returning the LOB value directly instead of using a locator would be more efficient, that
is, the overhead of the underlying LOB mechanisms can tend to overshadow the resources
required to achieve the data retrieval.

For these reasons, LOB (and XML) data retrieval in DB2 9 has been enhanced so that it is
more effective for small and medium size objects, and still efficient in its use of locators to
retrieve large amounts of data. For small LOBs, the performance should approximate that of
retrieving a varchar column of comparable size. This functionality is known as progressive
streaming. Within the overall dynamic data format of progressive streaming, progressive
reference is the mechanism that supports the category of large LOB data retrieval.

With the JCC Type 4 driver, a LOB value is associated to one of three categories depending
on its size:

� Small LOBs - DRDA (server) default is 32 KB, the driver can override it by setting smaller
values.

� Medium LOBs - Greater than 32 KB and up to 1 MB size.

� Large LOBs - Greater than 1 MB and up to 2 GB size.

The large threshold is set as DRDA parameter MEDDTASZ, whose default is 1 MB. This
threshold should be set to the maximum storage size the application region can handle, but
not less than 32 KB. There is no means to override the small threshold (currently set for
performance reasons at 12 KB) set by the Type 4 driver.

Based on the size, the decision is made how to transfer the data. The structure of the data
query block varies according to LOB size. When small-sized LOBs are used, they are treated
exactly as VARCHAR type and transferred as part of the row, thus gaining performance close
to that of retrieving a varchar. When medium-sized LOBs are used, the non-LOB data is
placed in the query data block and the LOBs are placed in overflow blocks. These blocks are
called externalized data blocks. This way, all LOBs are retrieved at once and cached on a
client for subsequent processing. For large LOBs, it was found that locators are still the most
efficient flow method. Thus, the locators are transmitted in a data query block with the rest of
the data, avoiding a need to materialize the entire LOB at once. This explanation is depicted
in Figure 4-3 on page 81.
80 LOBs with DB2 for z/OS: Stronger and Faster

Figure 4-3 Progressive reference return of LOB data

.

Inserting data LOBs are streamed to DB2 by the client and completely materialized on the
server side. The object is “assembled” in the DDF address space and then moved on to the
DBM1 address space for further processing.

This mechanism provides a very adaptable flow mechanism to seamlessly change the logic
used to retrieve data between that suitable for real LOBs, where the data length is indeed
large, and data stored within LOB columns that does not really satisfy the description of large.
This is particularly useful for data stores where the length of data is subject to wide variations,
with DB2 adapting on the fly to minimize the effort to serve the workload it receives.

4.3.1 DB2 Universal Java Driver

Two new datasource properties are introduced in the JCC V3 driver (progressiveStreaming
and streamBufferSize), and the default value for an existing datasource property
(fullyMaterializeLobData) is changed. The changes are as follows:

progressiveStreaming property
This property introduces the ability for the server to dynamically determine the most efficient
mode in which to return LOB or XML data as introduced in 4.3, “DRDA LOB flow optimization”
on page 79. When this dynamic data format is enabled, the locator's life span is the scope of
the cursor (cursor-based reference) as opposed to the scope of the transaction. The server
frees the reference accordingly at the close (implicit or explicit) of the cursor, or it might free
the reference earlier after the rows associated with the reference are returned. A new
mechanism is also provided for the requester to retrieve sequential chunks of the LOB data,
with the progression of the reference (position in the data) maintained at the server.

Even though random access is not supported on the underlying DRDA progressive reference,
the driver still supports random access (by using reset and skip) in JDBC API. However,
using random access API on an underlying progressive reference has performance
implications.

Note: Data streaming is architected in DRDA but is not implemented in a peer to peer DB2
connection where it requires the Java Universal Driver on the client side.

Query block for Medium
LOB

Data
Part

Query block for Small
LOB

Query block for Large
LOB

Data in SQLDTA Data in EXTDTA Reference in SQLDTA

SQLDTA SQLDTASQLDTA EXTDTA
Chapter 4. Using LOBs 81

DB2BaseDataSource.progressiveStreaming can be set to DB2BaseDataSource.NOT_SET
(default), DB2BaseDataSource.YES, or DB2BaseDataSource.NO. If the property setting is
NOT_SET (the default), progressive references are enabled whenever the server supports
progressive references; otherwise, progressive references are not enabled by the driver. If
the server does not support progressive references, then
DB2BaseDataSource.progressiveStreaming is ignored.

If progressive references are enabled, then JDBC executeQuery() requests the dynamic data
format for LOB and XML data with OUTOVROPT = OUTOVRNON and DYNDTAFMT
(Dynamic Data Format) is set to 0xF1 (True). Subsequent CNTQRY (Continue Query)
requests can then set FREPRVREF (Free Previous References) to enable automatic closure
of the locator when there is cursor movement (that is, freeing locators previously returned in
complete rows and row sets).

If progressive streaming is disabled, the LOB data is either fully materialized data or locators
are used as they were prior to this feature.

Externally, progressive references are closed on cursor movement or cursor closure, but not
on stream exhaustion. To summarize, if progressive streaming is disabled, then LOB data is
returned as it was prior to this feature, including locators with a transaction life span and
support for random access. If progressive streaming is enabled, then LOB and XML data is
implicitly closed by the driver upon cursor movement or cursor closure.

streamBufferSize
DB2BaseDataSource.streamBufferSize determines the size of the driver's staging areas for
chunking LOB or XML streams, regardless of whether progressive or SQL locators are used.
When progressive streaming is requested, data is "inlined" if the stream buffer can
accommodate the data size. This setting corresponds to DRDA MEDDTASZ. There is no
user external for SMLDTASZ which takes the driver default (currently set at 12 KB). From an
external’s perspective, the stream chunking size is orthogonal to whether or not data is
transported in QRYDTA or EXTDTA.

fullyMaterializeLobData
DB2BaseDataSource.fullyMaterializeLobData in JCC V3 is ignored by the driver whenever
progressive references are enabled. When progressive streaming is used, materialization is
controlled by the DB2BaseDataSource.streamBufferSize property and the
DB2BaseDataSource.fullyMaterializeLobData setting is ignored. Notice that progressive
reference becomes the default in JCC V3 (against servers that support it), so applications
that rely on DB2BaseDataSource.fullyMaterializeLobData have to explicitly change the
property setting for DB2BaseDataSource.progressiveStreaming to DB2BaseDataSource.NO.
Some indication of the performance advantages can be seen from test cases where the LOB
length is varied around the streamBufferSize threshold, which effectively compares the old
non-progressive mechanism with the new progressive streaming, using varying size LOB
workloads.

Figure 8-10 on page 255 shows the effect of varying LOB data sizes with differing flow
mechanisms. For small LOB sizes, the longest run time comes from using LOB locators. It is
somewhat more efficient in terms of elapsed time to materialize the LOB instead of using a
locator, because a degree of overhead is removed from DB2, and a reduction occurs in the
number of data flows. Using progressive streaming further improves the performance by
further eliminating overheads involved with invoking LOB specific flow mechanisms.
82 LOBs with DB2 for z/OS: Stronger and Faster

4.4 Feeding a LOB column

Creating the environment for storing LOB values is one thing, providing the values is another.
There are at least two different possible locations where the large objects are originating
before they are inserted into a LOB column. The choice of how to bring them up to your host
environment depends on their location. Even if you have lots of large files already stored in
your middleware, you can also consider uploading them using FTP to your host, and then
access them with applications running on the mainframe. Applications running in a distributed
environment can use the same technique as z/OS applications for inserting LOBs, using
distributed relational database architecture (DRDA) connections (for instance, through DB2
Connect™), open database connection (ODBC) calls, or Java using SQLJ or JDBC. Table 4-3
summarizes the alternatives of where LOBs can come from and how to feed them into your
LOB columns.

Table 4-3 Where large objects come from and how

4.4.1 Loading a LOB column using LOAD or the cross loader

Depending on the way the LOB data is provided, there are three ways that the load utility can
be used to load LOB data:

� Loading LOB data as normal data fields from the LOAD input file
� Using file reference variables when each LOB value is stored in a separate input file
� Using the cross loader

Loading LOB data as normal data columns
This method can be used when the LOB values are already stored in the LOAD input file
together with the other data fields of the base table. Because the maximum record length of a
sequential file in z/OS is 32,760 bytes, this method can only be used to LOAD LOB columns
of just < 32 KB. The sum of the length of all normal data fields and LOB fields in the input file
cannot exceed 32 KB.

In most cases, this method is only used if the LOBs in the table are small LOBs (SLOBs) with
an actual length smaller than 32 KB. The defined length of the LOB column on the CREATE
TABLE statement can exceed 32 KB.

The provided input file can be the result of:

� UNLOAD utility
� DSNTIAUL utility
� File generated by another application

Loading LOB data using file reference variables
This method is used when the LOB values are stored in separate input files. The normal input
file contains the data for the non-LOB columns of the base table and the names of the LOB
files. The sum of the length of all normal data fields and the LOB file names cannot exceed 32

Where is the data? Methods to feed LOBs

Client Cross-loader, Application, DB2 for LUW import,
or DB2 Extenders

Host LOAD utility or Application

Note: You always LOAD the data into the base table and DB2 automatically stores the
LOB data in the associated auxiliary tables.
Chapter 4. Using LOBs 83

KB. See Figure 4-4 for a simple example of LOAD with file reference variables. More
examples are provided in 6.3, “LOAD” on page 171.

Figure 4-4 An example of LOAD with file reference variables

The LOB input files can be any of these types:

� A sequential file
� A member of a PDS or PDSE
� A HFS file on a HFS directory
� A z/FS file

The LOB input file contains the entire LOB value, and the name of this file is stored in the
normal load input file as a CHAR or VARCHAR field. So instead of containing the whole LOB
value, the normal input file now only contains a file name which in most cases does not cause
the sequential file to hit the 32 KB limit.

Additional keywords have been added to the CHAR and VARCHAR field-specifications of the
LOAD utility to support a file name as the input for the actual LOB value:

� BLOBF: The input field contains the name of a file with a BLOB value.
� CLOBF: The input field contains the name of a file with a CLOB value.
� DBCLOBF: The input field contains the name of a file with a DBCLOB value.

In case of CLOBF and DBCLOBF, CCSID conversions are done when the CCSID of the input
data is different than the CCSID of the table space. (EBCDIC, ASCII, Unicode, or CCSID
keywords might have been specified for the input data. The default is EBCDIC input data). In
case of BLOBF, no conversions are done.

When the input field of a BLOBF,CLOBF, or DBCLOBF is NULL, the resulting LOB value is
NULL (null indicator field for the CHAR or VARCHAR field specified in the NULLIF keyword is
hex FF).

The provided input files can be the result of:

� UNLOAD utility (PDS members, PDSE members, or HFS files)
� DSNTIAUL utility (sequential files)
� File generated by another application

LOB LOAD using File Reference Variables

LOAD is changed to allow an input field value to contain the name of file
containing a LOB column value. The LOB is loaded from that file.

//SYSREC DD *
"000001","UN.DB1.TS1.RESUME(AI3WX3JT)","UN.DB1.TS1.PHOTO(AI3WX3JT)"
"000002","UN.DB1.TS1.RESUME(AI3WX5BS)","UN.DB1.TS1.PHOTO(AI3WX5BS)"
"000003","UN.DB1.TS1.RESUME(AI3WX5CC)","UN.DB1.TS1.PHOTO(AI3WX5CC)"
"000004","UN.DB1.TS1.RESUME(AI3WX5CK)","UN.DB1.TS1.PHOTO(AI3WX5CK)"

LOAD DATA FORMAT DELIMITED
INTO TABLE MY_EMP_PHOTO_RESUME

(EMPNO CHAR,
RESUME VARCHAR CLOBF,
PHOTO VARCHAR BLOBF)

new syntax
84 LOBs with DB2 for z/OS: Stronger and Faster

Using the cross loader
The cross loader can be used to load LOB data that resides in an other table on the same or
another location. The other table can be on any DRDA server or the result of a request with
WebSphere Information Integrator (the follow-on product to Datajoiner). Use a three part
table name when accessing remote data with the first qualifier being the remote location.

The data that is loaded is the result set of a SQL SELECT statement specified in the
CURSOR specification of the LOAD utility.

When you use the cross loader function in DB2 9 (or in DB2 V7 or V8 with the PTF for APAR
PQ90263 applied), the LOB value can be greater than 32 KB. For this method, DB2 uses a
separate buffer for LOB data and only stores 8 bytes per LOB column in the cursor result set
buffer. The sum of the lengths of the non-LOB columns plus the sum of 8 bytes per LOB
column cannot exceed 32 KB. The separate LOB buffer resides in storage above the 16 MB
line and is limited by the available memory above the 16 MB line.

For more information about using the cross loader with LOB data, see 6.3.3, “Using the cross
loader” on page 172.

4.4.2 Inserting LOBs using the host application

To handle this situation, and assuming that the LOB data is already available in your OS/390
environment, besides using the LOAD utility, you can also use an application program which
performs the inserts of your LOBs.

You have to distinguish between three different scenarios:

� Inserting LOBs using file reference variables, introduced in DB2 9

� Inserting LOBs using a host variable large enough to hold the entire LOB value

� Inserting LOBs using a host variable not large enough to hold the entire LOB value, and
introducing the use of locators

Inserting LOBs using a file reference variable
The recommended and most likely the easiest way to feed your LOB columns from inside
your application is by simply passing the file to DB2 and inserting it into the LOB column.

Example 4-4 shows you the pseudo code of inserting a LOB value using a file reference
variable.

By using a file reference variable, you do not have to ensure that the amount of memory you
might need to hold the entire LOB value is available in your user address space, because the
LOB value is passed through DBM1 before it is written to a file.

Example 4-4 Loading LOB data using File Reference Variable

**
 010700 * COBOL DECLARATIONS FOR TABLE PAOLO.BLOB_BASE_TABLE *
 010800 **
 010900
 011000 01 BASE-TABLE-AREA.
 011100 05 LO-DOCUMENT-NR PIC X(10).
 011200 05 LO-DESCRIPTION PIC X(32).
 011210
 011220 01 LOBDATA USAGE IS SQL TYPE
 011230 IS BLOB-FILE.
 011300
....
Chapter 4. Using LOBs 85

....
014200 **
 014300 *
 014400 * INITIALIZATION OF USED VARIABLES
 014500 *
014900
 015000 INITIALIZE INTERNAL-VARIABLES
 015100 BASE-TABLE-AREA
 015200 LOBDATA
 015500
 015600 MOVE '0000000001' TO LO-DOCUMENT-NR
 015700 MOVE 'FIRST LARGE OBJECT' TO LO-DESCRIPTION
 015710 MOVE 'PAOLOR1.DB2V8.PDF' TO LOBDATA-NAME
 015720 MOVE 17 TO LOBDATA-NAME-LENGTH
 015730 MOVE SQL-FILE-READ TO LOBDATA-FILE-OPTION
....
....
021500 **
 021600 INSERT-BASE-TABLE SECTION.
 021700 **
 021800 *
 021900 * INSERT ROW INTO BLOB_BASE_TABLE
 022000 *
 022100
 022200
 022300 EXEC SQL
 022400 INSERT INTO PAOLO.BLOB_BASE_TABLE
 022500 (DOCUMENT_NR
 022600 ,DESCRIPTION
 022700 ,DOCUMENT)
 022800 VALUES
 022900 (:LO-DOCUMENT-NR
 023000 ,:LO-DESCRIPTION
 023100 ,:LOBDATA)
 023200 END-EXEC

Inserting LOBs using a host variable
Inserting a LOB already available at the host using a host variable is the second way to feed
your LOBs. There are two main techniques for how to move a LOB value to your host
variable. The first one requires a data set containing the entire LOB value in one row. The
only thing the application has to do is read a file, move the value to the assigned host
variable, provide the correct value to the length field, and execute the SQL INSERT
statement. The second technique consists of having a data set where a certain number of
rows have to be tied together to build the entire LOB. This might be a more common method
because of the maximum MVS allowed record length of 32,760 bytes, which is really a small
LOB. The rows can be tied together in one variable as shown in the pseudo code in
Example 4-5 on page 87.

Note: Make sure that your DSNZPARMs LOBVALA and LOBVALS are set appropriately
by using file reference variables to handle large files.

Important: Using a file reference variable requires that the source file has a record format
of VB. Using a file with record format FB results in SQLCODE -452 with reason 12.
86 LOBs with DB2 for z/OS: Stronger and Faster

Example 4-5 Rows tied together in one variable

MOVE 0 TO HV-LOB-LENGTH
PERFORM UNTIL EOF-INPUT
READ FILE INTO INPUTRECORD

IF NOT EOF-INPUT
MOVE LENGTH OF INPUTRECORD TO LENGTH
MOVE INPUTRECORD TO HV-LOB-DATA (HV-LOB-LENGTH + 1:LENGTH)
ADD LENGTH TO HV-LOB-LENGTH

END-IF
END-PERFORM

The definition of a host variable, large enough to contain an entire LOB value, is reported in
Example 4-6. You need to include it in your WORKING-STORAGE SECTION of your
application program if you try to insert a 1 MB CLOB, as in our example.

Example 4-6 Host variable declaration for a LOB column

01 HV-LOB USAGE IS SQL TYPE
IS CLOB (1M).

Using this syntax, DB2 generates the definition reported in Example 4-7 for your application
program.

Example 4-7 What the DB2 precompiler makes of your host variable declaration

01 HV-LOB.
 02 HV-LOB-LENGTH PIC S9(9) COMP.
 02 HV-LOB-DATA.
 49 FILLER PIC X(32767).

[repeated 32 times]
 49 FILLER PIC X(32).

The last filler is used to match exactly the requested host variable size of 1 MB as declared for
the CLOB. Be aware that your application only defines host variables in a size that you are
allowed to acquire, regarding your JCL and your system. You must acquire buffers large
enough to store your LOBs. This can be difficult for very large LOBs. For example, Enterprise
COBOL for z/OS has significantly raised the limits to support DB2 applications, for example,
the maximum data-item size has been raised to 128 MB, which is also the compiler limit for
WORKING STORAGE SECTION. The maximum PICTURE clause and the maximum
OCCURS integer have been raised to 134,217,727. Because of this limitation, for LOBs
bigger than 128 MB, you have to use another method for feeding your LOBs. See “Inserting
LOBs using locators” on page 88 for details. The application has to ensure the delivery of a
correct value in the length field of your LOB host variable.

Once the host variable contains the entire LOB, you can simply issue an SQL INSERT on the
base table to pass your LOB to DB2. You do not need to worry about storing LOBs in the
auxiliary table, because this is DB2’s job. From the application programmer’s point of view,
there is only one table containing all of the columns that are being used for LOB processing.
The statement shown in Example 4-8 is a possible way for you to insert your LOB data.

Example 4-8 Inserting a single LOB value using one host variable

EXEC SQL
 INSERT INTO BASE_TABLE
 (COL1, COL2, LOB)
 VALUES
 (:HV-COL1 ,:HV-COL2 ,:HV-LOB)
Chapter 4. Using LOBs 87

END-EXEC

We recommend that an application commits after completing the unit of work while inserting a
LOB, because COMMIT releases locks taken during insert and frees allocated storage in use
by the LOB. A sample program showing how to insert a LOB using one host variable is
included for BLOBs and CLOBs in the additional material described in Appendix A,
“Additional material” on page 259.

The only restriction is that inserting LOBs bigger than the maximum supported variable size
of your programming language is not possible using this method. If you want to insert a LOB
larger than the maximum supported variable size of your application language, refer to the
section “Inserting LOBs using locators” on page 88.

Inserting LOBs using locators
If you are not able to acquire a buffer large enough to hold your LOB data, you have to move
it in pieces into a DB2 LOB column. This technique is supported by using LOB locators. We
show two examples of pseudo code using locators. In the first one, we append values in
single chain passing through an intermediate locator until we are ready to insert the full LOB;
in the second one, we use instead multiple chains of locators.

Single locator chain
For this case, see the pseudo coding reported in Example 4-9 for a suggestion about
inserting large LOBs.

Example 4-9 Pseudo code inserting LOBs with one locator chain

Definitions:

HV-LOB USAGE IS SQL TYPE IS CLOB (10M)
LOB-LOCATOR-1 USAGE IS SQL TYPE IS CLOB-LOCATOR
LOB-LOCATOR-2 USAGE IS SQL TYPE IS CLOB-LOCATOR

Pseudo-Code:

MOVE 0 TO HV-LOB-LENGTH
EXEC SQL
SET :LOB-LOCATOR-1 = ‘’

END-EXEC

PERFORM UNTIL EOF-INPUT
READ FILE INTO INPUTRECORD

IF NOT EOF-INPUT
PERFORM BUILD-HOST-VARIABLE

END-IF
END-DO

PERFORM FINAL-INSERT

:BUILD-HOST-VARIABLE
MOVE LENGTH OF INPUTRECORD TO LENGTH

Note: Make sure that you use the largest host variable you can afford to keep the length of
a locator chain as small as possible before you reach your maximum LOB size, because
the intended use of locator chains is not dealing with a large number of interrogations. For
example, it is definitely better to use 100 times a 1 MB host variable in a locator chain than
using 10,000 times a 10 KB host variable to achieve the same result.
88 LOBs with DB2 for z/OS: Stronger and Faster

MOVE INPUTRECORD TO HV-LOB-DATA (HV-LOB-LENGTH + 1:LENGTH)
 ADD LENGTH TO HV-LOB-LENGTH

IF HV-LOB-LENGTH > 10000000 THEN
PERFORM APPEND-LOCATOR

MOVE 0 TO HV-LOB-LENGTH
MOVE SPACE TO HV-LOB-DATA

END-IF

:APPEND-LOCATOR
EXEC SQL
SET :LOB-LOCATOR-2 = CONCAT (:LOB-LOCATOR-1, :HV-LOB)

END-EXEC

EXEC SQL
FREE LOCATOR :LOB-LOCATOR-1

END-EXEC

MOVE LOB-LOCATOR-2 TO LOB-LOCATOR-1

:FINAL-INSERT
IF HV-LOB-LENGTH > 0 THEN
PERFORM APPEND-LOCATOR

END-IF

EXEC SQL
INSERT INTO BASE_TABLE
(KEYCOL1, COL2, LOB)

VALUES
(:HV-KEYCOL1, :HV-COL2, :LOB-LOCATOR-1)

END-EXEC

EXEC SQL
FREE LOCATOR :LOB-LOCATOR-1

END-EXEC

At the top of Example 4-9 on page 88, you can find the declaration of a CLOB host variable.
In this case, the size is 10 MB, because we assume 10 MB as the maximum usable host
variable size in our environment. The associated locators are also defined at the beginning of
the pseudo-code.

The first initialization of LOB-LOCATOR-1 is done by its first reference in the CONCAT
statement. Then the application reads the input file in a loop and it builds a host variable using
the rows from the input file until an end-of-file condition occurs. After reading one input
record, it is appended to our 10 MB CLOB host variable. After the host variable is nearly filled
up (CURRENT-SIZE > 10000000, the correct value depends on the possible length of your
input records), the host variable is appended to LOB-LOCATOR-1 using the CONCAT
function of DB2 to the already existing LOB value, where LOB-LOCATOR-1 is referring to
and set to LOB-LOCATOR-2. The locator is not assigned to a specific table yet, only the
reference to a value inside of DB2 is created. Using this technique, LOB materialization takes
place outside of the application in DBM1 for building the entire LOB.

If the host variable is filled with some data even after an end-of-file condition is detected, the
content of the host variable is applied one last time to the locator. After all records are
appended to your LOB locator (ensure that the correct record length is passed to DB2), the
application finally inserts the LOB, using the locator to provide the needed host variable for
the LOB value.
Chapter 4. Using LOBs 89

Attention should be paid to the FREE LOCATOR statement. If you do not FREE the used
locators, DB2 tends to keep them around in buffers allocated in the DBM1 address space
where the locators reside, and this can cause problems in already constrained virtual storage
environments. The intent of the FREE LOCATOR statement is to release the allocated virtual
storage space used by the locator itself as well as the virtual storage buffers in DBM1
containing the data referenced by the locator. Unless the LOCATOR has been defined with
HOLD, an SQLCOMMIT also frees the locator. If you do not free the locators after using
them, the storage remains allocated until COMMIT.

Make sure to issue the FREE LOCATOR statement for each append within the concatenation
loop as well; this decreases an counter used by DB2 to control the structure built to reference
the first locator. This minimizes the risk of causing virtual storage problems when inserting
many LOBs without issuing a COMMIT between your LOB insert statements. We recommend
that you COMMIT after each single LOB is inserted by your application. The MOVE simply
moves the value of our second locator to the first locator, which makes the first locator
available again, but with the value of the second locator, which we use temporarily for the
concatenation.

We have used a final insert statement at the end of the sample program, because we want to
avoid long lock durations on the base table. Another technique is to insert the first input
record into the table, assign a locator to the LOB value, and start building the locator for a
final update on the LOB column using the locator. When you plan to use the updating
method, be aware that you hold a lock on the base table and on the auxiliary table in DB2 V8.
In DB2 9, inserting partial LOB data can result in data corruption for UR readers accessing
the incomplete LOB data. The exclusive lock on the base table can prevent access by other
users to the base table depending on the lock size you use.

Error-handling routines and possible data movement to non-file-variables are not mentioned
in the example above.

A sample program showing how to insert a LOB using a 10 MB host variable and a single
locator chain is included in the sample files in Appendix A, “Additional material” on page 259.

Multiple locator chains
The method described in “Single locator chain” on page 88 is fast, but there is also one
disadvantage while using it. Every pass through the loop acquires a new LOB locator also
pointing to a previous one. Using this method, DB2 builds a chain of locators. Each locator is
associated to a control structure that describes how to construct the new LOB value by
concatenating a value copied from HV-LOB-DATA into DBM1 with the contents of the
identified LOB locator. This particular use of LOB locators does not hurt in terms of additional
storage acquired in the DBM1 address space, the agent’s LOB storage limit, and the
system’s storage limit. But it is not too hard to imagine situations where you could still run out
of space very quickly without proper locator management.

Each time a concatenation is added to the chain, the entire chain is interrogated using
recursion. Let us consider the chains we build using the concatenation technique as
secondary chains. See Figure 4-5 on page 91 for a better understanding of what happens in
DBM1 when you use the appending mechanism as mentioned above.
90 LOBs with DB2 for z/OS: Stronger and Faster

Figure 4-5 Secondary chain of locators

After assigning the first version of a locator to a host variable, the locator only contains the
first host variable (Version 1). After issuing the first concatenation of :LOCATOR-1 = CONCAT
(:LOCATOR-1, :HV-LOB), the second version of the same locator is created. Version 2 of the
locator contains the new host variable and points to Version 1 of the same locator. So DB2
builds a chain of locators. Appending data to a locator becomes more expensive when the
chain grows, because of the recursive interrogation technique we mentioned above. You can
especially run into a long chain when you build a large object of comparatively small input
records only using locators. This is not the recommended way to feed LOBs, so use a
reasonably sized host variable to minimize the length of the locator chain.

To improve performance, we can build a primary chain containing the previously built
secondary chain to reduce the number of recursions when appending a new host variable to
LOCATOR-1. So DB2 only has to go through the long chain containing all host variables when
we append a secondary chain to a primary chain. See Figure 4-6 for a visualization of
primary and secondary chains.

Figure 4-6 Primary chain of locators containing secondary chains

As soon as a secondary chain becomes very large, we can source it out to a primary chain to
reduce the level of recursion we have to go through when we append another host variable to
our secondary chain. You can use this method when appending big host variables to a single

host variable
3

host variable
2

host variable
1

LOCATOR-1
Version 3

LOCATOR-1
Version 2

LOCATOR-1
Version 1

host variable
3

LOCATOR-1
Version 3

host variable
6

LOCATOR-1
Version 6

host variable
2

LOCATOR-1
Version 2

host variable
5

LOCATOR-1
Version 5

host variable
1

LOCATOR-1
Version 1

host variable
4

LOCATOR-1
Version 4

LOCATOR-2
Version 1

LOCATOR-2
Version 1

LOCATOR-2
Version 2
Chapter 4. Using LOBs 91

locator does not satisfy your performance requirements after a large number of
concatenations for a secondary chain.

The pseudo code reported in Example 4-10 shows you how to perform the same insert as
above including a technique dealing with primary and secondary chains.

Example 4-10 Pseudo code inserting LOBs with multiple locator chains

Definitions:

HV-LOB USAGE IS SQL TYPE IS CLOB (100K)
LOB-LOCATOR-1 USAGE IS SQL TYPE IS CLOB-LOCATOR
LOB-LOCATOR-2 USAGE IS SQL TYPE IS CLOB-LOCATOR

Additional instruction before reading the 1st INPUTRECORD:
EXEC SQL
SET :LOCATOR-2 = ‘’

END-EXEC

Pseudo-Code:

:APPEND-LOCATOR
ADD 1 TO APPEND-LOCATOR-COUNTER

EXEC SQL
SET :LOB-LOCATOR-1 = CONCAT (:LOB-LOCATOR-1, :HV-LOB)

END-EXEC

IF APPEND-LOCATOR-COUNTER = 1000 THEN
EXEC SQL
SET :LOB-LOCATOR-2 = CONCAT (:LOB-LOCATOR-2, :LOB-LOCATOR-1)

END-EXEC

EXEC SQL
SET :LOB-LOCATOR-1 = ‘’

END-EXEC

MOVE 0 TO APPEND-LOCATOR-COUNTER
END-IF

:FINAL-INSERT
IF HV-LOB-LENGTH > 0 THEN
PERFORM APPEND-LOCATOR

END-IF

IF APPEND-LOCATOR-COUNTER > 0 THEN
EXEC SQL
SET :LOB-LOCATOR-2 = CONCAT (:LOB-LOCATOR-2, :LOB-LOCATOR-1)

END-EXEC
END-IF

EXEC SQL
INSERT INTO BASE_TABLE
(KEYCOL1, COL2, LOB)

VALUES
(:HV-KEYCOL1, :HV-COL2, :HV-LOB-LOCATOR-1)

END-EXEC

EXEC SQL
FREE LOCATOR :LOB-LOCATOR-1,:LOB-LOCATOR-2
92 LOBs with DB2 for z/OS: Stronger and Faster

END-EXEC

The difference between these two examples is the locator management in the
APPEND-LOCATOR subroutine. After 1,000 times of appending a host variable (which
means nearly 100 MB of data in our example), we create a primary chain by issuing SET
:LOCATOR-2 = CONCAT (:LOCATOR-2, :LOCATOR-1). After LOCATOR-1 was outsourced
successfully, we can reset it to point to an empty string to start building a new secondary
chain.

It is a good programming practice to free both locators after the final insert statement in order
to release the virtual storage allocated out of the DBM1 address space, and make it available
for further usage in the application. Otherwise, the storage remains allocated until the implicit
or explicit COMMIT releases the entire allocated storage.

Before you start coding your application, consider that every invocation of SQL takes a certain
amount of time. So try to keep SQL calls to a minimum number and exploit as much storage
as you can get for your host variable. This results in a reduction of SQL calls and leads you to
a better performing application. But, also be aware of storage allocation issues if you do not
free your locators.

A sample program showing how to insert a LOB using a 10 MB host variable and two locator
chains is included in the sample files described in Appendix A, “Additional material” on
page 259.

4.4.3 DB2 for Linux, UNIX and Windows import

If you have DB2 or DB2 Connect installed on a UNIX or Windows platform, you can upload
files containing LOBs that are stored on this platform to the host using the DB2 IMPORT
command.

The DB2 export and import utilities allow you to move data from a DRDA server database to a
file on the DB2 Connect workstation, and the reverse. You can then use the data with any
other application or relational database management system that supports this export or
import format.

For LOB data, it operates the same way as the DB2 LOAD utility on the host. Each LOB value
must be stored as a separate file on a LOB directory and the normal input file contains the
non-LOB data and the names of the LOB files.

In Example 4-11, we show an example of an IMPORT command that loads the host table
X.MYTABLE from the DB2 Connect workstation. This command can be issued from within the
command line processor (CLP) after the connection to the host DB2 system has been
established using the CONNECT statement.

Example 4-11 IMPORT command

import from filename of ixf lobs from lobpath insert into X.MYTABLE

Important: Do not make extensive use of LOB locators by concatenating small pieces of
storage. Instead, concatenate the largest host variable you can afford to acquire to benefit
from performance and reduce the risk of virtual storage constraints.
Chapter 4. Using LOBs 93

Explanations of Example 4-11 on page 93 are:

� filename: Contains the name of the IXF input file that contains the data to be loaded (data
of the base table columns and the names of the LOB files). If the path is omitted, the
current working directory is used.

� IXF: File format of the input file supported by DB2 on the host (IXF is integrated exchange
format, in which most of the table attributes are saved).

� lobpath: Specifies the path where the LOB files are stored. The names of the LOB data
files are stored in the main input file in the column that is loaded into the LOB column.

� into: Specifies the host table or host view to be loaded.

The best way to create a working base for the IMPORT command is to first EXPORT a similar
table from the host to the workstation using an EXPORT command as shown in
Example 4-12. Similarly, you first have to CONNECT to the host DB2 system.

Example 4-12 EXPORT command

export to filename of ixf lobs to lobpath lobfile lobfile modified by
lobsinsepfiles select * from X.MYTABLE

The explanations for Example 4-12 are:

� filename: Contains the name of the IXF file to which data is to be exported. If the
complete path to the file is not specified, the export utility uses the current directory and
the default drive as the destination.

� lobpath: Specifies a path to a directory in which the LOB files are to be stored.
� lobfile: Contains the base file name for the LOB files. When creating LOB files during an

export operation, file names are constructed by appending the current base name from
this list to the current path from lobpath and then appending a 3-digit sequence number.
For example, if the current LOB path is the directory c:\u\davy\lobpath, the LOB files
created are c:\u\davy\lobpath\lobfile.001.lob, c:\u\davy\lobpath\lobfile.002.lob, and so
forth.

� lobsinsepfiles: Required parameter to specify that the LOBs are stored in separate files on
the lobpath.

� From: Specifies a host table or host view containing the columns to unload from the host.

Afterwards, you can create a similar IXF file on the workstation and edit it with the names of
the LOB files you want to upload.

See the DB2 for Linux, UNIX and Windows manuals for complete information about the
IMPORT and EXPORT commands.

4.5 Locking

Locking for LOBs has significantly changed in DB2 9; therefore, the information about LOB’s
locking techniques with DB2 V8 and DB2 9 are mentioned in two separate sections.

For LOB locking with DB2 V8, see 4.5.1, “Locking for LOBs with DB2 V8” on page 95. Locking
for LOBs beginning with DB2 9 is described at 4.5.2, “Locking for LOBs with DB2 9” on
page 101. Note that the different locking mechanisms introduced in DB2 9 were not retrofitted
to DB2 V8.

Tip: Be sure that the input file does not contain values for the ROWID column. These are
rejected by DB2 on the host when the ROWID column was defined there as GENERATED
BY DEFAULT.
94 LOBs with DB2 for z/OS: Stronger and Faster

4.5.1 Locking for LOBs with DB2 V8

Locking considerations for LOBs are different from normal locking techniques for other DB2
objects. Because a single LOB can grow up to 2 GB, and therefore its data can span over a
lot of pages, a new mechanism was introduced to ensure row consistency and data integrity
while accessing LOB values to try to minimize the impact on the accessed data. This is done
using a combination of base table locks and LOB locks.

For the following examples and explanations, we assume LOCKSIZE ANY. If you specify
other lock sizes in your environment, the locked objects might differ.

The LOB lock
A LOB lock is a type of lock which is used to provide concurrent access on LOBs. These new
types of locks support access to large objects for reading and updating applications without
interfering with each other. You can find a shared LOB lock (S-LOB lock) and an exclusive
LOB lock (X-LOB lock) as lock types for large objects in your system. There is no need for an
update LOB lock, because updating a LOB value always means deleting and inserting a
value, so that there are not any direct updates on LOB data pages. A LOB lock always locks
an individual LOB, and it comes with a corresponding lock on the base table to ensure row
consistency. A LOB lock only occurs as a column lock on a single value.

There is no locking for untouched LOBs, because a data page cannot contain values of more
than one single LOB value. But if you look at lock escalation mechanisms or if you explicitly
specify LOCKSIZE TABLESPACE, you can find more locks than the number accessed by
your application. Locks on LOB values are only escalated to the table space level, because
there is only one table in each LOB table space which can be ignored for locking purposes.
See Figure 4-7.

Figure 4-7 Lock escalation on LOBs

Auxiliary Table

escalation

LOB table space

LOB table space lock

LOB lock
Chapter 4. Using LOBs 95

Locks with SELECT
Locking, when selecting LOBs, differs from selecting other data types in DB2. There is also a
difference in terms of accesses because the data describing the LOB is stored in a base
table, while the LOB value itself is stored in an auxiliary table. When you select a LOB value
into your host variable, you code your SQL statement as if accessing just the base table.
Accessing the auxiliary table directly using SQL is not supported. The first thing DB2 does is
access the base table to find out which row in the auxiliary table it has to access.

For this access to the base table, an intent-share (IS) lock is needed on the table space
containing the base table, another one on the base table itself, and a share (S) lock on the
page accessed while retrieving or validating the rows of the base table. After the particular
LOB is located, a IS-lock on the LOB table space and a single S-LOB lock on the LOB value
are acquired to ensure row consistency. The lock is held by DB2 until the whole value is
delivered to your host variable, so that no updating transactions can interfere with your
application and the LOB does not disappear while your application is reading it. Figure 4-8
gives you an idea of how DB2 serializes locks when accessing a single LOB value.

The numbers indicated in the figures in this section reflect the sequence in which the locks
are taken.

Using lock avoidance or uncommitted read does not lock the accessed row in the base table
while you are retrieving the LOB value. In this case, the part of a ‘logical row’ (containing the
entry in the base table and the associated LOB value) which resides in the base table can be
updated by concurrent transactions while you retrieve the associated LOB value.

Figure 4-8 SELECT lock sequence

Note: This differs from the general DB2 lock mechanism, where no parts of a row can be
updated while it is delivered to your application. Using lock avoidance or uncommitted read
delivers the row as it was at the point in time when your SQL statement was issued.

BASE Table Space: IS (1)

Page:
S (3)

BASE Table: IS (2)

LOB Table Space: IS (4)

LOB:
S (5)
96 LOBs with DB2 for z/OS: Stronger and Faster

Using ISOLATION (UR) for LOBs
You can use ISOLATION (UR) for your application, but DB2 has to request an S-LOB lock to
ensure data integrity while the application retrieves the data. But what is DB2 doing when you
access your LOB data even with ISOLATION (UR)? When using uncommitted read, first an
S-lock is acquired on the base table to prevent you from being hit by mass delete statements.
We refer to this type of lock as an S mass delete lock. The next lock to be requested is an
intent-share (IS) lock on the LOB table space and an S-LOB lock on the LOB itself. An S-LOB
lock has to be requested to protect the LOB value from updates or deletes while the
application retrieves the value. As mentioned before, a LOB value can span several pages
and it takes time to retrieve it; during this time, no other transaction is allowed to change its
value. Using S-LOB locks, even while using uncommitted read, prevents LOB data from
getting corrupted by someone else during the delivery process to your application by DB2.
Figure 4-9 shows LOB lock serialization when you use uncommitted read.

Figure 4-9 SELECT lock sequence using uncommitted read

Locks with INSERT
Inserting a LOB from a locking point of view requires more locks than inserting data in a
normal table, because there are two tables involved every time during an insert process.
However, DB2 only gets a lock on the base table if it is segmented. In general, at first, an
intent exclusive (IX) lock is taken on the base table space and the base table. The same type
of lock is acquired for the LOB table space after establishing the first two locks. After the three
IX locks are established, an exclusive (X) lock is taken on the data pages which are used for
inserting the LOB value. The last lock is an X-lock on the page or row in the base table where
the new row is stored. The reason why insert applications get an X-LOB lock is to prevent
access by readers before the LOB is completely inserted. The actions performed by DB2
when you insert a LOB value from the locking point of view are shown in Figure 4-10 on
page 98.

BASE Table Space:

BASE Table: S Mass-Delete (1)

LOB Table Space: IS (2)

LOB:
S (3)
Chapter 4. Using LOBs 97

Figure 4-10 Insert lock sequence

The IX LOB locks are held until the application commits or the thread terminates.

Locks with DELETE
In this section, we differentiate between the locking operations occurring with a singleton
delete and a mass delete.

Deleting a single LOB value
A LOB delete requires more locks than just those on the LOB table space, as shown in
Figure 4-11.

Figure 4-11 Delete lock sequence

After establishing the usual IX locks on the base table space and the base table (if
segmented), only a intent-share (IS) lock is requested for the LOB table space. The page
containing the associated data in the base table is also provided with an X-lock. There is no
IX lock request for the LOB table space, because deleting a LOB value is implemented by
deallocating the allocated pages used by the LOB, and not directly updating the data pages.
For this reason, the requested lock on the LOB is only a shared LOB (S-LOB) lock. If an

BASE Table Space: IX (1)

Page:
X (4)

BASE Table: IX (2)

LOB Table Space: IX (3)

LOB:
X (5)

BASE Table Space: IX (1)

Page:
X (3)

BASE Table: IX (2)

LOB Table Space: IS (4)

LOB:
S (5)
98 LOBs with DB2 for z/OS: Stronger and Faster

S-LOB lock exists for a LOB value, the deallocation is done at DELETE time, but the space
can only be reused if all S-LOB locks held by readers (see “Locks with SELECT” on page 96
for locks requested by LOB readers) are released. So deleting applications acquire S-LOB
locks to reserve space in case of a rollback.

Even if the deleting application commits the unit of work or its thread ends, the COMMIT is
done and the LOB is only accessible for the thread currently reading the LOB value.

Comparison with a mass delete
A mass delete also places the common IX-lock as shown in the examples above. For the
base table, DB2 requires an X-lock and also a mass-delete X-lock on the base table. An
X-lock for the LOB table space is acquired, too. See Figure 4-12 for a brief overview of locks
taken at mass-delete time.

Figure 4-12 Locks acquired by mass delete

Locks with UPDATE
Discussing what happens when a LOB value is updated by an application program is quite
easy after having seen how locks are established at delete and insert times. A LOB update
always consists of a single LOB delete and a LOB insert. You can see these actions only
serialized when updating a LOB column. After DB2 takes both IX-locks on the base table
space and the base table, it also requests an X-lock for a particular row in the base table.
After all locks are established by the internal resource lock manager (IRLM), DB2 acquires an
IS-lock on the LOB table space and an S-LOB lock to delete the old LOB. When the LOB is
deleted, the new row is inserted after changing the IS-lock on the LOB table space to an
IX-lock, and an X-LOB lock is set for the new LOB value. You can find the sequence
illustrated in Figure 4-13 on page 100.

BASE Table Space: IX (1)

BASE Table: IX (2)
 X (3)
 X mass delete (4)

LOB Table Space: X (5)
Chapter 4. Using LOBs 99

Figure 4-13 Lock sequence when updating a LOB column

Additional information about locking
In this section, we add some considerations about LOB locking.

Conflicts between SELECTers and DELETErs
After you have read the previous sections, you can ask about concurrency of selecters and
deleters. While readers and deleters both take S-LOB locks, they can coexist without
interfering with each other. The pages where the LOB data resides are only reused if there
are no more S-LOB locks on the LOB, which simply means that nobody accesses the LOB at
this particular point in time.

Shadow Copy Recovery
By shadow copy recovery, we mean the deallocation and reallocation of data pages in a LOB
table space as they have been flagged in the space map pages. When you delete a LOB
value, the deletion deallocates pages and logs only the deallocation. The LOB data is left in
the pages within the LOB table space as a shadow (dormient) copy of the deleted data. A
rollback simply results in reallocation of the previously deleted pages. The S-LOB lock taken
at delete prevents a later insertion from reusing the space deallocated by the deletion. The
S-LOB lock does not prevent deletions of that LOB but ensures that the space allocated to
the LOB is not reused until the LOB lock is released. If the LOB is deleted, the shadow copy
of that version of the LOB persists until all LOB locks on that LOB version are released.

When no LOB locks are taken
There are some situations where DB2 knows that it does not make sense to ask IRLM for a
lock. There are at least four instances in DB2 V8 when no LOB locks are acquired:

� Selecting a LOB value that is NULL or zero length
� Deleting a LOB value that is NULL or zero length
� Inserting a LOB value that is NULL or zero length
� Updating a LOB value that is NULL or zero length to zero length or NULL

Changes on base table rows are logged as usual, only indicator column changes are logged
within the base table log record.

BASE Table Space: IX (1)

Page:
X (3)

BASE Table: IX (2)

LOB Table Space: IS (4), IX (6)

LOB:
S (5)

LOB:
X (7)

Old New
100 LOBs with DB2 for z/OS: Stronger and Faster

Summary of locks with DB2 V8
Locks are mainly used to determine whether space can be reused for deleted LOBs, not for
concurrency control.

Locks are held until commit, and held across commit for held cursors or held locators:

� Insert/Update - X LOB lock
� Select/Delete - S LOB lock

– There is no lock avoidance.
– ISOLATION UR skips uncommitted inserts.

S locks, if acquired, are held until commit.

4.5.2 Locking for LOBs with DB2 9

One of the most important improvements for LOBs introduced in DB2 9 is the different locking
technique compared to previous versions of DB2. Before DB2 9, DB2 acquired a LOB lock in
order to:

� Serialize access to the LOB table space
� Determine whether deallocated space can be reallocated and reused

Prior to DB2 9, readers have acquired S-LOB locks to prevent their storage from getting
reclaimed while reading the LOB value. The space was only reclaimed by DB2 if all of the
readers were gone and had released their locks.

Even if it does not look obvious at first sight, isolation UR readers also could cause lock
escalations on LOB table spaces with pre-DB2 9 LOB locking mechanisms. Therefore,
several performance implications for concurrently running processes might have occurred.

Figure 4-7 on page 95 describes the process of a possible lock escalation with isolation UR
access to LOB data.

Recommendations for V8:

� Increase LOCKMAX value to avoid lock escalation.

� Issue frequent commits, free the locators, and release held cursors to reduce the
number of held LOB locks.

� In data sharing, specify GBPCACHE SYSTEM to cache space map pages to improve
performance without flooding the global buffer pool with LOB data pages.
Chapter 4. Using LOBs 101

Figure 4-14 Lock escalation for UR readers

A thread accesses the base table using isolation level UR on a relational scan to avoid any
locking conflicts. To ensure data integrity of LOB data while reading them, even an isolation
UR reader has to acquire an S-LOB lock to ensure data consistency between a base table
row and its corresponding LOB value (see “Using ISOLATION (UR) for LOBs” on page 97 for
more information). Assuming the UR reader reads more than one LOB without committing
frequently, which is typically the case for UR readers, the number of LOB locks can frequently
exceed the maximum limitation for the affected table space and DB2 has to escalate the lock
scope to the LOB table space level.

Another problem facing UR readers relies on the fact that DB2 performs a base row update
and its corresponding LOB update in two separate stages, which implies UR readers might
retrieve the new data from the base table row but are unable to fetch its corresponding LOB
data, which can even be partial LOB data in a data sharing environment. The reason for
retrieving partial LOB data in data sharing is related to physical LOB storage spanning
multiple pages. Because the LOB pages and the LOB’s index pages can be written to the
global buffer pool (GBP) in any order, it is possible for an UR reader on a different member to
see partial LOB data.

What is so exciting about locking for LOBs in DB2 9
DB2 9 reduces and almost eliminates the acquisition of LOB locks on every LOB operation.
For UPDATE, DELETE, and SELECT operations, the current LOB lock is removed. The lock
duration of S-LOB lock for UR readers has been optimized and shortened from commit
duration to autorel duration (see “Autorel mode” on page 103). Beginning with DB2 9, you
should no longer experience lock escalations on your LOB table spaces.

The enhanced locking mechanism for LOBs minimizes the use of LOB locks and provides
better management to resolve the serialization process between isolation UR readers and
concurrently running INSERT and UPDATE operations. In general, now there are only X-LOB
locks for the period of time when a LOB value is obviously inconsistent, which is the case
during INSERT or UPDATE processing of a single LOB value.

S S

S

S S

S

R-Scan

LOB Table Space

Base Table Space

S

102 LOBs with DB2 for z/OS: Stronger and Faster

DB2 9 now allows you to serialize the access of a LOB table space by only maintaining the
locks on a base table row or a base table space data page. This base table lock basically
blocks readers with isolation levels CS, RS, and RR except readers using UR who are using
a lock avoidance scheme. For a LOB table space, DB2 now rarely takes locks to ensure data
integrity.

There are two new lock duration modes introduced in DB2 9:

� Manual duration mode

For INSERT and UPDATE operations, DB2 must continue to hold an X-LOB lock on the
LOB data. The locks on the LOB table space pages are released immediately after
completing the INSERT or UPDATE statement of the corresponding LOB table space
pages and its auxiliary index. This is called manual duration mode. Access to LOB data by
non-UR readers is furthermore prohibited due to an exclusive lock on the base table
space row or data page. In a data sharing environment, prior to unlocking, DB2 flushes out
the changed data of LOB data pages and its index pages to the global buffer pool. These
operations ensure that any UR reader in other DB2 subsystems can access a complete
copy of your LOB data.

Changing to manual duration mode can significantly shorten the time that a LOB lock is
held and improve the overall lock contention.

� Autorel mode

For SELECT operations, DB2 relies on the lock taken on the base table to ensure the
access of a correct copy of LOB data. As soon as your application uses isolation UR, if
LOB columns are to be selected, the UR reader must acquire a S-LOB lock to serialize
with concurrent INSERT and UPDATE operations. The lock is immediately released after
it was acquired because the purpose was just to check that no other lock had been
established. This is called autorel mode.

We refer to a third lock mode called commit duration, which releases the locks at COMMIT
time. This lock mode is used by DB2 V8 for INSERTs.

The basics for concurrency improvements
For concurrency management, DB2 keeps track of a global value called Read Log Sequence
Number (Read LSN or RLSN), containing the information about the oldest read claim in each
unit of recovery in the system:

� In data sharing, the RLSN is maintained at buffer pool level.
� In non-data sharing, the RLSN is maintained at page set level.

The read claim is released at COMMIT time or when a thread is deallocated.

DB2 9 stores a LRSN in data sharing mode and a relative byte address (RBA) in non-data
sharing mode for each deallocated page under one lower space map page, containing the
information when a data page was last updated. Note that this group LRSN is not effective to
represent the status of each data page covered by this space map.

We assume page locking in the following discussion.

Space reuse in LOB table spaces
Reusing space in a LOB table space is an issue when you insert or update your LOB data,
because deleting a LOB or removing parts from a LOB value results in the deallocation of the
old LOB data pages and the space might then be reused for a new LOB value. Before LOB
data pages can be reused, DB2 has to guarantee that the LOB data residing in the data
pages, which are going to be reused, is no longer accessed by any other thread in the
Chapter 4. Using LOBs 103

system. This means that before space reuse can be invoked, all readers of LOB values of the
affected LOB data pages have to have completed their access.

For space reuse in a LOB table space, DB2 9 removes the use of LOB locks previously
required to determine which deallocated LOB storage can be reused for new allocations.

DB2 now depends on a comparison of the read LRSN and delete LRSN to determine the
availability of already deallocated storage.

When a unit of recovery (UR) starts accessing a LOB table space, it first needs to acquire a
read claim, this is the read LRSN. DB2 keeps tracks of this read LRSN for each UR and
knows the read LRSN of the oldest one. By knowing the delete LRSN of the page considered
for reuse, DB2 can use the comparison between the delete LRSN and the oldest read LRSN
to determine if the UR is committed or not. When DB2 deletes a LOB, it marks all the pages
for that LOB to be deallocated on the status bit and stores the deleted LRSN for each page on
the space map page.

Before V9, the delete LRSN is one value on the low level space map page and it indicates the
latest deletion of any page belonging to this low level space map page. One or more low-level
space map pages refer to all data pages of one single LOB column. This LRSN comparison
does not give enough information to reuse a page which was already committed. A LOB
LOCK must be used.

In V9, DB2 stores the delete LRSN on each page. This allows DB2 to use the LRSN
comparison method to determine if the page can be reused.

See Example 4-13 for a brief description.

Example 4-13 Comparison of RLSN and LSN to reclaim space

RLSN of oldest read claim : X’FEDCBA098765’
LSN in LOB page : X’1234567890AB’

RLSN > LSN of page considered for reuse
Yes: Page can be reused, reader started after the deallocated page was committed

RLSN of oldest read claim : X’1234567890AB’
LSN in LOB page : X’FEDCBA098765’

RLSN > LSN of page considered for reuse
No: Page cannot be reused because of possible active reference

In the first case, the RLSN of the oldest reader in the system is greater than the LSN
contained in the LOB page. This means that the pages considered for reuse were deallocated
and committed before the reader has started accessing LOB data; therefore, it is safe to
reuse the data pages for a new LOB value.

In the second case, the RLSN of the oldest reader in the system is less than the LSN
contained in the LOB page. This implies that the page considered for reuse was deallocated
after the oldest reader has started accessing that particular LOB data. As a consequence, the
affected LOB data page cannot be reused since reusing the data page can result in
corrupting data for the application currently accessing its value.
104 LOBs with DB2 for z/OS: Stronger and Faster

Locks with INSERT
In case you INSERT a row containing a LOB value, you get an X-lock on the base table data
page. While your data is moved to the auxiliary table where your LOB column resides, you
also get an X-LOB lock in manual duration mode. Free LOB data pages are determined as
explained in “Space reuse in LOB table spaces” on page 103. If no reusable data pages are
available, DB2 allocates a set of new LOB data pages. After the INSERT statement has finally
moved your data to your LOB columns, all X-LOB locks are released because your LOB data
is now consistent.

Since LOB values can only be accessed using SQL statements on the base table which is still
holding an X-lock on the affected data page or row, your LOB data can only be accessed by
UR readers at that particular point in time. The X-lock on the base table data page is released
at COMMIT time.

Locks with UPDATE
From the operational point of view, updates on LOB values still consist of deallocating the old
data pages and allocating new data pages for the new LOB value. The same is true for
reclaiming space during LOB updates as it is for inserting LOB values.

First, every UPDATE statement gets an X-lock on the base table data page. Passing the new
LOB value to DB2 behaves in almost the same way as when you insert a new LOB value;
X-LOB locks on the auxiliary table are acquired in manual duration mode until the insert of the
new LOB value is complete. All X-LOB locks are released as soon as the UPDATE statement
completes. The current LRSN/RBA is stored in the low-level space map pages pointing to
that particular version of the LOB that is being deallocated.

From a DB2 point of view, data integrity can now be guaranteed, because only UR readers
can read the base table and access consistent LOB data. The X-lock on the base table data
page is released at COMMIT time.

Locks with DELETE
Each DELETE statement holds an X-lock on the base table space data page it references.
The data pages containing the associated LOB value in the LOB table space are deallocated
as they were in former versions of DB2 using the information in the space map pages during
DELETE processing. The LOB value itself can still be accessed by readers that were already
referencing the LOB value before the pages were deallocated. No LOB lock is taken.
Statements currently accessing deallocated LOB data pages can complete their LOB
reference since no additional check is performed once the LOB is accessed through the
space map pages. But again, the current LRSN/RBA is stored in the low-level space map
pages pointing to that particular LOB value. Further reference to the LOB data pages is
prohibited because of the row being removed from the base table.

Locks with SELECT
Depending on the isolation level you use for your application, DB2 can use lock avoidance on
the base table. If lock avoidance is not an option, DB2 acquires an S-lock on the base table

Important: In case your applications insert partial LOB data to append the remaining
bytes afterwards, DB2 cannot ensure data integrity since the LOB can be accessed by UR
readers after the originating INSERT statement succeeds.

Important: In case your applications update LOB data partially and do not replace the
entire LOB value using an UPDATE statement, DB2 allows UR readers to access
inconsistent LOB values from an application point of view.
Chapter 4. Using LOBs 105

data page that you reference. Using this common technique, data consistency can be
guaranteed for the data residing in the base table. If the data is consistent in the base table,
the LOB data is also consistent and can be accessed. Once your application accesses the
LOB data for a specific row through the base table, data can be retrieved even if the LOB
data pages are deallocated by another transaction during retrieval time. Only the next
reference to the LOB itself through the base table fails if a concurrently running DELETE
statement deletes the corresponding row from the base table.

Locks with SELECT UR
Using uncommitted read on the base table, data integrity among the base table row is
guaranteed. For access to LOB values corresponding to the base table rows, DB2 requests
an unconditional S-LOB lock on each LOB data that is to be selected. Requesting an
unconditional lock in our case means that an S-LOB lock is requested and immediately
released afterwards before retrieving the LOB value. The reason for this behavior is to
serialize with concurrent INSERT or UPDATE operations holding an X-LOB lock on the LOB
data pages, making sure that no inconsistent LOB data from a DB2 point of view can be
accessed.

SKIP LOCKED DATA clause
DB2 9 also introduces the SKIP LOCKED DATA clause, allowing you to bypass locked rows
on your SELECT statements as on searched UPDATE and DELETE operations.

You can use the SKIP LOCKED DATA clause to minimize transaction suspensions as well as
to avoid the possibility of deadlocks. Using this clause, all locked rows, which cannot be
accessed to complete your SQL statement, are skipped.

The SKIP LOCKED DATA clause applies to the base table, the considerations on LOB locks
seen in the previous sections apply only to the LOB table rows selected from the base table,
not the skipped rows.

Summary of locks with DB2 9
A short summary of how locks are established is as follows:

� INSERT operations require an X-lock on each LOB data page to be inserted with a
manual duration instead of a commit duration (lock and unlock sequence).

� UPDATE operations require an X-lock on each LOB data to be updated but with a manual
duration instead of commit duration.

� DELETE operations require no LOB lock but an X-lock on the base table.

� SELECT operations require no LOB lock while accessing the LOB data.

� UR readers request a unconditional S-LOB lock on each LOB data that is to be selected.
This is to serialize with concurrent INSERT or UPDATE operations. The lock is released
immediately.

� Under INSERT or UPDATE operations, DB2 now depends on the Read LSN to decide the
availability of each deallocated page, therefore, no LOB lock is required.

� In data sharing, DB2 needs to flush LOB data and index pages to GBP before releasing
the LOB lock.

Recommendation for DB2 9:

� In data sharing, consider specifying GBPCACHE CHANGE to avoid flushing changed
pages to disk.
106 LOBs with DB2 for z/OS: Stronger and Faster

4.6 Unloading LOBs

Dealing with all kinds of large objects is challenging from the application’s point of view. You
face new challenges in dealing with objects bigger than most common data objects. In this
section, we discuss unloading LOBs to store them in a data set, and also application
programming techniques to manipulate LOBs without retrieving them. We use the term
unloading rather than just reading, because the normal usage of LOBs would be to place the
content of the read data into another data container of some sort.

DB2 9 introduces file reference variables supporting you to unload LOB data to a sequential
file, PDS, PDSE data set, or a HFS file. Refer to 2.4, “LOB file reference variables” on
page 18 for a detailed description of the usage of File Reference Variables. Unloading and
loading LOB values using a file reference variable is the recommended way in DB2 9
compared to using LOB locators.

Before DB2 9, you could use application logic or the UNLOAD utility to externalize your LOB
data to an external file. The UNLOAD utility now also supports rows containing LOB values
and, therefore, exceeding a total size of 32 KB. You can find more information about the
UNLOAD utility in 6.1, “UNLOAD” on page 160.

You can find examples for inserting LOB data through an application in 4.4.2, “Inserting LOBs
using the host application” on page 85.

4.6.1 Unloading a LOB using an application
Unloading a LOB value into a certain data set is easy when compared to the manipulation
techniques described in 4.7, “Updating LOBs” on page 120. In general, the method you use
to unload LOB values depends on the version of DB2 you use and on the maximum available
size of a host variable. If you are able to allocate a host variable that is large enough to
contain the maximum size of a LOB value that you want to unload, unloading is easier than
using locators.

Case 1: Unloading a LOB using a file reference variable
If your system runs DB2 9, the recommended way to unload a LOB column is using a file
reference variable, pointing to the destination data set.

For using file reference variables, DB2 9 introduces three new types of SQL host variables:

� BLOB-FILE
� CLOB-FILE
� DBCLOB-FILE

These SQL host variables can be used either to insert a LOB from a file or to select a LOB
value from DB2 to a file. Using this technique, an entire LOB value can be selected or
inserted without being required to acquire a contiguous piece of storage to hold the entire
LOB value. The LOB value is not passed through your application’s memory, therefore
bypassing the limitation of your host language on the maximum size allowed for host
variables. Figure 4-16 on page 112 provides the pseudo code for using a file reference
variable to unload a LOB value.

Example 4-14 Unloading LOB data using a file reference variable

Definitions:

01 LOBDATA USAGE IS SQL TYPE IS BLOB-FILE

Pseudo-Code:
Chapter 4. Using LOBs 107

MOVE 'PAOLO.SG247270.PDF' TO LOBDATA-NAME
MOVE 18 TO LOBDATA-NAME-LENGTH
MOVE SQL-FILE-CREATE TO LOBDATA-FILE-OPTION

EXEC SQL
SELECT LOB
INTO :LOBDATA
FROM BASE_TABLE
WHERE KEYCOL1 = :HV-KEYCOL1

END-EXEC

By providing a variable with SQL TYPE IS BLOB-FILE, the precompiler generates the
structure as reported in Example 4-15.

Example 4-15 What the DB2 precompiler generates for LOB files

01 LOBDATA.
 49 LOBDATA-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
 49 LOBDATA-DATA-LENGTH PIC S9(9) COMP-5.
 49 LOBDATA-FILE-OPTION PIC S9(9) COMP-5.
 49 LOBDATA-NAME PIC X(255).

[...]

77 SQL-FILE-READ PIC S9(9) COMP-4 VALUE +2.
77 SQL-FILE-CREATE PIC S9(9) COMP-4 VALUE +8.
77 SQL-FILE-OVERWRITE PIC S9(9) COMP-4 VALUE +16.
77 SQL-FILE-APPEND PIC S9(9) COMP-4 VALUE +32.

The LOBDATA-NAME contains the name of the file where the LOB is going to be unloaded
and it can be provided at run time. LOBDATA-NAME-LENGTH contains the length of the
LOBDATA-NAME itself. DB2 always creates a variable length file with LRECL 27,994. The
LOBDATA-DATA-LENGTH is set to the length of the new data written to the file and is
ignored as input. The values of fields SQL-FILE-READ, SQL-FILE-CREATE,
SQL-FILE-OVERWRITE, and SQL-FILE-APPEND can be used as input for
LOBDATA-FILE-OPTION to tell DB2 how to deal with the specified output file:

� SQL-FILE-READ for a regular file that can be opened, read, and closed.

� SQL-FILE-CREATE creates a new file. If the file already exists, an error is returned.

� SQL-FILE-OVERWRITE for existing files with the specified name. If the file exists, it is
overwritten; otherwise, DB2 creates the file.

� SQL-FILE-APPEND for existing files with the specified name. If the file exists, new data is
appended; otherwise, DB2 creates the file.

You can still use these variables to move them to the FILE-OPTION field since DB2 generates
them at precompile time. For more information about file reference variables, refer to 2.4,
“LOB file reference variables” on page 18.

Note: DB2 always uses variable length data sets with LRECL 27,994 for CLOBs, BLOBs,
and DBCLOBs when you unload your LOB values using a file reference variable.
108 LOBs with DB2 for z/OS: Stronger and Faster

A sample program showing how to unload a LOB using a file reference variable for BLOBs
and CLOBs is included in the files described in Appendix A, “Additional material” on
page 259.

Case 2: Unloading a LOB using one host variable
Assume you want to unload a 10 MB CLOB value of a text document. The first thing you have
to verify is the format in which the data is needed, because you cannot write the data to a
single row in a data set. So the application has to split up the data into the requested file
format. In our example, we assume an output file of LRECL 1,024 using record format FB. So
the application selects the entire LOB value into a host variable and writes the value of the
host variable in 1,024 byte pieces to an output data set. Example 4-16 provides a pseudo
code to perform a LOB unload using an application using one host variable.

Example 4-16 Unloading LOB data using one host variable

Definitions:

HV-LOB USAGE IS SQL TYPE IS CLOB (10M)

Pseudo-Code:

EXEC SQL
SELECT LOB
INTO :HV-LOB
FROM BASE_TABLE
WHERE KEYCOL1 = :HV-KEYCOL1

END-EXEC

PERFORM WRITE-DATA

:WRITE-DATA
MOVE 1 TO BYTE-COUNTER

PERFORM UNTIL BYTE-COUNTER > HV-LOB-LENGTH
MOVE HV-LOB-DATA (BYTE-COUNTER:OUTPUT-FILE-LENGTH) TO OUTPUT-RECORD
WRITE OUTPUT-RECORD
ADD OUTPUT-FILE-LENGTH TO BYTE-COUNTER

END-PERFORM

This solution works fine as long as the maximum LOB value is not bigger than the largest size
of a host variable that you are allowed to acquire. If you are not able to acquire a host variable
as big as the size of your maximum LOB value, you can use locators for unloading your data
as we discuss in Case 3.

A sample program showing how to unload a LOB using a host variable for BLOBs and CLOBs
is included in the files described in Appendix A, “Additional material” on page 259.

Case 3: Unloading an entire LOB using locators
When you are unable to define a host variable that is the size of the LOB data that you want
to unload, you can use a different technique. A method to unload huge amounts of data is
using locators to reference a whole LOB value. The application only retrieves a part of a LOB,
which can be easily written to an output file. After processing the retrieved part, the next part
is retrieved and also written to an output file. We assume the same file attributes as in
Example 4-16. Example 4-17 on page 110 gives you an idea how to unload a LOB value
using locators when you are only allowed to use a 1 MB host variable and your LOBs are
larger than 1 MB.
Chapter 4. Using LOBs 109

Example 4-17 Unloading a LOB using locators

Definitions:

HV-LOB USAGE IS SQL TYPE IS CLOB (1M)
LOB-LOCATOR-1 USAGE IS SQL TYPE IS CLOB-LOCATOR

Pseudo-Code:

EXEC SQL
SELECT LENGTH(LOB), LOB
INTO :CURRENT-LENGTH, :LOB-LOCATOR-1
FROM BASE_TABLE
WHERE KEYCOL1 = :HV-KEYCOL1

END-EXEC

COMPUTE AMOUNT-FULL-SUBSTR = CURRENT-LENGTH / MAX-VAR-SIZE
COMPUTE AMOUNT-REMAIN-SUBSTR = CURRENT-LENGTH - (AMOUNT-FULL-SUBSTR * MAX-VAR-SIZE)

PERFORM VARYING SUBSTR-COUNTER FROM 1 BY 1 UNTIL SUBSTR-COUNTER > AMOUNT-FULL-SUBSTR
EXEC SQL
SET :HV-LOB = SUBSTR(:LOB-LOCATOR-1, 1, MAX-VAR-SIZE)

END-EXEC

PERFORM WRITE-DATA
END-PERFORM

IF AMOUNT-REMAIN-SUBST > 0 THEN
EXEC SQL
SET :HV-LOB = SUBSTR(:LOB-LOCATOR-1,1,:AMOUNT-REMAIN-SUBSTR)

END-EXEC

PERFORM WRITE-DATA
END-IF

EXEC SQL
FREE LOCATOR :LOB-LOCATOR-1

END-EXEC

Before we start retrieving parts of the LOB, the application sets a locator to a LOB value in
order not to allow changes to the LOB value during the unit of work. Otherwise, in DB2 V8,
the content of the LOB can change while the application processes the LOB data. In this
case, we acquire a locator to refer to a frozen LOB value for our unit of work. The idea behind
retrieving values using a locator is the same idea we use when we insert LOB value, try using
large host variables to reduce the number of your SQL calls.

A sample program showing how to unload a LOB using a host variable of 1 MB and locators
for BLOBs and CLOBs is included in the files described in Appendix A, “Additional material”
on page 259.

The variable AMOUNT-FULL-SUBSTR tells your program how often it has to perform the
SUBSTR to retrieve a part of the LOB value that is the size of your largest host variable. For
the remaining bytes of the LOB, we calculate AMOUNT-REMAIN-SUBSTR to retrieve those
bytes, which are not covered by the previously issued statements. After retrieving the results
of each SUBSTR function, the data is written to a file using the WRITE-DATA subroutine as
mentioned in Case 1.

This example for retrieving your LOB data avoids materialization of the LOB, because DB2
knows where the parts you want to retrieve using the SUBSTR function are stored. Therefore,
110 LOBs with DB2 for z/OS: Stronger and Faster

DB2 uses the LOB pageset structure to locate the data pages you want to retrieve. For a
detailed description of the LOB pageset structure, see 3.6, “Physical layout of LOBs” on
page 62.

Figure 4-15 shows you how a delete from another transaction can affect your unit of work
when you do not use a locator technique to freeze a LOB value from your application’s view,
or when you do not use isolation levels that can protect you from this situation. In our specific
example, we assume cursor stability (CS) as the isolation level with CURRENTDATA(NO) for
lock avoidance and RELEASE(COMMIT).

Figure 4-15 Accessing a LOB without a locator reference using ISOLATION (CS)

Every SELECT SUBSTR acquires an S-LOB lock for the time that it takes to retrieve the
requested value. As soon as DB2 has delivered the value (depending on your current settings
for DB2 locking), it releases the S-LOB lock. The LOB lock is taken again by DB2 as soon as
the next SELECT SUBSTR statement is issued. When you use this method, a second
transaction is able to delete the LOB which is currently processed by another transaction.

To avoid this kind of situation, use a locator to freeze the object that you currently access.
When your application assigns a locator to a particular LOB value, in DB2 V8 the lock is held
by DB2 until you explicitly free the locator or issue DB2 COMMIT as shown in Figure 4-16 on
page 112.

Note: Note that in DB2 9, no S-LOB locks are acquired for SELECT statements. Refer to
4.5.2, “Locking for LOBs with DB2 9” on page 101 for more details.

SELECT SUBSTR (LOBCOL, 1, 1024) S-LOB
Lock
WHERE KEYCOL = Vala

SELECT SUBSTR (LOBCOL, 1025, 1024) S-LOB
Lock
WHERE KEYCOL = Vala

SELECT SUBSTR (LOBCOL, 2044, 1024) SQLCODE
100
WHERE KEYCOL = Vala

Tran 1 Tran 2

 S-LOB Lock DELETE LOBCOL
 WHERE KEYCOL = Vala

 COMMIT
Chapter 4. Using LOBs 111

Figure 4-16 Processing a LOB using a locator reference

Transaction two acquires an S-LOB lock which is compatible with the S-LOB lock already held
by transaction one. After transaction two issues a COMMIT and its thread terminates, the
LOB is only visible for transaction one. The pages are finally deallocated when transaction
one releases its S-LOB lock for the accessed value.

Case 4: Unload parts of a LOB using locators
In some cases, your application might want to retrieve only a known portion of a LOB value.
In this case, you do not have to retrieve the entire LOB value, you can retrieve just parts of it.
You can retrieve parts with and without locators. If you want to have a LOB’s part in your host
variable for further processing, you can use the SELECT in Case 1 including the LOB function
to retrieve only a part of the value. But if even the part you want to retrieve is too big for one
single host variable, you can use the pseudo code mentioned in Case 3 to retrieve only the
data you need.

Cursors and LOB values
When you plan to vary between the host variables into which you fetch your LOB values,
using a cursor (such as FETCH into host variable or FETCH into LOB locator variable), make
sure that the CURRENT RULES special register has the correct value. CURRENT RULES
STD lets you switch between the host variables into which you fetch the cursor. For more
information about CURRENT RULES, see 3.4.7, “Impact on cursors fetching LOB values” on
page 60.

List prefetch for LOBs
With respect to the size of LOBs, the only prefetch for LOBs that DB2 performs is for a single
LOB value. If a LOB occupies more than one page, LOB Manager prefetches up to a chunk of
pages at a time for the LOB value. You have to look at prefetching for LOBs as a different
dimension from prefetching normal rows to reduce I/O overhead as much as possible.

Note: In DB2 9, there is no S-LOB lock taken for LOB locators, but once referenced by a
LOB locator, the LOB data pages can still be referenced even if the pages are deallocated
by another DELETE statement. DB2 does not reuse the LOB’s data pages before the
locator is finally freed.

S-LOB Lock DELETE LOBCOL
 WHERE KEYCOL = Vala

 COMMIT

 end of UOW / thread

Tran 1
SELECT LOBCOL INTO :LOB-LOCATOR S-LOB Lock
WHERE KEYCOL = Vala

SELECT SUBSTR (:LOB-LOCATOR, 1, 1024)

SELECT SUBSTR (:LOB-LOCATOR, 1025, 1024)

SELECT SUBSTR (:LOB-LOCATOR, 2049, 1024)
 .
 .
 .
end of UOW / thread

Tran 2
112 LOBs with DB2 for z/OS: Stronger and Faster

4.6.2 Using FETCH CONTINUE

FETCH CONTINUE is an extension to the standard FETCH SQL statement introduced by
DB2 9, which provides a convenient method for applications to read from tables that contain
LOBs or XML columns, when the actual length of the LOB or XML value is not known or is so
large that the application cannot materialize the entire LOB in memory. The declared
maximum length for a LOB column is frequently much larger than the typical LOBs that are
inserted into those columns.

Prior to DB2 9, applications that used embedded SQL to read from tables containing LOB
columns typically had to declare or allocate a piece of storage that was equal in size to the
maximum defined storage size for the LOB column. This frequently causes a shortage of
virtual memory in certain configurations.

Suppose that the application employs the technique of using a fixed size buffer to fetch an
XML or LOB column, but the predefined area is not large enough. DB2 writes as much data
as possible to the output buffer and truncates the rest. The truncated portion of the data then
cannot be retrieved without repositioning the cursor and prefetching the entire row, but with a
larger buffer area for the LOB or XML item. Assuming that the application has the ability to
dynamically allocate storage for a new buffer, it would need to CLOSE, reOPEN, and
reposition the cursor, then FETCH with the larger buffer. Besides performance concerns with
this approach, you would need to issue SELECT LENGTH(LOB_COLUMN) to have returned
the length of the LOB value. When truncation occurs on output for other character-based and
graphic-based data types, DB2 provides the actual length of the data item through the
indicator host variable, if one was provided. However, the indicator variable is assumed to be
defined as a two-byte signed integer, limiting the capacity to 32,767. As a result, DB2 does
not provide the actual length for LOBs. What is needed is the capability for DB2 to pass that
actual length back to the application when truncation occurs for LOB and XML columns. So, if
the application has no way of knowing how large to allocate the new buffer, it still has success
in the second FETCH.

LOB locators are one way to avoid having to preallocate space for the entire LOB, but they
have some problems as well, including slower performance in some cases, excessive
resource consumption at the server, and more complex coding.

SQL Driver programs, such as the JDBC driver (when using type-2 connectivity), the native
ODBC driver, or even DSNTEP2 and SPUFI that connect locally to DB2, are especially
susceptible to virtual storage constraint problems when handling LOBs of unknown length,
particularly in environments that support multiple concurrent user connections.

This problem is compounded in DB2 9 with the introduction of XML objects. There is no
defined maximum for XML columns. There is an architectural limit of 2 GB, but that limit is
impractical for use in declaring or allocating a buffer.

Solution
The FETCH CONTINUE standard FETCH SQL statement extension allows an application to
do a FETCH against a table that contains LOB or XML columns, using a buffer that might not
be large enough to hold the entire LOB or XML value. If any of the fetched LOB or XML
columns do not fit, DB2 returns information about which columns were truncated and what
the actual length is. To enable this behavior on the FETCH, the application must add the
WITH CONTINUE clause. The application is then able to use that actual length information to
allocate a larger target buffer, and to then execute a FETCH statement with the CONTINUE
clause to retrieve the remaining data for those columns. Alternatively, the application can be
coded to handle large LOBs or XML values by "streaming" the data. That is, the application
can use a fixed-size buffer, and following the initial FETCH, perform repeated FETCH
CONTINUE operations to retrieve the large LOB or XML value, one piece at a time. Note that
Chapter 4. Using LOBs 113

the application is not required to consume all LOB or XML objects in their entirety. It can
FETCH the next row at any time, even if truncated columns remain in the current row.

This technique is primarily useful for applications that retrieve an entire LOB or XML column
and process it before fetching another row for the cursor or closing the cursor. (Note,
however, that it is not required to fetch the entire column before moving to the next row.)

How does it work - basic design
FETCH CONTINUE provides two syntax extensions on FETCH:

� FETCH WITH CONTINUE

It is just like a regular FETCH, but it tells DB2 how to react when truncation occurs on
output of LOB or XML column. If the truncation occurs, DB2 preserves the rest of the data
and remembers the position of the truncation point.

DB2 returns the truncated part of the LOB and the total length of the whole LOB in the
LENGTH part of LOB host variable construct. The SQLCA SQLWARN1 field contains ‘W’
as a warning for truncation.

� FETCH CURRENT CONTINUE

Tells DB2 to continue fetching from the truncation point. The CURRENT keyword tells
DB2 to stay on the same row. This statement can be executed as many times as needed
until all of the LOBs are processed. Each subsequent FETCH CURRENT CONTINUE
returns the size of the remaining portion of LOB in the LENGTH part of the LOB host
variable construct. When the last portion is fetched, the SQLWARN1 field is cleared and
the SQLCODE and SQLSTATE are 0.

The next time you try to FETCH CURRENT CONTINUE, you receive SQLCODE -20411,
stating “A FETCH CURRENT CONTINUE OPERATION WAS REQUESTED FOR <cursor> BUT THERE
IS NO PRESERVED, TRUNCATED, DATA TO RETURN.”

Possible error messages
The following error codes appear when something has gone wrong:

� -20411 - All the situations where a FETCH CURRENT CONTINUE is attempted, but there
were no truncated columns from the previous FETCH.

– No truncation occurred.
– FETCH CURRENT CONTINUE one too many times.
– Cursor is open but not positioned on the row.

� -225 - FETCH CONTINUE was attempted for cursor opened for multi-row FETCH.

Restrictions
The following restrictions might appear:

� FETCH CONTINUE is not supported with multi-row fetch (SQLCODE -225, SQLSTATE
42872, or this might be caught by the precompiler with DSNH104I).

� No intervening operations on this cursor are allowed between FETCH and FETCH
CURRENT CONTINUE.

� FETCH CONTINUE only preserves truncated data for result set columns of type BLOB,
CLOB, DBCLOB, or XML, and only when the output host variable data type is the
appropriate data type.

Note: For applications that need to perform "random access" to parts of a LOB, using
functions, such as LENGTH, SUBSTR, and POSSTR the use of LOB locators, is still
recommended.
114 LOBs with DB2 for z/OS: Stronger and Faster

Usage high-level examples
There are two recommended ways of using FETCH CONTINUE:

� Dynamically allocate the appropriate storage size
� Stream the data through a single fixed-size buffer

Dynamically allocate the appropriate storage size
Use the initial FETCH to fetch into a preallocated buffer of a moderate size. If the returned
data item is too large to fit in that buffer, use the length information returned by DB2 to
allocate just the right amount of storage and use one FETCH CONTINUE statement to
retrieve the remainder of the data. This method requires that the programming language allow
for dynamic storage allocation. This method also requires that the application build and
manage its own DESCRIPTOR area (SQLDA) for fetching from the cursor and use the form
of the FETCH and FETCH CURRENT CONTINUE statements with the INTO DESCRIPTOR
:SQLDA clause. This is standard programming for many dynamic SQL programs.

The details of the FETCH CONTINUE processing are best introduced by a simple example.
Example 4-18 uses dynamic SQL and manipulation of the SQLDA descriptor area by the
application (as opposed to precompiler-generated SQLDA manipulation). In this example, the
application uses, at most, two fetch operations to retrieve the LOB values. On the first fetch
operation, it fetches these columns into a moderate size buffer. In cases where that buffer is
not large enough, it receives accurate length information from DB2, so it can then allocate the
appropriate amount of storage and then retrieve the remaining, unreturned data for the
truncated columns.

Example 4-18 FETCH CONTINUE with dynamic SQL

Assumptions:
Table exists created as following:
CREATE TABLE T1

(C1 INT,
C2 CLOB(100M),
C3 CLOB(32K));

There is a row in the table T1 where:
C1 - valid integer
C2 - 10MB object

Note: The following is allowed with FETCH CONTINUE:

� Scrollable Cursors

The FETCH CURRENT CONTINUE functionality can be used with scrollable cursors as
well. The FETCH operation can specify WITH CONTINUE even for backward, relative,
and absolute fetches. Following such FETCH operations, the FETCH CURRENT
CONTINUE statement can retrieve any truncated data.

� Allocated Cursors

A FETCH CURRENT CONTINUE statement can reference an allocated cursor
associated with a stored procedure result set. Likewise, the FETCH against an
allocated cursor can use the WITH CONTINUE clause.

� Cursors declared WITH HOLD

For a cursor that is held across a commit operation, a FETCH CURRENT CONTINUE
following the commit can retrieve LOB data that was truncated on a FETCH that
occurred before the commit operation.
Chapter 4. Using LOBs 115

C3 - 32KB object

Program Flow:
[1] EXEC SQL DECLARE CURSOR1 CURSOR FOR DYNSQLSTMT1;

EXEC SQL PREPARE DYNSQLSTMT1 FROM 'SELECT * FROM T1';
[2] EXEC SQL DESCRIBE DYNSQLSTMT1 INTO DESCRIPTOR :SQLDA;
[3] EXEC SQL OPEN CURSOR1;
[4] Prepare for FETCH:

Allocate data buffers (32K for each CLOB)
Set data pointers and lengths in SQLDA.

[5] EXEC SQL FETCH WITH CONTINUE CURSOR1 INTO DESCRIPTOR :SQLDA;
[6] if truncation occurred on any LOB column

loop through each column
if column is LOB and was truncated

allocate larger buffer area for any truncated columns, move
first piece into larger area
reset data pointers, length fields in SQLDA

endif
endloop

[7] EXEC SQL FETCH CURRENT CONTINUE CURSOR1 INTO DESCRIPTOR :SQLDA;
endif

Work with returned data...
[8] EXEC SQL FETCH WITH CONTINUE CURSOR1 INTO DESCRIPTOR :SQLDA;
[9] EXEC SQL CLOSE CURSOR1;

Description:

1. The application declares a cursor for a dynamic SQL statement, then prepares a SELECT
statement which retrieves LOB columns of different sizes.

2. The application DESCRIBEs the statement. This populates the SQLDA with the initial data
type and length information.

3. The application opens the cursor.

4. The application prepares for the FETCH by allocating storage to receive each of the output
columns. For the LOB and XML columns, it allocates 32,767 bytes. This is an arbitrary
size. A larger, or smaller size could be used. This example assumes that the programming
language being used allows for dynamic storage allocation. The application then
completes the SQLDA setup in preparation for the FETCH. It sets the SQLDATA pointers
to point at each allocated buffer area and sets the SQLLONGLEN field to 32,767. It can
optionally set each SQLDATALEN field to point at a 4-byte length field to hold the LOB
output length.

5. The application issues the FETCH request using the new WITH CONTINUE clause to tell
DB2 to manage LOB and XML truncation on output differently, as described below. After
the FETCH, the buffers contain the complete data for C1 (the integer) and C3 (it fits in the
32 KB buffer). Because the data of C2 is greater than 32 KB, truncation occurs for this
column. The FETCH returns a truncation warning - SQLWARN1 is set to 'W', and
SQLCODE +20141 might be returned.

Because the FETCH CONTINUE flag is on for truncated column C2, DB2 performs the
following actions:

The amount of data written to the data buffer equals the length specified by the
SQLLONGLEN field in the secondary SQLVAR minus possibly 4 bytes depending on
whether SQLDATALEN is NULL or not.
116 LOBs with DB2 for z/OS: Stronger and Faster

The remaining data remains materialized (cached) at the server, and it can be retrieved by
the application using FETCH CURRENT CONTINUE immediately following the current
FETCH. If the data contains multi-byte characters, a partial character might result at the
truncation point because the data is truncated on a byte boundary.

The required buffer length is reported in one of two places. If the SQLDATALEN field in the
secondary SQLVAR is not NULL, it contains a pointer to a 4-byte long buffer that contains
the required buffer length in bytes (even for DBCLOB). If the SQLDATALEN field is NULL,
the required buffer length (in bytes for CLOB and BLOB, in characters for DBCLOB) is
stored in the first 4 bytes of the buffer pointed at by the SQLDATA field in the base
SQLVAR. A required buffer length is the length of buffer space required to hold the entire
data value; therefore, it includes the amount of data already written to the data buffer. For
this example, assume that the SQLDATALEN pointer is not null.

6. The application checks the result of the FETCH and processes the returned data. If any
data has been truncated, then the SQLWARN1 field in the SQLCA is set to 'W'.
SQLCODE +20141 is returned when a LOB value is truncated and the length of the value
that was truncated is too large to be returned in the indicator variable. The indicator
variable contains a value of 32K.

However, checking SQLWARN1 is the best way to check for truncation. In this example,
we know that truncation has occurred. So, the application loops through each output
column to find the truncated columns. For the LOB columns, it does this by comparing the
value pointed at by SQLDATALEN with the value in SQLLONGLEN in the corresponding
secondary SQLVAR. If the SQLDATALEN value is greater, truncation has occurred. The
application then uses the value pointed at by SQLDATALEN to allocate a new buffer. It
then copies the first piece of data into the new buffer and resets the SQLDATA pointer to
point just past that new data piece. SQLLONGLEN is then set to the new buffer length
minus the length of the first chunk (32,767 in this case).

Alternatively, the application could have set the SQLDATALEN pointer to zero. In that case,
the processing would be similar, except that DB2 would place the actual length into the
first four bytes of that data output area pointed at by SQLDATA.

7. The application issues a FETCH CURRENT CONTINUE. DB2 then processes the
SQLDA, ignores SQLVARs for columns that are neither LOB nor XML, and finds that there
is data cached for C2. DB2 then writes the data to the provided host variables in the same
way that it would for a normal FETCH operation, but begins at the truncation point.

The application then processes the returned data in the data buffers. In this example, the
application allocated the buffer sizes for the FETCH CURRENT CONTINUE to be
successful. However, if the one of the data buffers was still too small, DB2 would again set
the truncation warnings and lengths as described on the FETCH WITH CONTINUE step.

8. This FETCH operation just fetches the next row of data in the result set. In this example,
the application consumed all of the LOB data and did not leave any truncated data. But if it
had, this FETCH would make that data unavailable. The application is not required, when
using this continue capability, to consume all of the truncated data. When the cursor is
moved to the next row, or closed, that data is then unavailable. Steps 4 through 8 can be
repeated until the application does not request any more rows, the application closes the
cursor, or in the case of non-scrolling cursors, there are no more rows of the result set
available.

9. The application closes the cursor. Similarly, if there had been any truncated LOB columns
that had not been fully fetched, DB2 would discard the remaining data.

Stream the data through a single fixed-size buffer
After the original FETCH, if there is more data remaining, use as many subsequent FETCH
CONTINUE statements as necessary to consume the data, using the same buffer area. This
assumes that the data in the buffer is processed after each FETCH or FETCH CONTINUE
Chapter 4. Using LOBs 117

operation. For example, it is written to a file, or piped to another tool. See Example 4-19 below
for a more detailed description of the processing.

Example 4-19 FETCH CONTINUE with static SQL

Assumptions:
Table exists created as following:
CREATE TABLE T1

(C1 INT,
C2 CLOB(100M),
C3 CLOB(32K));

There is a row in the table T1 where:
C1 - valid integer
C2 - 10MB object
C3 - 32KB object

Program Flow:
[1] EXEC SQL BEGIN DECLARE SECTION

DECLARE CLOBHV SQL TYPE IS CLOB(32767);
EXEC SQL END DECLARE SECTION;

[2] EXEC SQL DECLARE CURSOR1 CURSOR FOR SELECT C2 FROM T1;
[3] EXEC SQL OPEN CURSOR1;
[4] EXEC SQL FETCH WITH CONTINUE CURSOR1 INTO :CLOBHV;
[5] if (sqlcode >= 0) + sqlcode <> 100

loop until LOB is completely fetched (no truncation occurred - compare
returned length to provided buffer
length or examine the contents of
SQLWARN1)

write current piece of data to output file
[6] EXEC SQL FETCH CURRENT CONTINUE CURSOR1 INTO :CLOBHV;

endloop
endif

[7] EXEC SQL CLOSE CURSOR1;

Description:

1. The application declares a CLOB host variable that it uses to fetch the CLOB into.

2. The application declares a cursor for a static SQL SELECT statement that retrieves one
CLOB column from the table.

3. The application opens the cursor.

4. The application issues the FETCH request. It uses the WITH CONTINUE clause on the
FETCH to enable subsequent FETCH CURRENT CONTINUE operations. The
precompiler generates the code that sets up the appropriate indicators in the RDI
parameter block.

DB2 sees that FETCH WITH CONTINUE was specified and processes column C2
accordingly:

– The amount of data written to the data buffer equals the length specified by the
SQLLONGLEN field in the secondary SQLVAR minus 4 bytes. The remaining data
remains materialized (cached) at the server, and can be retrieved by the application
using FETCH CURRENT CONTINUE immediately following the current FETCH. If the
data contains multi-byte characters, a partial character might result at the truncation
point because the data is truncated on a byte boundary.
118 LOBs with DB2 for z/OS: Stronger and Faster

– The precompiler-generated code does not use the SQLDATALEN field, so the required
buffer length is reported (in bytes for CLOB and BLOB, in characters for DBCLOB) in
the first 4 bytes of the buffer pointed at by the SQLDATA field in the base SQLVAR.
The required buffer length is the length of buffer space required to hold the entire data
value, therefore, it includes the amount of data already written to the data buffer.

5. The application checks for a successful fetch and then enters a loop in which it writes the
buffer contents out to an external file, then checks if truncation occurred. To check for
truncation, the application first checks the SQLWARN1 field to see if it is set to 'W'. If so,
that means that at least one column was truncated. To check each column, the application
must compare the length returned in the first 4 bytes of the output data with the length of
the buffer that it provided (this is still set in SQLLONGLEN). If there was truncation, it
executes the FETCH CURRENT CONTINUE statement to get the next piece of data. This
is repeated until the LOB column is completely fetched. The check for truncation involves
comparing the integer value in the first 4 bytes of the data buffer with the length of the
input host variable.

6. When doing the FETCH CURRENT CONTINUE, the application uses a direct host
variable reference in the INTO clause. If there had been other host variables in the original
SELECT list, those would have had to have been specified in the INTO clause as well.

To process the FETCH CURRENT CONTINUE statement, DB2 writes data to the output
host variables in the same way that FETCH does, but beginning at the truncation point.
DB2 only writes out data for LOB or XML columns that were previously truncated. Other
columns are ignored. The application processes the returned data in the data buffers. In
this case, the application allocated the required sizes for the FETCH CURRENT
CONTINUE to be successful. However, if the LOB data buffer is still too small, DB2 would
again set the truncation warnings and lengths as described on the FETCH step. One
difference is that the length returned in the first 4 bytes on the FETCH CURRENT
CONTINUE statement is equal to the length of the data from the truncation point to the
end.

7. After the loop, the application closes the cursor. If there had been truncated columns with
unfetched data remaining, the unfetched data would have been discarded.

4.6.3 Finding the nth occurrence of a string

Since the POSSTR function provides you with the ability to find the first occurrence of a
string, you probably want to find the second or third position of your search string. DB2 allows
you to use POSSTR function to succeed anyway, but you have to combine it with SUBSTR,
because with both functions, you are able to quickly find the position you need. Except that
from the application’s point of view, it is a bit more difficult than finding the first position.
Example 4-20 provides a possible solution for searching a LOB value for the position of a
search string you really need.

Example 4-20 Finding a specific occurrence of a string

EXEC SQL
SET :POS = POSSTR (:LOB-LOCATOR, :SEARCH-STRING)

END-EXEC

[determine if correct position is returned]

IF WRONG-POSITION THEN
MOVE 0 TO FINAL-POS

START-POS

PERFORM UNTIL CORRECT-POSITION
ADD POS TO FINAL-POS
Chapter 4. Using LOBs 119

COMPUTE POS-START = FINAL-POS + STRING-LENGTH

EXEC SQL
SET :POS = POSSTR (SUBSTR (:LOB-LOCATOR, :POS-START), :SEARCH-STRING)

END-EXEC

[determine if correct position is returned]
END-PERFORM

END-IF

The first POSSTR statement returns as usual the first search string position in the LOB value
‘hiding’ behind a LOB locator.

Beginning with DB2 9, you can also use POSSTR function to search your host variable
instead searching a value inside of DB2. Note that you add the additional overhead of
invoking SQL for using POSSTR instead of using the appropriate functions of your host
programming language.

4.7 Updating LOBs

In this section, we look at different ways of manipulating a LOB without retrieving it.

In most common scenarios, you would only need to manipulate CLOBs. Manipulating BLOBs
can result in unusable binary data if important parts are removed or updated. The updated
binary value might become unreadable for the application using this data. As an example, just
think of updating parts of a JPEG picture or an MPEG movie. Cutting out or updating some
data in the movie might destroy it for further use.

4.7.1 Deleting a specific part of a LOB

To delete a specific part of a LOB value, the first step is to locate the start and the end
positions for your delete. In our example, we are going to delete ‘Chapter 8’ of our book
CLOB. The first step our application should do is to assign a locator on the LOB we want to
update. After the locator is set, we use the POSSTR statement to figure out the position of the
beginning of ‘Chapter 8’. The position of the end of ‘Chapter 8’ in our book is marked by
the string ‘Chapter 9’. When our application knows both positions, it can assign a new
locator using the SUBSTR function to point to the beginning of the book up to the beginning of
‘Chapter 8’ minus one byte, concatenating the rest of the book beginning at the end position
of ‘Chapter 8’, which is the beginning of ‘Chapter 9’. After the new locator is established,
the LOB is finally updated. See Example 4-21 for pseudo code performing the actions as
mentioned above.

Example 4-21 Delete Chapter 8 of book CLOB using locators

Definitions:

LOB-LOCATOR-1 USAGE IS SQL TYPE IS CLOB-LOCATOR
LOB-LOCATOR-2 USAGE IS SQL TYPE IS CLOB-LOCATOR

START-POSITION PIC S9(9) USAGE IS BINARY
END-POSITION PIC S9(9) USAGE IS BINARY

Pseudo-Code:

EXEC SQL
120 LOBs with DB2 for z/OS: Stronger and Faster

SELECT LOB
INTO :LOB-LOCATOR-1
FROM BASE_TABLE
WHERE KEYCOL1 = :HV-KEYCOL1

END-EXEC

EXEC SQL
SET :START-POSITION = POSSTR (:LOB-LOCATOR-1, ‘Chapter 8’)

END-EXEC

EXEC SQL
SET :END-POSITION = POSSTR (:LOB-LOCATOR-1, ‘Chapter 9’)

END-EXEC

EXEC SQL
SET :LOB-LOCATOR-2 = SUBSTR (:LOB-LOCATOR-1, 1, :START-POSITION - 1) CONCAT

SUBSTR (:LOB-LOCATOR-1, :END-POSITION)
END-EXEC

EXEC SQL
UPDATE BASE_TABLE
SET LOB = :LOB-LOCATOR-2
WHERE KEYCOL1 = :HV-KEYCOL1

END-EXEC

EXEC SQL
FREE LOCATOR :LOB-LOCATOR-1, :LOB-LOCATOR-2

END-EXEC

A sample program showing how to delete a specific part of a LOB using locators is included in
BLOB and CLOB sample files described in Appendix A, “Additional material” on page 259.

4.7.2 Updating a specific part of a LOB

When you consider updating your LOB values in your application, you can build the new
content of the LOB in the same way that we have shown for insert cases in 4.4.2, “Inserting
LOBs using the host application” on page 85. The other way to apply necessary updates
consists of locator usage. Using locators, you can simply replace parts of your LOB value or
even delete them. Depending on the size of your LOBs and the number of updates you want
to perform on a single LOB value, you have to decide when you want to use locators and
when to replace a whole LOB value by building it in the application’s memory.

You can easily compare updating a part of a LOB with deleting a part of a LOB as shown in
Case 1, except that the new locator is set up in a different way.

After determining the start and end positions of your update, the only difference to
Example 4-22 is the changed assignment of LOCATOR-2.

Example 4-22 Updating a part of a CLOB

EXEC SQL
SET :LOB-LOCATOR-2 = SUBSTR (:LOB-LOCATOR-1, 1, :START-POSITION - 1) CONCAT

:NEW-TEXT CONCAT
SUBSTR (:LOB-LOCATOR-1, :END-POSITION)

END-EXEC
Chapter 4. Using LOBs 121

So LOCATOR-2 is made of the former text referenced by LOCATOR-1 up to the start position
minus one byte, the NEW-TEXT variable which can consist either of a host variable or a LOB
locator, and the remaining text referenced by LOCATOR-1 from your end position up to the
end of the LOB value.

Using the technique mentioned above, you are also able to insert certain new text at a
particular position in your CLOB. The only thing you have to figure out is the position where
you want to insert the text in your CLOB.

A sample program showing how to update a specific part of a LOB using locators is included
in the BLOB and CLOB sample files described in Appendix A, “Additional material” on
page 259.

Let us now assume that you want to insert more text at the end of ‘Chapter 8’. For this
reason, you only have to find a position in the LOB where you want to place the new text
value. After you have determined the correct position by using POSSTR, you can assign a
new locator to the complete new value of the LOB. Example 4-23 shows you how you can
perform an insert of new text to a known position in a LOB.

Example 4-23 Inserting new text at a particular position

EXEC SQL
SET :LOB-LOCATOR-2 = SUBSTR (:LOB-LOCATOR-1, 1, :START-POSITION - 1) CONCAT

:NEW-TEXT CONCAT
SUBSTR (:LOB-LOCATOR-1, :START-POSITION)

END-EXEC

In this example, the NEW-TEXT variable can also be a host variable or another LOB locator.

4.7.3 Updating the entire LOB value

Updating an entire LOB value can also be done by using the techniques as we describe them
for INSERT in 4.4.2, “Inserting LOBs using the host application” on page 85. Note that there
is no difference for DB2 LOB management between replacing a number of bytes in one data
page inside a LOB value and replacing the entire LOB value. In both cases, all LOB data
pages are deallocated and the new value is inserted again into free LOB data pages. This
means that even updating a single byte in a certain LOB value results in a much higher
number of pages (and possibly I/O) involved than just the small number of pages needed to
locate the affected part of the LOB and replacing it. Additionally, the elapsed time for updating
a small part of a LOB value forces the entire LOB to be inserted again, and with logging
activated, the elapsed time of your transaction can increase again.

An UPDATE statement to a LOB value is allowed to contain:

� The LOB value itself inside a host variable
� The reference to a LOB locator
� A file reference variable in DB2 9

4.8 General best practices

Depending on the version of DB2 that you use, the advice for best practices is different
because the new functions of DB2 9 can simplify your life with LOBs. First, we list general
advice for all versions of DB2 before we have to distinguish between best practices for DB2
V8 and DB2 9 users regarding the improved functionality of DB2 9. We suggest:
122 LOBs with DB2 for z/OS: Stronger and Faster

� If only a small number of your LOB values can fit into the dedicated buffer pool, use a
relatively small buffer pool for your LOB table space to avoid inefficient usage of your
system resources. Just make sure the buffer pool is large enough to avoid disabling list
prefetch because of a buffer shortage condition.

� Always use LOG YES or the LOGGED keyword to avoid recovery complications unless
you are really looking for a challenge.

� In data sharing, use GBPCACHE SYSTEM:

GBPCACHE SYSTEM parameter was added for LOBs to prevent LOB data from flooding
your group buffer pool. Specifying GBPCACHE SYSTEM caches only the LOB control
(system) information in the group buffer pool.

In a data sharing environment, GBPCACHE SYSTEM is recommended for large objects.
See 8.3, “Buffer pools and group buffer pools” on page 244 for more information.

� If you use IBM WebSphere® MQ to store large messages into LOB table spaces in a
shared-queue environment, use GBPCACHE CHANGED because it is recommended for
volatile LOB data and in DB2 9.

� Use the LOAD utility with file reference variables to insert your LOB data into the target
table space outside of your applications.

� Use the UNLOAD utility with file reference variables to unload your LOB data into data
sets outside of your applications.

See Table 1-1 on page 5 for the required maintenance for supporting LOAD and UNLOAD of
LOB data greater than 32 KB. In general, you should check APAR II13767 to verify the
recommended maintenance when using LOBs.

If you are using DB2 V8
With DB2 V8:

� Do not misuse LOBs to disable logging.

� Use large host variables to insert your LOB data from inside your applications.

� Use large host variables with locator chains to insert your LOB data from inside your
applications if a host variable is not large enough to hold the entire LOB value.

If you are using DB2 9
With DB2 9:

� Use file reference variables to insert your LOB data from inside your applications.

� Use file reference variables to unload your LOB data using your applications.

� Use SHRLEVEL CHANGE with CHECK DATA and CHECK LOB to improve concurrency
and availability.

� Use REORG SHRLEVEL REFERENCE to reclaim free space in the LOB table space
while ensuring access to your LOB data by read applications.

� Consider changing from GBPCACHE SYSTEM to CHANGED.
Chapter 4. Using LOBs 123

124 LOBs with DB2 for z/OS: Stronger and Faster

Chapter 5. SAP usage of LOBs

This chapter discusses the usage of LOBs from the application point of view and in particular
from the perspective of SAP. This is of interest because SAP is one of the largest software
companies in the word in terms of market capitalization. It is also the largest business
application and Enterprise Resource Planning (ERP) solution software provider worldwide in
terms of revenue and an important driver of DB2 business and functionalities.

From the DB2 perspective, the SAP applications can be looked at as just one example of how
LOBs are used, or, if you prefer, misused. The points discussed in this chapter, while of
course, are in some way specific to SAP, however, can be of interest to any application or
program which uses LOBs and is running on DB2 for z/OS. Most features, ideas, or
techniques discussed in this chapter can be easily extended to other applications or
programs.

This chapter starts with a short overview of the history of LOB usages by SAP. Then, we turn
our attention to the different programming techniques used to access LOBs.

We highlight the ways in which LOB usage differs from what could be expected from a more
native DB2 point of view. There are inferences that can be drawn from the experiences and
design of the SAP applications that apply to LOB usage in a more general context.

We give some details of different optimization techniques which have been implemented into
the SAP database interface to boost the performance of LOB access. These techniques are
not particular to any application but can be used by any other persistency layer. Some of the
ideas have been implemented within the database itself in Version 9.1 of DB2 for z/OS. This
is discussed in 5.3.2, “CLI Streaming Interface” on page 134.

Traces and different possibilities to monitor LOB access are also discussed in some length.

We also briefly discuss the improvements of DB2 9 with respect to the usage of LOBs by
SAP.

(c) SAP AG; 2006

5

© Copyright IBM Corp. 2006. All rights reserved. 125

5.1 Overview of SAP usage of LOBs

SAP stores data in the persistent database layer that conforms to the definition of Large
OBjects. Prior to the support of LOB column types by DB2 for z/OS, SAP used application
techniques to store this data into the standard column types of DB2. With LOB columns
becoming available, a number of these database types have been changed to use LOBs.
This change simplifies the database interface and simplifies code, reducing maintenance and
potential for errors. The various usage and performance-related issues surrounding this
change provide practical examples that should be applicable to everyone using LOB
columns.

It should be noted that the SAP Web Application Server model allows the application
programmers to abstract from the underlying data model, with DDL being generated and
executed independently from the programmers. Programs treat access to the database as a
logical interface, independent of the underlying DBMS. Hence, the considerations described
in this chapter are derived from the experiences across all SAP implementations on the DB2
for z/OS platform, because the usage of LOBs is inherent in the solution.

5.1.1 Some history of SAP LOB usage

SAP started to use LOBs with its Web Application Server (SAP Web AS) Version 6.10 in
2001; specifically, LOBs were used for ABAP reports and Dynpros. ABAP stands for
Advanced Business Application Programming, the SAP-created computer language. Web
Dynpro for ABAP (WD4A, WDA) is the SAP standard user interface technology for
developing Web applications in the ABAP environment. Because this usage is still the most
prominent and has many implications, it is discussed in a separate section.

SAP Web AS 6.10 started to use BLOB and CLOB as the database types that correspond to
the ABAP types Rawstring and String.

As of SAP NetWeaver 2004s, SAP on DB2 for z/OS began supporting Unicode. The Unicode
implementation for SAP data in DB2 for z/OS is UTF 16. The corresponding data type for
CLOB was DBCLOB.

With the SAP NetWeaver 2004s, SAP introduced its J2EE™ Engine. The SAP Java
application server always, as all Java programs do, uses Unicode. The persistency for
string-like objects and for long byte arrays is achieved by the use of DBCLOBs and BLOBs.

5.1.2 Basic architecture

Figure 5-1 on page 127 is intended to give an overview of the basic architecture of the SAP
Web Application Server.

(c) SAP AG; 2006
126 LOBs with DB2 for z/OS: Stronger and Faster

Figure 5-1 Overview of SAP Web AS 6.40 on DB2 for z/OS (c) SAP AG; 2006

The SAP Web AS consists of two stacks, the ABAP stack and the Java stack. The ABAP
stack is based on a kernel written in C or C++. This kernel interacts with the database by
means of a database interface library, which is referred to as lib_dbsl. The Java stack uses
a JDBC driver as connectivity.

5.1.3 Connectivity

SAP has used different connectivity middleware in the past. In this section, we give a short
overview and explain why we only discuss distributed connections in this chapter. With SAP
NetWeaver 2004s, the Integrated Call Level Interface (ICLI) connectivity was phased out and
DB2 Connect was introduced. ICLI is a protocol that was delivered with z/OS; it was used by
SAP in prior releases and essentially provided a subset of DRDA-like connectivity. SAP
NetWeaver 2004s is also the last release to support the application server running natively on
z/OS. Starting with release SAP NetWeaver 2004s, connectivity is only supported using
Distributed Data Facility (DDF) on the server side and DB2 Connect on the client side. This
client-side software can be either the CLI interface of DB2 Connect or the DB2 JDBC
Universal Driver (JCC) for the Java stack. Therefore, we only discuss distributed connections
in this chapter.

5.1.4 Why use LOBs

SAP introduced LOBs to simplify data management. If the burden to handle the length of an
object is shifted to the database, the interfaces to the database become easier to code and to
maintain, thus, reducing the number of problems and therefore the maintenance effort
required at the customer side.
(c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 127

Also, SAP expects a performance improvement in the long run because less code is
executed on the Application Server and potentially fewer SQL statements are executed on
the database.

Prior to the arrival of LOBs, logical SAP objects with a large amount of data attached to them
had to be blocked into 32 KB chunks. Thus, for one logical object several corresponding rows
would exist on the database. Assurance of consistency for write and read (under a heavy
load) is then a much more difficult task. If one piece of data is changed, several rows on the
database have to be locked.

Currently, not all interfaces have been changed to use LOBs. For example, the SAP Cluster
interface is still using blocked objects today. The reason is that the current implementation
performs very well and is very critical. Also, migrating to a new data format makes an unload
and load necessary. As the data volume can be huge, this is currently not feasible because
this would induce long down times during the upgrade.

In 5.2, “ABAP and Dynpro source and Load” on page 129, we discuss the REPOLOAD and
REPOSRC tables as examples for SAP LOB tables. The interface to these tables is less
critical than the Cluster interface, because the REPOLOAD table is buffered on the
Application Server. In a production environment that has gone through the initial startup
phase, the REPOLOAD and REPOSRC tables are not accessed in an extensive manner.
However, this is not true for a development system.

5.1.5 SAP usage of LOBs in terms of number and size

To provide an overview, we start by giving the numbers of objects used in one SAP
NetWeaver 2004s system where most usage types (business process specific applications)
are deployed. You can see that while the Java stack is rather small in terms of columns and
tables, it has relatively more LOB tables than the ABAP stack. Because the Java component
of SAP will grow in the future, LOB usage will become even more important.

Table 5-1 LOB objects in one SAP system (c) SAP AG; 2006

In this section, we give an example of the total sizes of LOB columns in a Multiple
Components in One Database (MCOD). See Table 5-2 on page 129.

An MCOD system contains more than one SAP system. More details can be found in SAP on
DB2 Universal Database for OS/390 and z/OS: Multiple Components in One Database
(MCOD), SG24-6914. Each SAP system stores its data in a different schema in the same
DB2 subsystem. In the example, there are three SAP Enterprise systems within one
database.

(c) SAP AG; 2006

Number of: ABAP stack Java stack

DBCLOB columns 525 62

BLOB columns 246 46

Columns (total) 602,348 1,164

Tables (total) 51,329 190
128 LOBs with DB2 for z/OS: Stronger and Faster

Table 5-2 Total size of all LOB columns (c) SAP AG; 2006

These numbers can be compared to the total size of the system as shown Figure 5-2.

Figure 5-2 Total space usage for SAP MCOD system (c) SAP AG; 2006

5.2 ABAP and Dynpro source and Load

Advanced Business Application Programming (ABAP) is a high-level programming language
created by SAP. It is an application-specific fourth-generation language. ABAP provides a
high level of abstraction from the basic database level. For example, ABAP supports the
concept of logical databases. It is positioned as the language for programming SAP's Web
Application Server. SAP Dynpro is an SAP screen that allows the user to interact with the
application. The Dynpro forms the heart of any transaction.

The ABAP report sources are stored in a table named REPOSRC, and the generated reports
are stored in a table named REPLOAD. For Dynpros, the tables are named DYNPSOURCE
and DYNPLOAD, respectively.

(c) SAP AG; 2006

Column type Total size of all columns in KB

BLOB 21,302,815

CLOB 5,042

DBCLOB 32,236
Chapter 5. SAP usage of LOBs 129

Because most of the SAP system and all of the application logic are coded into ABAP reports
and Dynpros, these tables are the heart of an SAP system. Every time a report is modified,
created, transported, compiled, or executed while it is not yet in the local (SAP) buffer, LOBs
are read from or written to the database. Concepts such as local SAP buffering and
transporting programs are SAP specific topics beyond the scope of this IBM Redbook. As a
result, the requirements for stability, robustness, and performance for LOB objects are the
same or higher as for every other data type.

In Figure 5-3, we display the structure of the REPOLOAD table using SAP’s Data Dictionary
Tools. The columns that map to a LOB column in this case are LDATA and QDATA, with an
SAP data type of RAWSTRING.

Figure 5-3 REPOLOAD structure (c) SAP AG; 2006

In Figure 5-4 on page 131, we display part of the structure of the REPOSRC table. The table
has 34 columns in total. The column that maps to a LOB column in this case is DATA, with an
SAP data type of RAWSTRING.

(c) SAP AG; 2006
130 LOBs with DB2 for z/OS: Stronger and Faster

Figure 5-4 REPOSRC structure (c) SAP AG; 2006

Prior to SAP Web Application Server Version 6.10, the data was stored in VARCHAR FOR
BIT DATA columns. The reason why the data was shifted to LOB fields is a good example of
the advantages of LOBs. For example, the table REPOSRC stores the ABAP source code in
a compressed form, while the REPOLOAD table stores the compiled sources, the so-called
ABAP Load. The length of a report can easily exceed the 32 KB boundary. Prior to the arrival
of LOBs, the interface to these tables had to block in this case the objects accordingly into
several rows. To assure consistency for write and read (under a heavy load) is then not trivial,
because one logical object (an ABAP report) corresponds to a number of rows. With the use
of LOBs, one row of the table corresponds exactly to one object. Because all SAP tables use
row locking, this considerably simplified the interface responsible for the persistency of the
ABAP reports.

REPOLOAD and REPOSRC are also good examples that in SAP usage LOBs are not
necessarily large objects but rather objects without length. There are many small LOBs in
REPOSRC and also large ones.

(c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 131

Table 5-3 Details of Repo tables’ LOB content (c) SAP AG; 2006

A good test case to check LOB performance is to run transaction SGEN (see Figure 5-5).
This transaction can be used to generate some or all ABAP reports. It is mainly called after an
upgrade or an install, because these operations either invalidate the load or just provide the
sources. The program reads data from REPOSRC (and others) where the majority of data is
in a LOB column, and updates data in the LOB columns of REPOLOAD (and others). As such
it is a very effective test case of LOB performance, and is also able to produce repeatable
loads with the same underlying data manipulation.

Figure 5-5 Transaction SGEN (c) SAP AG; 2006

(c) SAP AG; 2006

REPOLOAD LDATA REPOLOAD QDATA REPOSRC DATA

SUM 3,390,540,497 1,607,356,266 2,362,162,619

AVG length 24,865.54 11,788.03 1,561.80

Total number of rows 136,355 136,355 1,512,436

Total < 32 KB 114,032 126,566 1,505,927

Total (32 KB - 64 KB) 10,208 3,709 5,134

Total (64 KB - 1 MB) 12,114 6,080 1,375

Total >= 1 M 1 0 0

Total > 100 M 0 0 0
132 LOBs with DB2 for z/OS: Stronger and Faster

Another good test case is to load the REPOLOAD table via R3load SAP loading tool. This
tool uses mass insert without any application logic as the SAP transport tools and R3trans do.

5.3 Programming techniques for the ABAP stack

In this section, we discuss how LOBs are accessed on the ABAP stack. The Java stack is
discussed in 5.5, “Programming techniques with JDBC” on page 140.

5.3.1 Basic locator access

Statements can access LOBs either in one chunk or piece, or they can access them one
piece at a time or piece-wise. The piece-wise access to LOBs is achieved by locators. For a
SELECT statement instead of the data, a locator is retrieved and the locator is then used for
fetching the data. All statements using locators operate on a dummy table. In an SAP system,
the special table “#LOB” is used for this purpose. Equivalent table #LOBU is used for Unicode
systems.

A typical example of how LOBs are retrieved using locators is shown in Figure 5-6. The trace
is taken using SAP transaction ST05 (user trace).

Figure 5-6 SQL Trace for simple select using locators (c) SAP AG; 2006

(c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 133

Now, we give you an example of how LOBs are updated with locators. For the UPDATE, first
a locator is retrieved. The INSERT statements work the same way. Next the data is attached
to the locator. Finally, the locator is used in the statement as shown in Figure 5-7 on
page 134. The locator statements in this example use table #LOBU because it is a Unicode
system.

Figure 5-7 SQL Trace for update using locator (c) SAP AG; 2006

The data is attached to the locator by a select. See Figure 5-8.

Figure 5-8 SELECT statement with LOB locators (c) SAP AG; 2006

If it is a non-Unicode system, table “#LOB” is used. The first host variable, the question mark
character (?), is the locator on input (that is, the locator for the data already transferred to
DB2. The second host variable (?) is BLOB data. The select returns a new locator pointing to
the new data.

Up to release SAP NetWeaver 2004s, the lib_dbsl basically uses these direct calls to locators
as explained above. However, several optimizations are built on top of this. These are
explained in 5.4, “Optimization techniques and query rewrite” on page 136. In 5.3.2, “CLI
Streaming Interface” on page 134, we discuss an alternative using the CLI streaming APIs.

5.3.2 CLI Streaming Interface

Instead of using direct locator calls, you can use the DB2 CLI streaming interface. The
application uses CLI APIs SQLGetSubString() for piece-wise read and SQLParamData() and
SQLPutData() to insert and update data.

(c) SAP AG; 2006
134 LOBs with DB2 for z/OS: Stronger and Faster

SQLGetSubString() is used to retrieve a portion of a large object value, referenced by a large
object locator that has been returned from the server (returned by a fetch or a previous
SQLGetSubString() call) during the current transaction.

SQLParamData() is used in conjunction with SQLPutData() to send long data in pieces. It can
also be used to send fixed-length data at execution time.

SQLPutData() is called following an SQLParamData() call returning SQL_NEED_DATA to
supply parameter data values. This function can be used to send large parameter values in
pieces.

We give you an example of a typical sequence of calls from the DB2 Connect CLI trace in
Example 5-1. Note that some unimportant calls have been omitted to keep the trace
reasonably small and improve readability. First, the Select from REPOLOAD is prepared, then
the input and output variables are bound (omitted), the cursor is opened (omitted), the fetch is
executed, and the locator is retrieved and then used to SQLGetLength() to get the length of
the LOB and in SQLGetSubString() to retrieve the data.

Example 5-1 CLI trace for REPOLOAD Select using SQLGetSubString() (c) SAP AG; 2006

SQLExtendedPrepare(hStmt=1:19)
 ---> Time elapsed - +2.000000E-005 seconds
(pszSqlStr="SELECT "LDATA" FROM "REPOLOAD" WHERE "PROGNAME" = ? AND "R3STATE" = ? AND
"MACH" = ? FOR FETCH ONLY WITH CS ", cbSqlStr=109, cPars=3, sStmtType=SQL_CLI_STMT_SELECT,
cStmtAttrs=1(Attribute=1, piStmtAttr=SQL_CURSOR_HOLD, pvParams=0)
SQLExtendedPrepare()

SQLFetch(hStmt=1:19)
 ---> Time elapsed - +1.900000E-005 seconds
 sqlccsend(Handle - 0000004609406048)
 sqlccsend(ulBytes - 143)
 sqlccsend() rc - 0, time elasped - +4.000000E-006
 sqlccrecv()
 sqlccrecv(ulBytes - 95) - rc - 0, time elapsed - +1.934000E-003
(iRow=1, iCol=1, fCType=SQL_C_BLOB_LOCATOR, rgbValue=BD09179B, pcbValue=4, piIndicator=4)

SQLFetch()
 <--- SQL_SUCCESS Time elapsed - +2.011000E-003 seconds

SQLGetLength(hStmt=1:20, fCType=SQL_C_BLOB_LOCATOR, iLocator=-1123477605,
pcbLocator=&0000000112b006e4, piIndicatorValue=<NULL pointer>)
 ---> Time elapsed - +8.000000E-006 seconds
(Row=1, iPar=1, fCType=SQL_C_BLOB_LOCATOR, rgbValue=BD09179B)
 sqlccsend(Handle - 0000004609406048)
 sqlccsend(ulBytes - 132)
 sqlccsend() rc - 0, time elasped - +5.000000E-006
 sqlccrecv()
 sqlccrecv(ulBytes - 92) - rc - 0, time elapsed - +1.084000E-003
(Row=1, iPar=2, fCType=SQL_C_LONG, rgbValue=79057)
SQLGetLength(pcbLocator=79057)
 <--- SQL_SUCCESS Time elapsed - +1.230000E-003 seconds

SQLGetSubString(hStmt=1:20, fCType=SQL_C_BLOB_LOCATOR, iLocator=-1123477605, iFrom=1,
iLength=9, fCTypeTarget=SQL_C_BINARY, rgbValue=&0000000113063ff0, cbValueMax=9,
pcbValue=&0fffffffffffbe9c, piIndicatorValue=&0fffffffffffbd64)
 ---> Time elapsed - +8.000000E-006 seconds
(Row=1, iPar=1, fCType=SQL_C_BLOB_LOCATOR, rgbValue=BD09179B)
 sqlccsend(Handle - 0000004609406048)
 sqlccsend(ulBytes - 132)
 sqlccsend() rc - 0, time elasped - +4.000000E-006 (c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 135

 sqlccrecv()
 sqlccrecv(ulBytes - 92) - rc - 0, time elapsed - +2.895000E-003
(Row=1, iPar=2, fCType=SQL_C_LONG, rgbValue=79057)
(Row=1, iPar=1, fCType=SQL_C_BLOB_LOCATOR, rgbValue=BD09179B)
(Row=1, iPar=2, fCType=SQL_C_LONG, rgbValue=1)
(Row=1, iPar=3, fCType=SQL_C_LONG, rgbValue=9)
 sqlccsend(Handle - 0000004609406048)
 sqlccsend(ulBytes - 148)
 sqlccsend() rc - 0, time elasped - +8.000000E-006
 sqlccrecv()
 sqlccrecv(ulBytes - 111) - rc - 0, time elapsed - +1.802000E-003
(Row=1, iPar=4, fCType=SQL_C_BINARY, rgbValue=x'FFA42B0400121F9D02', pcbValue=9,
piIndicatorPtr=9)

These APIs can only be used with the new MERGE statement available with DB2 9 for z/OS.
In DB2 V8, the MERGE statement has to be emulated by a series of Update and Insert
statements. The SQLPutData is not suited for this, because the data has to be sent prior to
the insert and update.

Progressive streaming with DB2 Connect CLI
With DB2 Connect 9.1, the SQLGetData API implicitly uses progressive references against
DB2 9 for z/OS. The default setting is that any LOB smaller than 1 MB is buffered back to the
client during the fetch; anything larger uses the progressive references. This value is
controlled with the LobCacheSize keyword or the SQL_ATTR_LOB_CACHE_SIZE
connection or statement attribute. See also “Progressive streaming with the Java Universal
Driver” on page 141 and 4.3, “DRDA LOB flow optimization” on page 79 for detailed
explanations about progressive streaming.

With progressive streaming, we expect the CLI streaming interface to be as fast as or better
than the currently used interface. Once this is implemented and lib_dbsl has switched to CLI
streaming, the interface will be considerably less complex and easier to maintain.

5.4 Optimization techniques and query rewrite

Many problems with the performance of LOBs result from the fact that most applications or
application developers regard LOBs not so much as large objects but rather as objects with
unknown size. With LOB objects, the responsibility to handle the size of an object is shifted
from the application code to the database. In particular, this is the case in the Java world
where the Java String object is treated in the persistency layer as a CLOB. Obviously, there is
a price to pay for this commodity in the form of performance. Ideally, the performance of small
LOBs should not differ from that of a VARCHAR type field. This can be achieved by some
programming techniques explained below. Some of these techniques have been
implemented in DB2, and they are also discussed in this section.

5.4.1 Local LOB buffer

The SAP database interface can retrieve and write LOB data in several pieces or in one
piece. Typically, very large LOBs should be retrieved and written piece-wise (streaming). For
every piece-wise operation, a locator statement is executed, causing a network flow. To avoid
the execution of locator statements for small pieces (typically less than 64 KB), these pieces
are buffered in a local LOB buffer.

When fetching, the LOB buffer is filled up ahead to its total length or to the maximum length of
the LOB, so that fetches which follow can be served from the buffer. (c) SAP AG; 2006
136 LOBs with DB2 for z/OS: Stronger and Faster

When writing, the pieces are not directly written to the database but into the buffer. The buffer
is flushed to the database once it is filled or the last piece is written.

5.4.2 Retrieve length and maximal data with locator

If the LOB is small, it is much faster to retrieve the complete data instead of using a locator.
For this reason, the database layer contains an optimization to rewrite statements on LOB
tables so that the statement retrieves, for every fetch, the length of the LOB, the data up to
the local LOB buffer length, and a locator. If the LOB is larger than the buffer size, the locator
is used to fetch the remaining part of the LOB. If the LOB is smaller than the buffer size, the
locator can be freed immediately. See Figure 5-9.

Figure 5-9 Modified statement (extended DA) on REPOLOAD (c) SAP AG; 2006

In this case, we retrieve the length, the data, and the locator. The data and locator appear
both as LDATA. The data type specifies the difference. Obviously this technique requires a
manipulation of the statement itself. Because the database layer under normal circumstances
does not parse the statement, this technique is restricted to special interfaces, the so-called
trusted interfaces, and several well known statements on SAP report and Dynpro source and
Load tables.

The parameter dbs/db2/use_eda of the dbsl_lib profile controls this extended description area
feature. It is called extended because it includes the length and the data. If use_eda is set to
0, the extended da feature is turned off.

5.4.3 Optimizing the free locator statement

Locators are implicitly freed at the end of the logical unit of work (LUW). Therefore, the FREE
LOCATOR statements can be optimized by simply omitting them. If, however, there are too
many locators used in one LUW, this can cause problems, because the resources connected
to the locators are not released in this case. For this reason, the locators to be freed are
buffered. There are two situations when the locators in the buffer are freed:

� If the locator free buffer is filled, all locators are released using just one statement: “FREE
LOCATOR ?,...,?”. The buffer can hold up to 1,000 locators. This number can be adjusted
by the profile parameter dbs/db2/lob_free_buffer.

(c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 137

� The amount of storage connected to the locators is tracked. If this storage exceeds a
given threshold (normally 1 GB), then the locators are freed. The threshold can be
adjusted by profile parameter dbs/db2/max_lob_free_length (in MB). Note that the same
number of host variables are always used for the FREE LOCATOR statement, so that only
one slot in the statement cache is used. To fill up the missing host variables, the last
locator is repeated. DB2 issues an SQLCODE -423 (Invalid locator value). This code is
ignored by the database interface.

At every Commit or Rollback, the buffer is reset. With DB2 9, the new concept of the
progressive reference is introduced. These references are implicitly freed when the cursor is
closed. Therefore, the free locator buffer becomes obsolete with DB2 9.

5.4.4 Comparison of different techniques using SGEN

In Table 5-4, we display total execution time of SGEN runs on different optimization levels.
The runs have been done on the SAP_BASIS component of an SAP NetWeaver 2004s
system using an AIX® Application Server. There are 34,789 objects in one run. These
measurements are not accurate performance evaluations, but they can be used to get a
rough idea about the impact of different optimizations. The values should not be read in
absolute numbers, but rather in ratios.

Table 5-4 SGEN runs on different optimization levels (c) SAP AG; 2006

5.4.5 Chaining

It is possible to have a reduction of network flows with CLI array input chaining. CLI array
input chaining is a feature that, when enabled, causes requests for the execution of prepared
insert, update, and delete statements to be held and queued at the client until the chain is
ended. Once the chain has been ended, all of the chained SQLExecute() requests at the
client are then sent to the server in a single network flow.

Chaining avoids LOBs or sparsely filled long variable length columns filling up the internal
SAP buffer for array operations. The effect is that data gets buffered within the CLI layer,
reducing the network flow and the number of SQL statements executed.

The following sequence of events (presented as pseudo code) is an example of how CLI
array input chaining can reduce the number of network flows to the server.

The statement attribute SQL_ATTR_CHAINING_BEGIN is set in order to turn chaining on. To
turn chaining off, the SQL_ATTR_CHAINING_END attribute is set. See Example 5-2.

Example 5-2 Pseudo code for chaining (c) SAP AG; 2006

db2rc = SQLSetStmtAttr(*stmth_p, SQL_ATTR_CHAINING_BEGIN,(SQLPOINTER) 1, SQL_IS_UINTEGER);
db2rc = SQLEXECUTE (stmth) ;
db2rc = SQLEXECUTE (stmth) ;
....
db2rc = SQLSetStmtAttr(*stmth_p, SQL_ATTR_CHAINING_END,(SQLPOINTER) 1, SQL_IS_UINTEGER);

Example 5-3 displays a simple case of chaining. (c) SAP AG; 2006

Optimization Execution time of SGEN in seconds

No query rewrite, no local LOB buffer 1,1603

No query rewrite, local LOB buffer = 64 KB 8,855

Query rewrite, local LOB buffer = 64 KB 6,671
138 LOBs with DB2 for z/OS: Stronger and Faster

Example 5-3 Chaining on insert (c) SAP AG; 2006

5.125 CO2MAP REEXEC 13 0 DELETE WHERE "ID" = 1105
11 CO2MAP EXECSTA 0 0 START CHAIN (cursor=70, statement=INSERT INTO "CO2MAP" VALUES(? , ?
, ? , ? , ? , ?))
20 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 18 , 2 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 19 , 3 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 21 , 4 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 22 , 5 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 24 , 9 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 27 , 11 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 30 , 14 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 32 , 14 , 1105 , 0 , 0)
12 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 34 , 14 , 1105 , 0 , 0)
12 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 36 , 16 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 38 , 16 , 1105 , 0 , 0)
13 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 40 , 26 , 1105 , 0 , 0)
32 CO2MAP REEXEC 0 0 INSERT VALUES(1105 , 43 , 36 , 1105 , 0 , 0)
2.863 CO2MAP EXECSTA 13 0 STOP CHAIN (cursor=70, statement=INSERT INTO "CO2MAP" VALUES(? ,
? , ? , ? , ? , ?))

The first number to the right gives the execution time in microseconds. You can see that the
inserts are very fast, because they are just client-side operations. The chain buffer is then
flushed to the database at chain end time.

One restriction to CLI chaining is that it can only be applied to one statement at a time; if
several statements are open at the same time, then the chain buffer must be flushed before a
new statement can execute.

Chaining helps with mass insert, for example, when loading the REPOLOAD table. It does
not help with single LOB operations such as those used by transaction SGEN.

Chaining is always used for LOBs. In the other cases, the chaining behavior is governed by
the dbsl profile parameter dbs_db2_chaining. If the number of rows fitting into the internal
buffer is less than or equal to the value set in dbs_db2_chaining, chaining is used. The
internal buffer usually has a size of 32 KB. The default for dbs_db2_chaining is 20. To turn
chaining completely off, it must be set to 0.

The effect on LOB insert is shown in Example 5-4 where a copy of the REPOLOAD table is
loaded with all LOBs chained.

Example 5-4 R3load log files for dbs_db2_chaining=20 (c) SAP AG; 2006

(DDL) Info: Deleting data from ZZNPSOURCE
Time : 20060124 104145
(DB) INFO: ZZNPSOURCE deleted/truncated
(IMP) INFO: import of ZZNPSOURCE completed (34834 rows) #20060124 104238
(DB) INFO: disconnected from DB
R3load: job completed
R3load: END OF LOG: 20060124 104238

The total time for the import is 53 seconds.

The case where no LOBs are chained is shown in Example 5-5.

Example 5-5 R3load log files for dbs_db2_chaining=0 (c) SAP AG; 2006

(DDL) Info: Deleting data from ZZNPSOURCE
Time : 20060124 122423 (c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 139

(DB) INFO: ZZNPSOURCE deleted/truncated
(IMP) INFO: import of ZZNPSOURCE completed (34834 rows) #20060124 122542
(DB) INFO: disconnected from DB
R3load: job completed
R3load: END OF LOG: 20060124 122542

The total time for the import is 79 seconds. This yields an improvement of about 33%.

5.5 Programming techniques with JDBC

Connectivity for the Java stack is achieved by means of a JDBC driver. We discuss only the
IBM DB2 Driver for JDBC and SQLJ (we refer to it as the JCC driver), which is the only JDBC
driver used by SAP for both DB2 for z/OS and DB2 for Linux, UNIX, and Windows. With the
JCC driver, all members of the DB2 family can be accessed. In Example 5-6, we give
samples for operations on LOBs using a JDBC driver. Sample code can be downloaded as
described in Appendix A, “Additional material” on page 259.

Example 5-6 LOB access with JDBC driver (c) SAP AG; 2006

....
String insertStmt = "insert into "+ TEST_TABLE
 + " (FCHAR4, FINT, FCLOB, FBLOB) " + "values (?, ?, ?, ?)";

try {
 PreparedStatement ps = getConnection().prepareStatement(insertStmt);

 ps.setString(1, "A");
 ps.setInt(2, 1);
 char[] cArray = { ' ', 'B', 'C' };
 Reader r = new CharArrayReader(cArray);
 ps.setCharacterStream(3, r, cArray.length);

 byte[] bArray = { 'D', 'E', 'F' };
 ByteArrayInputStream bais = new ByteArrayInputStream(bArray);
 ps.setBinaryStream(4, bais, bArray.length);
 int cnt = ps.executeUpdate();

 ps.setString(1, "UXYZ");
 ps.setInt(2, 3);
 Reader ucReader = new CharArrayReader(ucArray);
 ps.setCharacterStream(3, ucReader, ucArray.length);
 ps.setBinaryStream(4, null, 0);
 cnt = ps.executeUpdate();

 Reader r = null;
 InputStream is = null;
 String query ="select FCLOB, FBLOB from " + TEST_TABLE
 + " " + "where FCHAR4 = 'A' and FINT = 1";
 try {
 Statement stmt = getConnection().createStatement();
 ResultSet rs = stmt.executeQuery(query); (c) SAP AG; 2006
140 LOBs with DB2 for z/OS: Stronger and Faster

 if (rs.next()) {
 r = rs.getCharacterStream(1);
 r.read(cArray2);
 is = rs.getBinaryStream(2);
 is.read(bArray2);

For the JCC driver, two properties are important with respect to LOBs when running on DB2
V8:

� fullyMaterializeLobData

LOB locator support

The DB2 Universal JDBC Driver can use LOB locators to retrieve data in LOB columns.
To cause JDBC to use LOB locators to retrieve data from LOB columns, you need to set
the fullyMaterializeLobData property to false.

� fullyMaterializeInputStreams

The property above, fullyMaterializeLobData, only affects the streams coming from the
server to the client, while the property fullyMaterializeInputStreams only affects the
streams going from the client to the server.

To use locators with the Java stack, both properties need to be set because the JCC driver is
not reentrant. Otherwise, it would be possible that a stream is inserted that is constructed as
a read of a LOB field from the database.

DB2LobTableCreator utility
If LOB locators are used to access DBCLOB or CLOB columns, the JCC driver uses the
database tables SYSIBM.SYSDUMMYU, SYSIBM.SYSDUMMYA, and
SYSIBM.SYSDUMMYE for fetching data.

This can be achieved by either of the following:

� On the DB2 for z/OS servers:

Customize and run job DSNTIJSG when you install a new DB2 9 or job DSNTIJMS for
post-installation. These jobs are located in data set prefix.SDSNSAMP.

� On the client:

Run the com.ibm.db2.jcc.DB2LobTableCreator utility against each of the DB2 for z/OS
servers. See DB2LobTableCreator utility for details.

Normally, this task is done on the server with job DSNTIJMS. For more information, go to:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.ud
b.apdv.java.doc/doc/r0023715.htm

Progressive streaming with the Java Universal Driver
If the JCC driver of DB2 Connect is used against DB2 9 for z/OS, progressive streaming and
progressive references are enabled by default. See also “Progressive streaming with DB2
Connect CLI” on page 136.

With Progressive Streaming, the JCC driver materializes if the LOBs are small, and it uses
locators if the LOB is large (by default, larger than 1 MB). This resolves a problem with the
LOB access on DB2 V8. In a distributed environment, it is good to materialize LOBs from the
performance point of view. (c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 141

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.java.doc/doc/r0023715.htm

However, huge LOBs must be read piece-wise, because otherwise, the client runs out of
memory. In the SAP Portal, clients can store in principle any amount of data, for example,
they can store complete videos with more than 500 MB. Because with DB2 V8, there is only
the global property fullyMaterializeLobData, which applies to all statements executed using
this connection, locators must always be used to retrieve any LOB within connections which
access large LOBs.

The Progressive streaming property specifies whether the JDBC driver uses progressive
streaming when progressive streaming is supported on the database server. This is the case
for DB2 9 but not V8. The value of the streamBufferSize parameter determines whether the
data is materialized when it is returned.

Valid values are DB2BaseDataSource.YES (1) and DB2BaseDataSource.NO (2). If the
progressiveStreaming property is not specified, the progressiveStreaming value is
DB2BaseDataSource.NOT_SET (0).

If the connection is to a database server that supports progressive streaming, and the value
of progressiveStreaming is DB2BaseDataSource.YES or DB2BaseDataSource.NOT_SET,
the JDBC driver uses progressive streaming to return both LOBs and XML data. Therefore,
by default progressive streaming is enabled.

If the value of progressiveStreaming is DB2BaseDataSource.NO or the database server does
not support progressive streaming, the way in which the JDBC driver returns LOB or XML
data depends on the value of the fullyMaterializeLobData property.

The streamBufferSize property specifies the size, in bytes, of the JDBC driver buffers for
chunking LOB or XML data. The JDBC driver uses the streamBufferSize value whether or not
it uses progressive streaming. The default is 1 MB.

If the JDBC driver uses progressive streaming, LOB or XML data is materialized if it fits in the
buffers and the driver does not use the fullyMaterializeLobData property.

With the change to progressive streaming, attention has to be paid to the changed behavior
when using progressive references as compared to the use of locators with V8
fullyMaterializeLobData=false. The progressive reference is freed when the cursor is closed,
while in V8, it was only freed at commit. Example 5-7 shows a snippet from the code to be
adapted for use with progressive references.

Example 5-7 Insert using progressive reference (c) SAP AG; 2006

Clob cl = null;
Blob bl = null;
// retrieve values via progressive reference
// assuming length of FLOB and FBLOB is greater than streamBufferSize
String query =

"select FCLOB, FBLOB from TSTLOBTAB where FCHAR4 = 'A' and FINT = 1";

Statement stmt = getConnection().createStatement();
ResultSet rs = stmt.executeQuery(query);

if (rs.next()) {
cl = rs.getClob(1);
bl = rs.getBlob(2);

}

rs.close(); // this will not work in DB2 9 with
// Progressive Streaming (c) SAP AG; 2006
142 LOBs with DB2 for z/OS: Stronger and Faster

// DB2 will issue SQLCode -423

// update the second row with the LOB field values of the 1st row
String updStmt =
 "update TSTLOBTAB set FCLOB = ?, FBLOB = ? where FCHAR4 = 'B' and FINT = 2";
ps = getConnection().prepareStatement(updStmt);
ps.setClob(1, cl);
ps.setBlob(2, bl);

ps.executeUpdate();
ps.close();
// rs.close(); // DB2 9: close ResultSet here!

5.6 Data Dictionary considerations

In this section, we give you an overview about how LOB tables and their auxiliary objects are
created and named. The naming conventions outlined here have been chosen by SAP and
are enforced by its database interface layer, out of direct client control. These standards are
not required by non-SAP applications, but are a good example to follow, helped by DB2 V8
allowing long names.

5.6.1 ABAP stack

The following database objects are created for each LOB column and partition on the ABAP
stack if running on DB2 V8:

� The LOB table space is created in the base table’s database with the name
L[TABNAME5][LK]

Where:

– [TABNAME5] = first 5 characters of the table’s name
– [LK] = 2 random characters ([A-Z] [0-9])

� The default storage attributes are as follows:

– STOGROUP = table’s default data STOGROUP
– PRIQTY 200 SECQTY 10240 GBPCACHE SYSTEM
– BUFFERPOOL BP40 LOG YES LOCKMAX 1000000 LOCKSIZE LOB

� For the auxiliary table, the naming convention is #[COLNAME14][MNO]

Where:

– [COLNAME14] = first 14 characters of the column’s name
– [MNO] = 3 random characters ([A-Z][0-9])

� The index on auxiliary table is created with the same name as the auxiliary table using the
following storage parameters:

– STOGROUP = table’s default index STOGROUP
– PRIQTY 16 SECQTY 10240 FREEPAGE 10 PCTFREE 10 GBPCACHE CHANGED
– BUFFERPOOL BP40 PIECESIZE 2097152 K

For example, if the non-partitioned table LOBTSTTAB has a LOB column named
TESTLOBCOL, the naming of the related LOB objects could be:

� LOB table space LLOBTS5A
� Auxiliary table #TESTLOBCOL8ZH with index #TESTLOBCOL8ZH (c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 143

LOB fields are always created with a length of 1 GB, because this is the maximum length
which can be logged in V8. With DB2 9, this length is increased to the maximum size of a
LOB, 2 GB-1 bytes, and the SAP Data Dictionary is adapted accordingly.

The LOB table spaces are always created with BP40. This buffer pool allocation is again an
SAP specific choice that is part of a broader buffer pool management scheme. It does,
however, demonstrate a broad recommendation to separate LOB objects into distinct
separate buffer pools because of their different attributes. More information about buffer pool
considerations can be found in 8.3, “Buffer pools and group buffer pools” on page 244.

5.6.2 Java stack

The following database objects are created for each LOB column and partition on the JAVA
stack. Auxiliary objects to store the LOB data are created as they are in the ABAP stack with
the following differences:

� The table name is always used without a namespace prefix.

� Primary and secondary quantities are not specified. DB2 Space Extend Management is
used (sliding allocation).

� The column name is used without truncation.

5.6.3 DSNZPARMs for DB2 V8

In this section, we show the recommended SAP-related DSNZPARMs for an SAP system.

Table 5-5 shows the additional values for DB2 V8.

Table 5-5 DSNZPARMs for V8 (c) SAP AG; 2006

5.6.4 ROWID

DB2 V8 has introduced the concept of transparent ROWID. Prior to V8, the ROWID was
visible to INSERT or SELECT statements, which did not specify a field list. It can be
advantageous to normalize SELECT and INSERT statements to statements without a field
list, because this cuts down the number of statements against a table and thus reduces stress
on statement cache. This technique can be only used in SAP Unicode systems because the
non-Unicode tables might have been created on DB2 V7 and then migrated to DB2 V8.

Even with a transparent ROWID, the SAP data dictionary has to hide the ROWID field,
because it is visible with catalog SELECTs. SAP in practice hides the visibility of this column
from the ABAP programmers for the tables containing LOB columns. This is important for
application portability across SAP systems using different underlying DBMSs.

(c) SAP AG; 2006

Parameter Value Remark

LOBVALA 1000000K The size of the user storage for LOB
values (in KB). The recommended value
is 1 GB (1,000,000 KB).

LOBVALS 50000M The size of the system storage for LOB
values (in MB). The recommended value
is 50 GB (50,000 MB).
144 LOBs with DB2 for z/OS: Stronger and Faster

Sample DDL for CREATE TABLE statement
As an example, we create a very simple table with three columns and two LOB columns on
the Java stack. The definition is given in Example 5-8 in XML format, as used by the Java
data dictionary.

Example 5-8 Table definition for test table TSTLOBDDL in XML format (c) SAP AG; 2006

<?xml version=”1.0”?>
<Dbtable name=”TSTLOBDDL” creation-date=””>
 <properties>
 <author> </author>
 <description language=””></description>
 </properties>
 <predefined-action></predefined-action>
 <position-is-relevant></position-is-relevant>
 <deployment-status></deployment-status>
 <columns>
 <column name = “F1”>
 <position>1</position>
 <dd-type>string</dd-type>
 <java-sql-type>VARCHAR</java-sql-type>
 <length>10</length>
 <decimals>0</decimals>
 <is-not-null>true</is-not-null>
 <default-value> 1 </default-value>
 </column>
 <column name = “F2”>
 <position>17</position>
 <dd-type>binary</dd-type>
 <java-sql-type>BLOB</java-sql-type>
 <length>0</length>
 <decimals>0</decimals>
 <is-not-null>false</is-not-null>
 <default-value></default-value>
 </column>
 <column name = “F3”>
 <position>14</position>
 <dd-type>string</dd-type>
 <java-sql-type>CLOB</java-sql-type>
 <length>1334</length>
 <decimals>0</decimals>
 <is-not-null>false</is-not-null>
 <default-value></default-value>
 </column>
 </columns>
 <primary-key>
 <tabname>TSTLOBDDL</tabname>
 <columns>
 <column>F1</column>
 </columns>
 </primary-key>
 </Dbtable>

With DB2 V8, this results in the DDL shown in Example 5-9.

(c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 145

Example 5-9 DDL for LOB table DB2 V8 (c) SAP AG; 2006

SET CURRENT RULES = 'DB2';
 CREATE TABLESPACE "TSTLOBD" IN "JD0XXTPB"
 USING STOGROUP SAPR3L FREEPAGE 20 PCTFREE 16
 GBPCACHE CHANGED DEFINE YES BUFFERPOOL BP2
 LOCKSIZE ROW LOCKMAX 1000000 CLOSE YES
 COMPRESS YES MAXROWS 255 SEGSIZE 20 CCSID UNICODE;
 COMMIT:
 CREATE TABLE "TSTLOBDDL"(
"F1" VARGRAPHIC(10) DEFAULT ' 1' NOT NULL,
"F2" BLOB (1G) ,
"F3" DBCLOB (500M));
 IN JD0XXTPB.TSTLOBD CCSID UNICODE;
 COMMIT;
 CREATE LOB TABLESPACE LTSTLOUX IN JD0XXTPB
 USING STOGROUP SAPR3L LOG YES LOCKMAX 0 GBPCACHE
 SYSTEM LOCKSIZE LOB DEFINE YES BUFFERPOOL BP40;
 COMMIT;
 CREATE AUX TABLE "#F2UX6" IN JD0XXTPB.LTSTLOUX
STORES "TSTLOBDDL" COLUMN "F2" CREATE INDEX "#F2UX6" ON "#F2UX6"
 USING STOGROUP SAPR3L FREEPAGE 10 PCTFREE 10 GBPCACHE
 CHANGED PIECESIZE 2097152 K DEFINE YES BUFFERPOOL BP40;
 COMMIT;
 CREATE LOB TABLESPACE LTSTLO1W IN JD0XXTPB USING STOGROUP SAPR3L
 LOG YES LOCKMAX 0 GBPCACHE SYSTEM LOCKSIZE LOB DEFINE YES BUFFERPOOL BP40;
 COMMIT;
 CREATE AUX TABLE "#F31WO" IN JD0XXTPB.LTSTLO1W STORES "TSTLOBDDL" COLUMN "F3";
 CREATE INDEX "#F31WO" ON "#F31WO" USING STOGROUP SAPR3L FREEPAGE 10
 PCTFREE 10 GBPCACHE CHANGED PIECESIZE 2097152 K DEFINE YES BUFFERPOOL BP40;
 COMMIT;
 CREATE UNIQUE INDEX "#TSTLOBDDLP8P" ON "TSTLOBDDL" ("F1" ASC)
 NOT PADDED USING STOGROUP SAPR3L
 FREEPAGE 20 PCTFREE 16 GBPCACHE CHANGED
 DEFINE YES CLUSTER BUFFERPOOL BP2
 CLOSE YES DEFER NO COPY YES PIECESIZE 2097152 K;
 COMMIT
 ALTER TABLE "TSTLOBDDL" ADD PRIMARY KEY (F1);
 COMMIT;

Note that SAP tends to compress most data, but in the statement in Example 5-9 on
page 146, COMPRESS YES only works for the base table space, because as of DB2 9, LOB
tables cannot be compressed. The table space names and database names have to be
calculated and checked for possible namespace collisions by the dictionary interface. In this
case, this is performed automatically as part of the database interface layer, but non-SAP
applications need to consider their naming conventions to similarly ensure no overlapping in
the name spaces of objects.

With DB2 9, this DDL simplifies considerably, as shown in Example 5-10.

Example 5-10 DDL for LOB table DB2 9 (c) SAP AG; 2006

CREATE TABLE "TSTLOBDDL"
 ("F1" VARGRAPHIC(10) DEFAULT ' 1' NOT NULL,
 "F2" BLOB (1G) ,
 "F3" DBCLOB (500M))
 CCSID UNICODE; (c) SAP AG; 2006
146 LOBs with DB2 for z/OS: Stronger and Faster

 COMMIT;
 ALTER TABLE "TSTLOBDDL" ADD PRIMARY KEY (F1);
 COMMIT;

The new DB2 9 feature of implicitly created DB objects is a tremendous help when porting
applications. This feature is described in 3.1.1, “Example of automatic creation of objects” on
page 24. This feature will be used by SAP and will remove the need for special code in the
database interface that previously handled this task. Some applications simply deliver SQL
scripts, which contain the necessary DDL and which run on other DBMSs, such as DB2 for
Linux, UNIX and Windows. With this new feature, these scripts run on DB2 for z/OS without
modification. Differently from DB2 V8, tables can be assigned by default to databases other
than DBSNDB04 and have attributes such as row locking instead of page locking.

What’s missing
What is still missing is just the feature to enable ALTER to hide ROWID, that is, the capability
to change a non-transparent ROWID into a transparent one. This would allow tables within an

SAP system, with LOBs created prior to the transparent ROWID, to be easily converted to

take advantage of the new feature.

5.7 Unicode

There are some differences with respect to LOBs for Unicode and non-Unicode systems.

Because SAP uses UTF16 as Unicode code page, character fields are stored in
VARGRAPHIC instead VARCHAR, and CLOB data is stored in DBCLOB fields. As a
consequence of this, the Bind for DB2 Connect CLI must use a different collection ID for
non-Unicode and Unicode systems. See Example 5-11.

Example 5-11 Bind command for UNIX system (c) SAP AG; 2006

db2 bind <Instance directory>/sqllib/bnd/@ddcsmvs.lst ACTION REPLACE
KEEPDYNAMIC YES GENERIC \"DEFER PREPARE\" REOPT ONCE COLLECTION
SAP<FIXPAK><U> ISOLATION UR BLOCKING UNAMBIG RELEASE COMMIT
SQLERROR CONTINUE DYNAMICRULES RUN <ENCODING UNICODE>

All locator statements are bound regardless of the Encoding Bind Option with DB2 Connect
9.1 SP1. The same Collection ID can be used for Unicode and non-Unicode systems.

Another important point is that long character fields that are naturally mapped to VARCHAR
in a non-Unicode environment cannot be mapped to VARGRAPHIC in a Unicode
environment if their character length exceeds the threshold of 16 KB (since their byte length
then exceeds the 32 KB boundary). DB2 does not support buffer pools greater than 32 KB;
therefore, they have to be mapped to DBCLOB fields. As a consequence, there are a greater
number of LOB fields in a Unicode environment.

Compression
SAP recommends to use compression for Unicode systems. The potential of database
compression for a Unicode system is considerably higher than for a non-Unicode system.
The reason is that data stored in UTF16 still has a high percentage of data mapped to ASCII;
this means that the first two bytes of the UTF16 character contain mostly x’00’. Currently,
compression is not available for LOB columns.
(c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 147

If the content of DBCLOB columns keeps increasing, the requirement for compression for
LOB fields becomes more urgent.

5.8 Some points of SAP LOB usage with CCMS

With the SAP Computing Center Management System (CCMS), some special considerations
have to be made for LOB table spaces. Here, we distinguish between DB2 V8 and DB2 9.

With DB2 V8, an online REORG is not available for LOB table spaces; therefore in V8,
REORG SHRLEVEL NONE must be defined for LOBs.

Jobs for LOB-related REORG should be uploaded to z/OS and only submitted during a
maintenance window, when the SAP system is down. Otherwise, this would result in a severe
performance impact on the running SAP system.

For this reason, suggested periodic REORG jobs of table spaces do not include LOB table
spaces.

Additionally, a V8 REORG of a LOB table space did not reclaim disk space in the underlying
VSAM data set, and as a result, the number of extents remained unchanged. SAP
environments have typically a large number of data sets and it is common to use the number
of extents as a trigger for the REORG of table spaces. Primarily, this trigger is to minimize the
risk of exhausting the maximum number of extents unexpectedly. The availability of sliding
secondary extent allocation in DB2 V8 removed most of the potential for problems, and this is
the default for implicitly created table spaces in V9. Changes in architecture over a period of
time have rendered the performance impact of a growing number of extents to be marginal, or
non-existent. A growing number of extents might, however, be an indication of performance
ramifications of potential internal disorganization.

LOB table spaces, therefore, introduced a complication in the sense that a REORG did not
remove the trigger of a large number of extents, while it did restore the order of the records to
optimal. Solutions to this problem include scheduling time to make the table space
unavailable and performing an offline RECOVER as a more brutal method of resizing the
data set. Another approach is to ignore the REORG trigger condition, provided the object is
not at risk of reaching maximum extents, and other statistics such as ORGRATIO do not
indicate that internal disorganization accompanies the high number of extents. Another
circumvention is the sliding allocation technique introduced by MGEXTSZ (with a global
scope), option 7 on install panel DSNTIPZ in DB2 V8.

With DB2 9 for z/OS, REORG SHRLEVEL REFERENCE is available and the restriction is
removed. The underlying data sets are recreated as a shadow, reflecting any ALTERs to
primary and secondary quantities for the object. While SHRLEVEL REFERENCE is not
completely disruptive, with the nature of the data presently stored in tables with LOBs in the
SAP system, it should be possible to non-disruptively schedule maintenance activities in a
normal environment.

Also, the REORG of the auxiliary index can be performed online. For critical objects contained
in LOBs in the SAP system, this is a great improvement. For more information, see 6.9,
“REORG” on page 185.

(c) SAP AG; 2006
148 LOBs with DB2 for z/OS: Stronger and Faster

5.9 Portability aspects

If an application or program is to run against different DBMSs, as SAP does, portability is a
major concern. As an example, some applications might just provide a script to create tables
and indexes and know nothing about the fact that DB2 for z/OS requires table spaces,
databases, and auxiliary objects for LOBs. We note that this issue is solved with DB2 9 and
automatic creation of DB objects.

A typical problem is that a simple SQL statement “SELECT *” on a table with a ROWID in
DB2 for z/OS Version 7 also retrieves the ROWID. Because other database vendors might
not support the concept of a ROWID or might not require LOB tables to contain a ROWID
column, this poses a challenge for the application.

Even with the transparent ROWID of DB2 V8, the SAP catalog reader tools have to hide the
ROWID field, because it is visible with Catalog Selects but is unknown to the SAP Dictionary.

Another aspect is that SAP also uses many small LOBs. Because DB2 stores the LOB data in
auxiliary tables, which is attractive for huge LOBs, it can yield a performance penalty if small
LOBs are massively accessed.

Table 5-6 shows a comparison of different databases in relation to LOBs.

(c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 149

Table 5-6 Comparison of different databases for aspects of LOBs (c) SAP AG; 2006

5.10 Monitoring and tracing

There are a variety of traces built into the SAP system to enable the user to trace the system
activity. Traces include the ST05 trace, the dbsl trace, the CLI trace, and the IFI DB trace. All
of these are available within transaction DB2. These traces can, of course, also be used to
trace the statement flow on LOB tables.

DBSL trace
With dbsl trace level 3, all displayed data is truncated at 256 bytes. With dbsl trace 4, all LOB
data is displayed. Go to transaction DB2 → Traces/Logs → DBSL to start the trace. See
Figure 5-10 on page 151.

(c) SAP AG; 2006

DB2 for z/OS DB2 for LUW DB2 for iSeries™ Others

ROWID column
required?

Yes No No No

ROWID column
supported?

Yes No No Mostly no

Auxiliary table
spaces for LOBs?

Must Can No Some can

Read piece-wise
supported?

Yes Yes Yes Yes

Read in one
piece supported?

Yes Yes Yes Most

Validity of
locator?

Until commit Until commit Until commit Some until close
cursor

Maximum
number of LOB
fields per table?

> 750 No restriction No restriction Some only few

Search function
on LOBs
supported?

Yes Yes Yes Some

Concatenation of
LOBs supported?

Yes Yes Yes Mostly no

JDBC driver
supports
materialization of
LOBs on client
side?

Yes Yes Yes Mostly yes

Can
materialization be
switched on and
off?

Yes Yes Yes Some yes
150 LOBs with DB2 for z/OS: Stronger and Faster

Figure 5-10 Starting the dbsl trace (c) SAP AG; 2006

All data is traced to the corresponding developer traces. This feature is particularly helpful if
corrupted LOB data is suspected.

Example 5-12 shows how a BLOB looks.

Example 5-12 DBSL trace displaying all LOB data (c) SAP AG; 2006

C DB2TRC: 0000000072 00 0015 000000 CLI_EXTENDED_PREPARE (18) SELECT "UNAM" , "UDAT" ,
"UTIME" , "L_DATALG" , "Q_DATALG" , "SDAT" , "STIME" , "MINOR_VERS" , "MAJOR_VERS" FROM
"REPOLOAD" WHERE "PROGNAME" = ? AND "R3STATE" = ? AND "MACH" = ? FOR FETCH ONLY WITH UR
C DB2TRC: 0000000007 00 0015 000000 CLI_EXTENDED_BIND IN 65552
C DB2TRC: 0000000004 00 0015 000000 CLI_EXTENDED_BIND OUT 65552
C DB2TRC: 0000008182 00 0015 000000 CLI_EXECUTE 65552 cursor_hold = off
C DB2TRC: CLIDA-IN BEGIN
C DB2TRC: CLIDA-IN PARAMETER 3
C DB2TRC: CLIDA-IN [0](SQL_VARCHAR,8,40):SAPMSSY6
C DB2TRC: CLIDA-IN [1](SQL_VARCHAR,1,1):A
C DB2TRC: CLIDA-IN [2](SQL_SMALLINT,2,2):324
C DB2TRC: CLIDA-IN END
C DB2TRC: 0000000009 00 0015 000000 CLI_FETCH 1/1 65552
C DB2TRC: CLIDA-OUT BEGIN
C DB2TRC: CLIDA-OUT PARAMETER 9
C DB2TRC: CLIDA-OUT [0](SQL_VARCHAR,1,12):
C DB2TRC: CLIDA-OUT [1](SQL_VARCHAR,8,8):20060728
C DB2TRC: CLIDA-OUT [2](SQL_VARCHAR,6,6):064459
C DB2TRC: CLIDA-OUT [3](SQL_INTEGER,4,4):16124
C DB2TRC: CLIDA-OUT [4](SQL_INTEGER,4,4):6397
C DB2TRC: CLIDA-OUT [5](SQL_VARCHAR,8,8):20060417
C DB2TRC: CLIDA-OUT [6](SQL_VARCHAR,6,6):062251
C DB2TRC: CLIDA-OUT [7](SQL_SMALLINT,2,2):1
C DB2TRC: CLIDA-OUT [8](SQL_INTEGER,4,4):1623
C DB2TRC: CLIDA-OUT END
C DB2TRC: 0000000006 00 0015 000000 CLI_CLOSE_CURSOR 65552
C DB2TRC: 0000000008 00 0016 000000 CLI_ALLOC_STMT 65553
C DB2TRC: 0000000004 00 0016 000000 CLI_SET_ROWS_FETCHED_VAR 65553
C DB2TRC: 00 0016 000000 SQLESETI 65553
C DB2TRC: (
)
C DB2TRC: 0000000050 00 0016 000000 CLI_EXTENDED_PREPARE (18) SELECT length("LDATA")
,"LDATA" , "LDATA" FROM "REPOLOAD" WHERE "PROGNAME" = ? AND "R3STATE" = ? AND "MACH" = ?
FOR FETCH ONLY WITH CS
C DB2TRC: 0000000005 00 0016 000000 CLI_EXTENDED_BIND IN 65553
C DB2TRC: 0000000003 00 0016 000000 CLI_EXTENDED_BIND OUT 65553
C DB2TRC: 0000008069 00 0016 000000 CLI_EXECUTE 65553 cursor_hold = off
C DB2TRC: CLIDA-IN BEGIN
C DB2TRC: CLIDA-IN PARAMETER 3
C DB2TRC: CLIDA-IN [0](SQL_VARCHAR,8,40):SAPMSSY6
C DB2TRC: CLIDA-IN [1](SQL_VARCHAR,1,1):A
C DB2TRC: CLIDA-IN [2](SQL_SMALLINT,2,2):324
C DB2TRC: CLIDA-IN END
C DB2TRC: 0000003566 00 0016 000000 CLI_FETCH 1/1 65553 (c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 151

C DB2TRC: CLIDA-OUT BEGIN
C DB2TRC: CLIDA-OUT PARAMETER 3
C DB2TRC: CLIDA-OUT [0](SQL_INTEGER,4,4):16124
C DB2TRC: CLIDA-OUT [1](SQL_BLOB_LOCATOR,4,4):AF1B059B
C DB2TRC: CLIDA-OUT
[2](SQL_BLOB,16124,64000):FF0AD10000121F9D02B4EF25005215D7DAA76EDFEE59617A60403671D851417A8
64540C0E999E9611A7A669AEE1E04151B04141790006E7149AB68E29A7125BB9868824B12624C4C8C896D342E31
2F92C5C42426E16912CD62C4EC6A0CFF3955A7EEAD7BA7866062DECBFBDF3B7097F37DB59E3A75AAEE9DDB49800
71ED847
C DB2TRC:
A77C32DB95CFAF9CD3F877A43991989398D57474624E73F3EC261000B1E3E0C821E96557C7D7DEF5A3D641CE5F3
61E07F0AD6AD0E2342F41BD0520DA88DA7C80481660549F2287DE82A749788C02A89B8A57CE278A74C2B2E7C2C0
B2409EE3300DA2F011BC136213E6111E2F8CF301449C1302BE0E70FA4E6CF86A8077E371
C DB2TRC:
171EBB7603DC99C563B57184F53E907205E21734025C82D85D253CCA009FDF0DF0A9B8E2DBF6E27D1FC071C8ADC
4EB86B2BADEC9C770E45B116B2BABB474505ADB713BF8F9CC83DA4CF585F1293341DA5AC9FEFDFA4E4A6540F3A4
58CCF7F302C508D1E4A512CAD286B5451F44D45D8A4EBB1CA0C1AA5F5852E0AEE11B9B61
C DB2TRC:
080C455DE0E17C46C1887FFB34C41BFAE3575F89F8B0FEB87B2AE2C3FBE3DB06217E487FFCF91F213EA23F5EF73
8E223FBE1B1CFDC0187C1A18C8F256C2180BB505DBD033DF62F6BF15A8A4004AF4EB91AE2559568906DE01E0F64
1944FEA6CABC2302434B682A898B727589CDB608A04638220251E14A1D6D26A265CFA852
C DB2TRC:
8F95D9ACAACE680394C0151B8A50861DF087577780A8B8876C3D4A54EE8843F41ECA3D1AB94B60CC8E4B41ECC04
11F0EF04351856539307A0ED225072AF03E3A9BEE232272295E5D2A7B0A968DD3EC4ED46354CE0858307B3F7C5B
548B9A28B94B23A4A231BC4E85EEE860BC1E05BD77623A2CB35AD4C2EB220A115D26636F
C DB2TRC:
603D3BB08C2DE50A88C96B254477C01F9FC4760FC2F656C8F68E2DD7CAEB61E541F2DA581E4CED46FBEC108343F
6A9C39258A41E2F47037A7DD9736CA3DFE76CC0123E80DD2C41C9D5FC07A80FA6DEE2B8E5C1E5B8CF3B58A2AFA7
22CE27CAD172CCD3B166D2CB754A8F4461C61CF2857A3104EB241B407948C9A5FB89E07C
C DB2TRC:
BC3CB41C17D1FDBF4FC575094AC856E50631147B397607CCAB47DB34C8316D2C0F431B450618CBA1689F941816B
2CF7071882E57EA23C4C8803E4A7B1F008E078DD19BAED8FFCD68AC44069F2ADB1929BB2206B11BA01C990F6577
7E2D46F28A7215565211C084183DBF46715595983F018DD43E4CB95B08EEB35316D8D686
C DB2TRC:
B7A9AD7FC5CC11BE7F5DD7297D1A7DCEB333D51905ED837FC5BE44F45C5569A5FF57E07C2DA14F4F459F2EA14FC
FE572DFB8CFF57D3AE28083AA8B9C23C68808DE0FD7BEAD399AFF620CCCC0FB3A5D67884BE07D25736F321761AE
E95D15C69C5B0023643B6A44B59C7329689473AE1BDB49FEDA0B47D19CA3F694015EDB01
C DB2TRC:
67ED467F3954C70079A5F91FF29BEB95196183538E7E85EF6D71ED206392A375E93773D86F9C7284FDC6994F7EA
2FCC665BFF131DF6F5CB67954DB57CE19B7E460EDF25E54971C87EF118F203EEC207D696C40B7F8921E1BE9B358
12FAAC5BE196E45603D598C2A7D4515B143EA5AED2455F19030BFEABC60BC724628E4F1F
C DB2TRC:
4015AE4BEEC25209D421220B4B65984CF607E9D783EE70E1E812A65D81ED298168C40D938C9198B73A98B7846B5
CC931EAEAE70F14CFCBA264D68B79CAC252EFE03BA2309FAC8CD7634A406B29D62FA89E40DD9CBFE4E01119A89F
35980F17D11546BDDC66CAFBAFEBAFAE57F6DBE9D76FC752FFE8B7D06F47F79BF28B7118
..
..
C DB2TRC: CLIDA-OUT END
C DB2TRC: 0000000812 00 0016 000000 CLI_CLOSE_CURSOR 65553

Examples for the DB2 Connect CLI traces are given in Example 5-1 on page 135 and in
Figure 5-6 on page 133 for the ST05 trace.

We now provide an example of the IFI DB Trace using the SAP Performance Optimizer. See
Figure 5-11 on page 153. You can download the SAP Performance Optimizer tool from SAP
note 908770.

(c) SAP AG; 2006
152 LOBs with DB2 for z/OS: Stronger and Faster

Figure 5-11 SAP Performance Optimizer Tool (c) SAP AG; 2006

To take traces, go to Monitor Views → DB Trace, as shown in Figure 5-12.

Figure 5-12 SAP Performance Optimizer Tool DB Trace (c) SAP AG; 2006

In Example 5-13 on page 154, we show the locking behavior for DB2 V8. (c) SAP AG; 2006
Chapter 5. SAP usage of LOBs 153

Example 5-13 Locks taken by simple SELECT on LOB table V8 (c) SAP AG; 2006

023921:646261 3.594 00000 00016448 PREPARE CURSOR SQL_CURLH200C2
023921:646361 00004 00000000 CHANGE L ANY MANUAL+1 Data Page
023921:646734 BIND select FCLOB, FBLOB from TSTLOBTAB where FCHAR4 = ? and FINT = ?
023921:647685 00000 7DC5DAE0 LOCK S MANUAL Data Page ID=9 DSNDB06
023921:647815 00004 7DC5DAE0 LOCK S MANUAL Data Page ID=9 DSNDB06
023921:647953 00004 7DC5DAE0 LOCK S MANUAL Data Page ID=9 DSNDB06
023921:648520 00004 7DC5DAE0 LOCK S MANUAL Data Page ID=9 DSNDB06
023921:649644 00004 00000000 UNLOCK ANY MANUAL Data Page
023921:649820 35 00000 00016448 OPEN CURSOR SQL_CURLH200C2 CS
023921:875842 382 00000 00016448 FETCH SQL_CURLH200C2
023921:876030 00004 7DC55210 LOCK S MANUAL Data Page ID=117 DSNDB04
023921:876101 00004 7F3686B0 LOCK S COMMIT+1 LOB value L9KBRB0M DSNDB04
023921:876184 00004 7F3686B0 LOCK S COMMIT+1 Data Page
023922:079864 00000 7DC5DAE0 LOCK S COMMIT SKPT
023922:080889 2.685 00000 00016448 PREPARE CURSOR SQL_CURLN200C1
023922:081011 BIND SELECT LENGTH (CAST(? as DBCLOB)) FROM SYSIBM.SYSDUMMYU

Example 5-14 shows the locking behavior for DB2 9. It demonstrates that LOB locks are no
longer taken.

Example 5-14 Locks taken by simple SELECT on LOB table with DB2 9 (c) SAP AG; 2006

024656:730414 BIND select FCLOB, FBLOB from TSTLOBTAB where FCHAR4 = ? and FINT = ?
024656:731023 00004 7F5BFF80 LOCK S MANUAL Data Page ID=9 DSNDB06
024656:731114 00004 7F5BFF80 LOCK S MANUAL Data Page ID=9 DSNDB06
024656:731222 00004 7F5BFF80 LOCK S MANUAL Data Page ID=9 DSNDB06
024656:731726 00004 7F5BFF80 LOCK S MANUAL Data Page ID=9 DSNDB06
024656:732879 00004 00000000 UNLOCK ANY MANUAL Data Page
024656:733073 50 00000 00016448 OPEN CURSOR SQL_CURLH200C2 CS
024656:960803 277 00000 00016448 FETCH SQL_CURLH200C2
C0 LOCK S MANUAL Data Row TMPROSQL DSN02348
024657:165879 00004 00000000 CHANGE L ANY MANUAL+1 Data Page
024657:165949 00000 7F5BDB80 LOCK IS MANUAL+1 Page Set SYSPKAGE DSNDB06
024657:165975 00000 7F5BF340 LOCK IS MANUAL+1 Table SYSPACKAUTH
024657:166163 00000 7F5C3190 LOCK S MANUAL Data Page ID=143 DSNDB06
024657:166205 00000 7F5C3190 UNLOCK S COMMIT+1 Data Page
024657:166243 00004 00000000 UNLOCK ANY MANUAL Data Page
024657:166257 00000 00000000 UNLOCK IS MANUAL+1 Table SYSPACKAUTH
024657:166268 00000 00000000 UNLOCK IS MANUAL+1 Page Set SYSPKAGE DSNDB06
024657:166337 00000 7F5BDB80 LOCK IS COMMIT Page Set ID=127 ID=1
024657:166351 00000 7F5BF340 LOCK IS COMMIT Table ID=129
024657:191520 00000 7F5C3190 LOCK S MANUAL Data Page ID=129 ID=1
024657:202313 00000 7F5B9EB0 LOCK S COMMIT SKPT
0
024657:257137 00000 7F5C3190 UNLOCK S MANUAL+1 Data Page
024657:257152 00000 7F5C3190 LOCK S MANUAL Data Page ID=129 ID=1
024657:257698 00000 7F5C3190 UNLOCK S COMMIT+1 Data Page
024657:258542 00016448 PREPARE CURSOR SQL_CURLN200C1
024657:258673 BIND SELECT LENGTH (CAST(? as DBCLOB)) FROM SYSIBM.SYSDUMMYU

5.11 Database interface layer profile parameters

In this section, we describe dbsl_lib profile parameters, which refer to LOBs. A summary of
the parameters is provided in Table 5-7 on page 155.

(c) SAP AG; 2006
154 LOBs with DB2 for z/OS: Stronger and Faster

Table 5-7 dbsl_lib profile parameters for LOB handling (c) SAP AG; 2006

5.12 Performance measurements

Some measurement results are included here from different sources.

5.12.1 Locks and SELECT

The IBM/SAP performance team used the SAP program R3load (a utility often used to export
tables in SAP platform independent format) as a means to measure repeated workloads
against LOBs in DB2 V8 and DB2 9 subsystems. The tool is used to export records from a
table with a LOB column into a file and is executed on a remote network-connected client.
The purpose here is to evaluate the impact of the new locking mechanisms for LOBs in DB2 9
showing improvements in the context of a real workload.

The measurement data shows the improvements with reduced locking on LOB objects in
DB2 9. (c) SAP AG; 2006

Parameter Recommended value Description

dbs/db2/lob_buf_size
dbs_db2_lob_buf_size

64,000 bytes Size of the local LOB buffer. Minimum value
is 32,000 bytes, maximum 2,000,000 bytes.

dbs/db2/use_eda
dbs_db2_use_eda

1 Possible values are [0,1].
Use 0 to turn off the extended da feature.

dbs/db2/use_drda_lob_handling
dbs_db2_use_drda_lob_handling

0 Possible values are [0,1].
Use 1 to turn on the DB2 Connect CLI LOB
streaming. Not supported with DB2 V8.

dbs/db2/chaining
dbs_db2_chaining

20 Possible values [0,MAX_INT].
Use 0 to turn off chaining. For values
greater than 0, this number gives the
minimum value of rows which have to fit
into the dbsl_lib array buffer before
chaining is used.

dbs/db2/lob_free_buffer
dbs_db2_lob_free_buffer

1,000 Possible values [0,MAX_INT]. Number of
locators to fit into free locator buffer. Set to
0 to turn off the free locator buffer.

dbs/db2/max_lob_free_length
dbs_db2_max_lob_free_length

1 GB Possible values [0,2048]. Threshold for
storage which locators in locator free buffer
can hold before freed.

dbs/db2/sql_trace
dbs_db2_sql_trace

0 Possible values [0,4].
0 corresponds to dbsl trace off.
1 corresponds to dbsl statement trace.
2 is unused.
3 corresponds to dbsl statement and data
trace, data is truncated.
4 corresponds to dbsl statement and data
trace, data is not truncated.

dbs/db2/cli_trace_value
dbs_db2_cli_trace_value

0 Possible values [0,1].
Set to 1 to turn on CLI trace.

dbs/db2/cli_trace_dir
dbs_db2_cli_trace_dir

/usr/sap/<SAPSID>/<INSTANCE>/work Directory to which CLI traces should be
written. If not set, no CLI traces are written.
Chapter 5. SAP usage of LOBs 155

This improvement shows through in two distinct ways: first, in the CPU resource within DB2
processing, and secondly, the number of round-trips required between the remote client and
DB2 was reduced. Both of these factors lead to reduced run time of the application task, and
these improvements require no change to the application execution. It should be noted that
this example uses an application and underlying table specifically chosen because it contains
data predominantly in LOB columns, but nonetheless, it proves significant gains with DB2 9.

The first measurement shown in Figure 5-13 shows the reduction in elapsed time of the test
job, from 5,193 seconds to 4,459 seconds, a total 14% reduction.

Figure 5-13 SAP R3load test case elapsed time (c) SAP AG; 2006

Figure 5-14 shows the dramatic reduction in lock requests. The reduction is comprised
entirely of the elimination of LOB-lock requests for lock and unlock of the LOB row.

Figure 5-14 R3load test case reduced locks (c) SAP AG; 2006

What remains is the lock on the base table row as expected, so for each row processed, two
of the three lock requests are eliminated. This demonstrates the significant improvement that
this change makes, particularly in a DB2 data sharing environment. (c) SAP AG; 2006

V8 V9
DB2 Version

0

1

2

3

4

5

6

S
ec

on
ds

 E
la

ps
ed

 (K
)

R3Load Test case - Time

14% Reduction

67% Reduction

V8 V9
DB2 Version

0

1

2

3

4

5

6

Lo
ck

 &
 U

nl
oc

k
re

qu
es

ts
 (m

ill
io

n)

Reduction in lock counts
156 LOBs with DB2 for z/OS: Stronger and Faster

The final measurement shown in Figure 5-15 demonstrates the reduction in network traffic
between client and host running the R3load process.

Figure 5-15 R3load test case reduced network round-trips (c) SAP AG; 2006

While the overall number of requests is still high, the 16% reduction in network round-trips
actually contributes a significant portion of the elapsed run-time reduction. Again, this gain is
entirely transparent to the user, and the gain comes entirely from the change to DB2 9.

5.12.2 Locks and INSERT

In case of LOB INSERT jobs, the changes in lock management with DB2 9 are meant to
increase availability and reduce contention. In general, they are not expected to introduce
significant changes in elapsed or CPU time in LOB insert in V9 over V8. DB2 9 is now
executing Lock and Unlock for each INSERT, instead of Locks at INSERT and Unlocks only
at commit in V8. V8 Unlock unlocks multiple resources while V9 Unlock unlocks one LOB at a
time. There is some CPU increase in V9 as a result of issuing additional Unlock requests for
the same number of resources unlocked, which is unchanged between V8 and V9. The
advantage is that each resource is freed quickly, thereby, avoiding contention and LOB lock
escalations.

5.12.3 UPDATE improvement

Figure 5-16 on page 158 shows data from another performance test case implemented by
SAP development with APARs PK22887 and PK25241 applied to DB2 V8. These changes
are being integrated in DB2 9 code and are mainly related to improve space management for
mass update. Keep in mind that updates of LOBs are done using DELETE and INSERT. The
data compares the time (in milliseconds) to update a single row when updating the reported
groups of rows in thousands. Before maintenance, the elapsed time increased at a very high
rate. After maintenance, it increases at a much slower rate.

(c) SAP AG; 2006

V8 V9
DB2 Version

0

2

4

6

8

10

12
M

sg
 R

ec
ei

ve
d

(M
ill

io
ns

)

R3load Test case - Network

16% Reduction
Chapter 5. SAP usage of LOBs 157

Figure 5-16 Time to update a row when increasing the numbers of updated rows (c) SAP AG; 2006

2 3 4 5 6 7 8 9 10
Rows in thousands

0

5

10

15

20

25

30

35

U
pd

at
e

tim
e

(m
se

c)

After PTFs

Before PTFs

Elapsed time for row update
158 LOBs with DB2 for z/OS: Stronger and Faster

Chapter 6. Utilities with LOBs

In this chapter, we discuss the way DB2 utilities have been enhanced to support table spaces
containing tables with LOB columns. We go through the various DB2 utilities and document
the specifics for LOB objects. DSNTIAUL is not a utility but is often used in administering DB2
data, so it has been added here for completeness.

The chapter contains information about the following utilities:

� UNLOAD
� DSNTIAUL
� LOAD
� COPY
� COPYTOCOPY
� QUIESCE
� REPORT
� RUNSTATS
� REORG
� RECOVER and REBUILD
� CHECK DATA
� CHECK LOB
� CHECK INDEX
� REPAIR
� DSN1COPY and DSN1PRNT

We only discuss those features that are directly related to LOBs.

6

© Copyright IBM Corp. 2006. All rights reserved. 159

6.1 UNLOAD

There are basically two ways to use the unload utility with LOB data:

� Unload LOB columns as normal data columns to the unload data set of the base table.
� Use file reference variables to unload each LOB to a separate file.

Unload LOB data as normal data columns
This method can be used if the sum of the lengths of all fields to be unloaded does not
exceed 32 KB. Because the maximum record length of a sequential file in z/OS is 32 KB, and
the Unload utility does not support an unload record to be spanned over multiple output
records in the output data set, this method can only be used if the total record size of the data
to be unloaded does not exceed 32 KB. The LOB fields are unloaded together with the other
selected data fields to the output file with a maximum record length of 32 KB.

In most cases, this method is only used if the LOBs in the table are small LOBs (SLOBs) with
a defined maximum length smaller than 32 KB or if the user deliberately decides to truncate
the LOB data using the TRUNCATE keyword.

We demonstrate this with some examples based on table ##T.NORMEN00. The table is
created with the DDL listed in Example 6-1.

Table ##T.NORMEN00 contains a BLOB column IMAGE. The table is used for storing
scanned documents in formats such as TIFF, GIF, BMP, and PDF. In this example, we have
explicitly specified the ROWID column. We use the DB2 9 syntax of the LOG keyword. The
base table space is defined as LOGGED, and the LOB table space is defined as NOT
LOGGED. All indexes are defined as COPY YES.

This is the same table we have used for illustrating the entries in the DB2 catalog (see
Example 7-1 on page 212), but it is reported here again for convenience.

Example 6-1 DDL for table ##T.NORMEN00

CREATE DATABASE NORMEN00
CCSID EBCDIC ;

CREATE TABLESPACE NORMEN00 IN NORMEN00
 USING STOGROUP PAOLOSG
 PRIQTY 100
 SECQTY 28
 ERASE NO

LOGGED
GBPCACHE CHANGED
COMPRESS NO

 BUFFERPOOL BP1
 LOCKSIZE PAGE
 LOCKMAX 0
 CLOSE YES
 SEGSIZE 4
 CCSID EBCDIC
 MAXROWS 255 ;
CREATE TABLE ##T.NORMEN00
 (DOC_ID VARCHAR(30) FOR SBCS DATA NOT NULL
 ,PAGE_NUMBER SMALLINT NOT NULL
 ,IMPORTER CHAR(8) FOR SBCS DATA NOT NULL
 WITH DEFAULT USER
 ,IMPORT_TIME TIMESTAMP NOT NULL
160 LOBs with DB2 for z/OS: Stronger and Faster

 WITH DEFAULT
 ,FORMAT CHAR(8) FOR SBCS DATA NOT NULL
 ,ROW_ID ROWID NOT NULL
 GENERATED ALWAYS
 ,IMAGE BLOB(2097152)
 WITH DEFAULT NULL)
 IN NORMEN00.NORMEN00 ;
CREATE UNIQUE INDEX ##T.I_NORMEN00_1
 ON ##T.NORMEN00
 (DOC_ID ASC,
 PAGE_NUMBER ASC,
 FORMAT ASC)
 USING STOGROUP PAOLOSG
 PRIQTY 12
 SECQTY 12
 ERASE NO

GBPCACHE CHANGED
 CLUSTER
 BUFFERPOOL BP2
 CLOSE YES
 COPY YES
 PIECESIZE 2 G ;
CREATE LOB TABLESPACE NORMLOB IN NORMEN00
 USING STOGROUP PAOLOSG
 PRIQTY 20000
 SECQTY 5000
 ERASE NO
 GBPCACHE SYSTEM
 NOT LOGGED
 DSSIZE 4G
 BUFFERPOOL BP1
 LOCKSIZE LOB
 LOCKMAX 0
 CLOSE YES ;
CREATE UNIQUE INDEX ##T.I_NORMEN00_AUX
 ON ##T.NORMEN00_AUX
 USING STOGROUP PAOLOSG
 PRIQTY 52
 SECQTY 20
 ERASE NO

GBPCACHE CHANGED
 BUFFERPOOL BP2
 CLOSE YES
 COPY YES
 PIECESIZE 2 G
 DEFINE YES
;

In the first case, we try to unload the complete table into a sequential output file using the
utility statement shown in Example 6-2.

Example 6-2 Unload LOB data as normal data columns with UNLOAD TABLESPACE

TEMPLATE TSYSPUN
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH1')
Chapter 6. Utilities with LOBs 161

 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSREC
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC1')
 DISP(MOD,CATLG,CATLG)
UNLOAD TABLESPACE NORMEN00.NORMEN00
 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)

As expected, the utility ends with RC=8 as shown in Example 6-3, because the total record
length of the table ##T.NORMEN00 exceeds 32 KB (message DSNU1218I).

Example 6-3 UNLOAD exceeding a 32 KB row size

DSNU000I 201 17:48:30.53 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = UNLOAD.NORMEN00
DSNU1044I 201 17:48:30.67 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 201 17:48:30.68 DSNUGUTC - TEMPLATE TSYSPUN DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH1') DISP(MOD,
CATLG, CATLG)
DSNU1035I 201 17:48:30.68 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 201 17:48:30.68 DSNUGUTC - TEMPLATE TSYSREC DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC1') DISP(MOD,
CATLG, CATLG)
DSNU1035I 201 17:48:30.69 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 201 17:48:30.69 DSNUGUTC - UNLOAD TABLESPACE NORMEN00.NORMEN00 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)
DSNU1218I -DB9B 201 17:48:30.72 DSNUULIA - LOGICAL RECORD LENGTH OF OUTPUT RECORD EXCEEDED THE LIMIT FOR TABLE
##T.NORMEN00
DSNU012I 201 17:48:30.74 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

We get similar results if we change the UNLOAD command to Example 6-4.

Example 6-4 Unload LOB data as normal data columns with UNLOAD TABLE

TEMPLATE TSYSPUN
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH2')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSREC
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC2')
 DISP(MOD,CATLG,CATLG)
UNLOAD DATA FROM TABLE ##T.NORMEN00
 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)

We now show what happens if we limit the fields we are interested in and use the DELIMITED
keyword. See Example 6-5.

Example 6-5 Unload LOB data as normal data columns in DELIMITED format

TEMPLATE TSYSPUN
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH4')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSREC
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC4')
 DISP(MOD,CATLG,CATLG)
UNLOAD DATA FROM TABLE ##T.NORMEN00
 (DOC_ID,FORMAT,IMAGE)
 DELIMITED
 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)

We get a different result but the UNLOAD still fails with message DSNU1233I as shown in the
job output in Example 6-6 on page 163.
162 LOBs with DB2 for z/OS: Stronger and Faster

Example 6-6 Unload LOB data as normal data columns in DELIMITED format

..............
DSNU050I 201 19:03:57.57 DSNUGUTC - UNLOAD DATA
DSNU650I -DB9B 201 19:03:57.59 DSNUUGMS - FROM TABLE ##T.NORMEN00
DSNU650I -DB9B 201 19:03:57.59 DSNUUGMS - (DOC_ID,
DSNU650I -DB9B 201 19:03:57.59 DSNUUGMS - FORMAT,
DSNU650I -DB9B 201 19:03:57.59 DSNUUGMS - IMAGE) DELIMITED UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)
DSNU1038I 201 19:03:57.64 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSREC
 DDNAME=SYS00001
 DSN=PAOLOR2.DB9B.NORMEN00.NORMEN00.UNLOAD.SYSRC4
DSNU1233I -DB9B 201 19:03:57.65 DSNUULVA - DATA IS TOO LONG FOR FIELD IMAGE, TABLE ##T.NORMEN00
DSNU1219I -DB9B 201 19:03:57.65 DSNUULVA - THE NUMBER OF RECORDS IN ERROR REACHED THE LIMIT 1
DSNU253I 201 19:03:57.69 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLE ##T.NORMEN00
DSNU252I 201 19:03:57.69 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
NORMEN00.NORMEN00
DSNU250I 201 19:03:57.69 DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU568I -DB9B 201 19:03:57.70 DSNUGSRX - INDEX ##T.I_NORMEN00_AUX IS IN INFORMATIONAL COPY PENDING STATE
DSNU012I 201 19:03:57.71 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

The only way that we are able to UNLOAD some LOB data is by truncating the LOB data so
that the output is less than 32 KB. This is illustrated in Example 6-7 where we use the
TRUNCATE keyword to truncate the LOB data to 30,000 bytes.

Example 6-7 Unload LOB data as normal data columns in truncated format

TEMPLATE TSYSPUN
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH5')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSREC
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC5')
 DISP(MOD,CATLG,CATLG)
UNLOAD DATA FROM TABLE ##T.NORMEN00
 (DOC_ID,FORMAT,IMAGE BLOB(30000) TRUNCATE)
 DELIMITED
 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)

The output of the resulting job is shown in Example 6-8.

Example 6-8 Unload LOB data as normal data columns in truncated format

.......
DSNU050I 209 12:02:26.97 DSNUGUTC - UNLOAD DATA
DSNU650I -DB9B 209 12:02:26.97 DSNUUGMS - FROM TABLE ##T.NORMEN00
DSNU650I -DB9B 209 12:02:26.97 DSNUUGMS - (DOC_ID,
DSNU650I -DB9B 209 12:02:26.97 DSNUUGMS - FORMAT,
DSNU650I -DB9B 209 12:02:26.97 DSNUUGMS - IMAGE BLOB(30000) TRUNCATE) DELIMITED UNLDDN(TSYSREC) PUNCHDDN(
TSYSPUN)
DSNU1038I 209 12:02:27.06 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSREC
 DDNAME=SYS00001
 DSN=PAOLOR2.DB9B.NORMEN00.NORMEN00.UNLOAD.SYSRC5
DSNU1038I 209 12:02:51.02 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSPUN
 DDNAME=SYS00002
 DSN=PAOLOR2.DB9B.NORMEN00.NORMEN00.UNLOAD.PUNCH5
DSNU253I 209 12:02:51.14 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=5883 FOR TABLE ##T.NORMEN00
DSNU252I 209 12:02:51.14 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=5883 FOR TABLESPACE
NORMEN00.NORMEN00
DSNU250I 209 12:02:51.14 DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:24
DSNU010I 209 12:02:51.15 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0
Chapter 6. Utilities with LOBs 163

UNLOAD LOB data using file reference variables
This is the method you probably use most when unloading tables containing LOB columns.
With this method, the LOB values are unloaded to a different file than the normal unload file.
DB2 creates or uses a different output file for each LOB value to be unloaded. The output file
can be one of the following types:

� Member of a partitioned data set (PDS) or partitioned data set extended (PDSE)
� Hierarchical File System (HFS) file on a HFS directory

It cannot be a simple sequential data set (this was not implemented because of performance
reasons: allocate, open, write, close, and deallocate a sequential file for each LOB value
would have been a very costly operation).

The LOB unload file contains the entire LOB value and the name of this file is stored in the
normal unload output file as a CHAR or VARCHAR field. So, instead of containing the whole
LOB value, the normal unload file now only contains a file name, which in most cases no
longer causes the sequential unload file to hit the 32 KB limit.

Additional keywords have been added to the CHAR and VARCHAR field-specifications of the
UNLOAD utility to support a file name as an output file to store the actual LOB value:

� BLOBF: The output field contains the name of a file to store a BLOB field.
� CLOBF: The output field contains the name of a file to store a CLOB field.
� DBCLOBF: The output field contains the name of a file to store a DBCLOB field.

In the case of CLOBF or DBCLOBF, the required CCSID conversions are done when the
EBCDIC, ASCII, UNICODE, or CCSID keywords have been specified in the UNLOAD
command. If none of these keywords is specified, the encoding scheme of the source data is
preserved. In the case of BLOBF, no conversions are done.

For UNLOAD, the actual files to be created or used for storing the LOB values are generated
from a TEMPLATE definition with a name to be specified along with the BLOBF, CLOBF, or
DBCLOBF keywords. The TEMPLATE definition is used to specify the characteristics of the
LOB unload files:

� For a PDS:

– The name of the PDS is generated from the DSN specification of the template.
– Specify DSNTYPE PDS.
– Specify DIR to specify the number of directory blocks for a new PDS.
– The member names are automatically generated.

� For a PDSE:

– The name of the PDSE is generated from the DSN specification of the template.
– Specify DSNTYPE LIBRARY.
– The member names are automatically generated.

� For a HFS file:

– The name of the HFS directory is generated from the DSN specification of the
template.

– Specify DSNTYPE HFS.

– The HFS directory must exist and be mounted.

– The data set names in the directory are automatically generated.

For a PDS, the default value of DIR is the estimated number of records divided by 20, which
is sufficient to have as many members as the estimated number of records. If you do not
specify a DSNTYPE, a PDS is created by default (DSORG = PS).
164 LOBs with DB2 for z/OS: Stronger and Faster

The member names that are generated for a PDS or PDSE or the data set names for a HFS
directory have a length of 8 and are uniquely generated from the system clock. They have the
same look as when using the &UNIQ. or &UQ. variable in a TEMPLATE definition.

Examples
To illustrate, we look at some examples based on the table ##T.NORMEN00 as described in
Figure 6-1 on page 187.

In Example 6-9, we try to unload the same data fields from table ##T.NORMEN00 as in
Example 6-5 on page 162 or Example 6-7 on page 163, but this time we want to unload the
whole LOB data of column IMAGE into a PDS. We specified a TEMPLATE TSYSLOB with
DSNTYPE PDS and specified for field IMAGE a field specification as VARCHAR(54) BLOBF
TSYSLOB (the maximum possible length for a PDS + membername being 54).

Example 6-9 Unload LOB data to a PDS

TEMPLATE TSYSPUN
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH6')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSREC
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC6')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSLOB
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PDS6')
 DISP(MOD,CATLG,CATLG)
 DSNTYPE(PDS)
UNLOAD DATA FROM TABLE ##T.NORMEN00
 (DOC_ID,FORMAT,IMAGE VARCHAR(54) BLOBF TSYSLOB)
 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)

As a result, three files were created, as shown in the job output in Example 6-10. A punchfile
containing the equivalent statements for the LOAD utility, a SYSREC file containing the
non-LOB data values and the output file names of the LOB values, and a PDS containing the
actual LOB values.

Example 6-10 Unload LOB data to a PDS

DSNU000I 205 18:00:05.58 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = UNLOAD.NORMEN00
DSNU1044I 205 18:00:05.64 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 205 18:00:05.65 DSNUGUTC - TEMPLATE TSYSPUN DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH6') DISP(MOD,
CATLG, CATLG)
DSNU1035I 205 18:00:05.65 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 205 18:00:05.65 DSNUGUTC - TEMPLATE TSYSREC DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC6') DISP(MOD,
CATLG, CATLG)
DSNU1035I 205 18:00:05.65 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 205 18:00:05.66 DSNUGUTC - TEMPLATE TSYSLOB DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PDS6') DISP(MOD, CATLG,
 CATLG) DSNTYPE(PDS)
DSNU1035I 205 18:00:05.66 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

Note: Run RUNSTATS on the base table space before UNLOAD to allow DB2 to read a
realistic value of the AVGROWLEN in the SYSIBM.SYSTABLESPACE used to determine
the size of the base table. The size needed for LOB table space is calculated by DB2 from
the high used relative page count.

Important: Make sure that PTF UK13720 (DB2 V7) or UK13721 (DB2 V8) is installed in
your system to use the file reference support for UNLOAD in DB2 V7 or DB2 V8.
Chapter 6. Utilities with LOBs 165

DSNU050I 205 18:00:05.66 DSNUGUTC - UNLOAD DATA
DSNU650I -DB9B 205 18:00:05.66 DSNUUGMS - FROM TABLE ##T.NORMEN00
DSNU650I -DB9B 205 18:00:05.66 DSNUUGMS - (DOC_ID,
DSNU650I -DB9B 205 18:00:05.66 DSNUUGMS - FORMAT,
DSNU650I -DB9B 205 18:00:05.66 DSNUUGMS - IMAGE VARCHAR(54) BLOBF TSYSLOB) UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)
DSNU1038I 205 18:00:05.75 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSREC
 DDNAME=SYS00001
 DSN=PAOLOR2.DB9B.NORMEN00.NORMEN00.UNLOAD.SYSRC6
DSNU1038I 205 18:00:05.96 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSLOB
 DDNAME=SYS00002
 DSN=PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6
DSNU1038I 205 18:02:20.07 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSPUN
 DDNAME=SYS00003
 DSN=PAOLOR2.DB9B.NORMEN00.NORMEN00.UNLOAD.PUNCH6
DSNU253I 205 18:02:20.16 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=5883 FOR TABLE ##T.NORMEN00
DSNU252I 205 18:02:20.16 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=5883 FOR TABLESPACE
NORMEN00.NORMEN00
DSNU250I 205 18:02:20.16 DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:02:14
DSNU568I -DB9B 205 18:02:20.18 DSNUGSRX - INDEX ##T.I_NORMEN00_AUX IS IN INFORMATIONAL COPY PENDING STATE
DSNU010I 205 18:02:20.18 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

If we take a closer look to the SYSREC file, it contains records similar to Example 6-11. The
file name of the LOB value is stored in column 44 as a VARCHAR(54) starting with a 2-byte
length field. On column 43, we have a null indicator field, which is x’FF’ if the file name is
NULL. The actual PDS with DSNAME =
‘PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6’ is allocated as a PDS
(DSORG=PO) with 1,287 directory blocks and 5,883 members. The DCB looks like
RECFM=VB,LRECL=0,BLKSIZE=27998. Actually, only 281 directory blocks are used.

Example 6-11 Contents of the SYSREC file

....F0577 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAD1)

....F0578 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAEJ)

....F0579 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAE2)

....F0580 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAFN)

....F0581 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAF6)

....F0582 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAGR)

....F0583 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAHA)

....F0584 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAHS)

....F0585 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAIC)

....F0586 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDS6(A0HFYAIW)

To unload the LOB data to a PDSE, we can use a utility input file as shown in Example 6-12.

Example 6-12 Unload LOB data to a PDSE

TEMPLATE TSYSPUN
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH7')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSREC

Note: APAR PK27029 changes the LRECL=0 to LRECL=27994, which makes more sense
for a BLKSIZE=27998 data set. Furthermore, by default DB2 always creates the PDS or
PDSE with a BLKSIZE of 27,998 bytes regardless of the device type. Because 27,998
bytes are the optimal BLKSIZE for 3390 devices, we recommend that you preallocate the
PDS yourself if you are using device types different than 3390 (for example, the optimal
BLKSIZE for 3380 devices is 23,040 bytes).
166 LOBs with DB2 for z/OS: Stronger and Faster

 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC7')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSLOB
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PDSE7')
 DISP(MOD,CATLG,CATLG)
 DSNTYPE(LIBRARY)
UNLOAD DATA FROM TABLE ##T.NORMEN00
 (DOC_ID,FORMAT,IMAGE VARCHAR(54) BLOBF TSYSLOB)
 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)

The contents of the SYSREC file look as shown in Example 6-13. The member names are
different because the job was run at a later time than in Example 6-11 on page 166.

Example 6-13 Contents of the SYSREC file

....F0677 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZXN)

....F0678 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZYL)

....F0679 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZZO)

....F0680 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZ0O)

....F0681 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZ1N)

....F0682 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZ2O)

....F0683 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZ3O)

....F0684 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZ4O)

....F0685 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZ5Q)

....F0686 PDF ...PAOLOR2.DB9B.NORMEN00.NORMLOB.UNLOAD.PDSE7(A0IQCZ6S)

To unload the LOB data to a HFS directory, we can use a utility input file as shown in
Example 6-14. Be sure that the userid associated with the utility job has the rights to add new
files to the specified HFS directory. In this example, the HFS directory /u/DB9B was created
and mounted before.

Example 6-14 Unload LOB data to a HFS directory

TEMPLATE TSYSPUN
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.PUNCH8')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSREC
 DSN('PAOLOR2.&SS..&DB..&SN..UNLOAD.SYSRC8')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TSYSLOB
 DSN('/u/&SS.')
 DSNTYPE(HFS)
UNLOAD DATA FROM TABLE ##T.NORMEN00
 (DOC_ID,FORMAT,IMAGE VARCHAR(20) BLOBF TSYSLOB)
 UNLDDN(TSYSREC) PUNCHDDN(TSYSPUN)

After the job is run, the HFS directory can be listed with a UNIX command cd /u/DB9B
followed by ls -l as shown in Example 6-15 (we only show the last lines here).

Example 6-15 Contents of the HFS directory /u/DB9B

-rwxrwx--- 1 HAIMO SYS1 29350 Jul 25 15:10 A0IUJYZ3
-rwxrwx--- 1 HAIMO SYS1 29390 Jul 25 15:10 A0IUJYZ7
-rwxrwx--- 1 HAIMO SYS1 29357 Jul 25 15:10 A0IUJYZC
-rwxrwx--- 1 HAIMO SYS1 29380 Jul 25 15:10 A0IUJYZG
-rwxrwx--- 1 HAIMO SYS1 28939 Jul 25 15:10 A0IUJYZL
-rwxrwx--- 1 HAIMO SYS1 28930 Jul 25 15:10 A0IUJYZP
-rwxrwx--- 1 HAIMO SYS1 28987 Jul 25 15:10 A0IUJYZU
-rwxrwx--- 1 HAIMO SYS1 29122 Jul 25 15:10 A0IUJYZY
Chapter 6. Utilities with LOBs 167

PAOLOR2 @ SC63:/u/DB9B>
 ===>

The contents of the SYSREC file are shown in Example 6-16.

Example 6-16 Contents of the SYSREC file

....F0677 PDF .../u/DB9B/A0IUI0MQ

....F0678 PDF .../u/DB9B/A0IUI0MU

....F0679 PDF .../u/DB9B/A0IUI0MZ

....F0680 PDF .../u/DB9B/A0IUI0M3

....F0681 PDF .../u/DB9B/A0IUI0M8

....F0682 PDF .../u/DB9B/A0IUI0ND

....F0683 PDF .../u/DB9B/A0IUI0NH

....F0684 PDF .../u/DB9B/A0IUI0NM

....F0685 PDF .../u/DB9B/A0IUI2HI

....F0686 PDF .../u/DB9B/A0IUI2HM

Some additional remarks
When using the UNLOAD utility for unloading LOB data with file reference variables, beware
of the following:

� Unloading to sequential files (DSORG=PS) is not supported as explained in “UNLOAD
LOB data using file reference variables” on page 164.

� Unloading LOB data from image copies into files using file reference variables is not
supported.

� When using HFS, the HFS directory must exist and the TEMPLATE must specify the full
path name (not the relative path name).

� You cannot specify (&UNIQ.) or (&UQ.) as the member name in the TEMPLATE for a PDS
or PDSE, but it is always automatically appended by DB2 to the name expression of the
TEMPLATE for a DSNTYPE PDS or LIBRARY.

� You cannot specify /&UNIQ. or /&UQ. as the data set name in the TEMPLATE for a HFS,
but it is always automatically appended by DB2 to the name expression of the TEMPLATE
for a DSNTYPE HFS.

� Each time that you run the UNLOAD utility, the generated member names or HFS data set
names are different.

� A NULL LOB is represented by a NULL output file name (null indicator field preceding the
CHAR or VARCHAR field is hex FF).

� When you specify &TS., &SN., or &IS. in the template for a PDS, PDSE, or HFS, it is
always replaced by the LOB table space name and not by the base table space name as
shown in Example 6-10 on page 165. This is to ensure that the generated data set name
is unique in case the base table contains multiple LOB columns or is partitioned.

Tip: Keep in mind that HFS directories are case sensitive and that the outcome of
TEMPLATE variables is always in uppercase. So, create your HFS directories partly in
uppercase if you use template variables to map your HFS directories.
168 LOBs with DB2 for z/OS: Stronger and Faster

6.2 DSNTIAUL

Like the UNLOAD utility, the DSNTIAUL sample program also provides two ways to handle
LOB data:

� Unload LOB columns as normal data columns to the SYSRECxx files (with truncation).
� Unload LOB columns to a separate file (DB2 9 only).

Unload LOB data as normal data columns (SQL parameter)
As the maximum record length of a sequential file in z/OS is 32 KB, this method can only be
used if the total record size of the data to be unloaded does not exceed 32 KB. The LOB fields
are unloaded together with the other selected data fields to the output file with a maximum
record length of 32 KB. If the sum of the lengths of all columns exceeds 32 KB, DSNTIAUL
truncates all LONG VARCHAR, LONG VARGRAPHIC, and LOB columns to obtain a total
output length of 32 KB.

In most cases, this method is only used if the LOBs in the table are small LOBs (SLOBs) with
an defined maximum length smaller than 32 KB or if the user deliberately decides to truncate
the LOB data.

We demonstrate this with the table ##T.NORMEN00 defined in Example 6-1 on page 160.

In the first case, we execute the JCL as shown in Example 6-17.

Example 6-17 DSNTIAUL with SQL parameter

//DSNTIAUL EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB9B)
 RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB91) PARMS('SQL') -
 LIB('DB9BU.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSREC00 DD DSN=PAOLOR2.DB9B.DSN8UNLD.SQL.SYSREC00,
// DISP=(,CATLG),UNIT=3390,
// SPACE=(CYL,(100,100))
//SYSPUNCH DD DSN=PAOLOR2.DB9B.DSN8UNLD.SQL.SYSPUNCH,
// DISP=(,CATLG),UNIT=3390,
// SPACE=(CYL,(1,1))
//SYSIN DD *
 SELECT DOC_ID,FORMAT,IMAGE FROM ##T.NORMEN00 ;

As a result, we get an FB sequential data set SYSREC00 with a LRECL and BLKSIZE of
32,753 bytes with DOC_ID beginning in position 1, FORMAT beginning in position 33, and the
IMAGE data starting in position 41 and truncated to 32,708 bytes as shown in Example 6-18.

Example 6-18 DSNTIAUL output with SQL parameter

DSNT490I SAMPLE DATA UNLOAD PROGRAM
DSNT505I DSNTIAUL OPTIONS USED: SQLTOLWAR
DSNT503I UNLOAD DATA SET SYSPUNCH RECORD LENGTH SET TO 80
DSNT504I UNLOAD DATA SET SYSPUNCH BLOCK SIZE SET TO 27920
DSNT506I INPUT STATEMENT WAS NOT A FULL SELECT ON A SINGLE TABLE. LOAD STATEMENT WILL NEED
MODIFICATION.
WARNING: DATA FROM COLUMN 3 WAS TRUNCATED TO 32755 BYTES FROM 2097152.
WARNING: DATA FROM COLUMN 3 WAS TRUNCATED TO 32708 BYTES FROM 32755.
DSNT503I UNLOAD DATA SET SYSREC00 RECORD LENGTH SET TO 32753
DSNT504I UNLOAD DATA SET SYSREC00 BLOCK SIZE SET TO 32753
Chapter 6. Utilities with LOBs 169

DSNT495I SUCCESSFUL UNLOAD 5883 ROWS OF TABLE TBLNAME

With the SQL statement SELECT * FROM ##T.NORMEN00, we would get all the normal data
columns (except for the ROWID column that is omitted when it is type GENERATED
ALWAYS) and the IMAGE column truncated to 32,632 bytes.

Unload LOB data to a separate file (LOBFILE parameter)
This is the recommended method introduced with DB2 9. With this method, the LOB values
are unloaded to a different file than the normal SYSRECxx unload files. DSNTIAUL
dynamically creates a sequential data set for each LOB value to be unloaded. The name of
the separate file is stored in the normal SYSRECxx unload files together with the other
normal data fields (except the ROWID column when it is type GENERATED ALWAYS).

DSNTIAUL does this by using the new LOB file reference variables introduced in DB2 9.

Each LOB file has a name of the form <prefix>.Q<i>.C<j>.R<k>, where:

� <prefix> is a user-specified data set name prefix. <prefix> must conform to the rules for an
z/OS physical sequential data set name and cannot exceed 17 characters.

� Q<i> is the (<i>-1)th query processed by the current DSNTIAUL session. <i> ranges from
0,000,000 to 0,000,099, which corresponds to the limit on the number of queries that can
be processed by a single DSNTIAUL session.

� C<j> is the (<j>-1)th column in the current SELECT statement. <j> ranges from 0,000,000
to 0,000,999 (no more than 750 columns are permitted in a table or view).

� R<k> is the (<k>-1)th row FETCHed for the current SELECT statement. <k> ranges from
0,000,000 to 9,999,999.

The data set prefix <prefix> is specified by means of a new DSNTIAUL run-time parameter
called LOBFILE.

We demonstrate this with the JCL as shown in Example 6-19.

Example 6-19 DSNTIAUL with LOBFILE parameter

//DSNTIAUL EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB9B)
 RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB91) PARMS('LOBFILE(PAOLOR2)') -
 LIB('DB9BU.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSREC00 DD DSN=PAOLOR2.DB9B.DSN8UNLD.LOBF.SYSREC00,
// DISP=(,CATLG),UNIT=3390,
// SPACE=(CYL,(10,10))
//SYSPUNCH DD DSN=PAOLOR2.DB9B.DSN8UNLD.LOBF.SYSPUNCH,
// DISP=(,CATLG),UNIT=3390,
// SPACE=(CYL,(1,1))
//SYSIN DD *

##T.NORMEN00

In this case, the SYSIN input file contains the name of the base table. You can also specify
SQL as first PARM:

RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB91) PARMS('SQL,LOBFILE(PAOLOR2)') -
170 LOBs with DB2 for z/OS: Stronger and Faster

And you can use an SQL statement as input to SYSIN:

SELECT * FROM ##T.NORMEN00;

In both cases, as a result we get a sequential data set SYSREC00 containing the normal data
fields (except the ROWID column) and the name of the LOB output files and 5,883 new LOB
files. See Example 6-20. All of the LOB output files have a name of the form
PAOLOR2.Q0000000.C0000006.R000xxxx with xxxx from 0000 to 5882. They are
dynamically allocated as sequential files with RECFM=VB,LRECL=27994,BLKSIZE=27998,
which is the optimal BLKSIZE for 3390 devices.

Example 6-20 DSNTIAUL output with LOBFILE parameter

DSNT490I SAMPLE DATA UNLOAD PROGRAM
DSNT503I UNLOAD DATA SET SYSPUNCH RECORD LENGTH SET TO 80
DSNT504I UNLOAD DATA SET SYSPUNCH BLOCK SIZE SET TO 27920
DSNT503I UNLOAD DATA SET SYSREC00 RECORD LENGTH SET TO 162
DSNT504I UNLOAD DATA SET SYSREC00 BLOCK SIZE SET TO 27864
DSNT495I SUCCESSFUL UNLOAD 5883 ROWS OF TABLE ##T.NORMEN00

Afterwards, the SYSPUNCH file, the SYSREC00 file, and the 5883 LOB files can be used as
input for the LOAD utility.

6.3 LOAD

Depending on the way the LOB data is provided, there are three ways the load utility can be
used to load LOB data:

� Loading LOB data as normal data fields from the LOAD input file
� Using file reference variables when each LOB value is stored in a separate input file
� Using the cross loader

6.3.1 Loading LOB data as normal data columns

This method can be used when the LOB values are stored in the normal LOAD input file
together with the other data fields of the base table. Because the maximum record length of a
sequential file in z/OS is 32 KB, this method can only be used to LOAD LOB columns of 32
KB or less. The sum of the length of all normal data fields and LOB fields in the input file
cannot exceed 32 KB.

In most cases, this method is only used if the LOBs in the table are small LOBs (SLOBs) with
an actual length smaller than 32 KB. The defined length of the LOB column on the CREATE
TABLE statement can exceed 32 KB.

LOB fields are varying length and require a valid 4-byte binary length field preceding the data;
no intervening gaps are allowed between them and the LOB fields that follow. Specify CLOB,
BLOB, or DBCLOB in the field specification portion of the LOAD statement. These options
indicate that the field in the input data set is a LOB value.

Important: When the DSNTIAUL job is run again, and the LOB files from the previous run
still exist, they are REPLACED by the new run with the same name.
Chapter 6. Utilities with LOBs 171

Normally the provided input file is the result of:

� UNLOAD utility
� DSNTIAUL utility
� Generated by another application

6.3.2 Loading LOB data using file reference variables

This method is used when the LOB values are stored in separate input files. The normal input
file contains the data for the non-LOB columns of the base table and the names of the LOB
files. The sum of the length of all normal data fields and the LOB file names cannot exceed 32
KB.

The LOB input files can be any of these types:

� A sequential file
� A member of a PDS or PDSE
� A HFS file on a HFS directory

The LOB input file contains the entire LOB value and the name of this file is stored in the
normal load input file as a CHAR or VARCHAR field. So, instead of containing the whole LOB
value, the normal input file now only contains a file name, which in most cases no longer
causes the sequential file to hit the 32 KB limit.

Additional keywords have been added to the CHAR and VARCHAR field specifications of the
LOAD utility to support a file name as the input for the actual LOB value:

� BLOBF: The input field contains the name of a file with a BLOB value.
� CLOBF: The input field contains the name of a file with a CLOB value.
� DBCLOBF: The input field contains the name of a file with a DBCLOB value.

In case of CLOBF and DBCLOBF, CCSID conversions are done when the CCSID of the input
data is different than the CCSID of the table space. (EBCDIC, ASCII, UNICODE, or CCSID
keywords might have been specified for the input data; the default is EBCDIC input data). In
case of BLOBF, no conversions are done.

When the input field of a BLOBF, CLOBF, or DBCLOBF is NULL, the resulting LOB value is
NULL (null indicator field for the CHAR or VARCHAR field specified in the NULLIF keyword is
hex FF).

Normally, the provided input files are the result of:

� UNLOAD utility (PDS members, PDSE members, or HFS files)
� DSNTIAUL utility (sequential files)
� Generated by another application

6.3.3 Using the cross loader

With DB2 9 for z/OS, the cross loader function of the LOAD utility can be used to load LOB
data that resides in another table on the same or another location connected through DRDA.
When you use the cross loader function for LOBs greater than 32 KB, DB2 uses a separate

Important: Make sure that PTF UK13720 (DB2 V7) or UK13721 (DB2 V8) is installed in
your system to use the file reference support for LOAD in DB2 V7 or DB2 V8.

Furthermore, always specify a NULLIF keyword to tell DB2 when the LOB is supposed to
be NULL.
172 LOBs with DB2 for z/OS: Stronger and Faster

buffer for LOB data and only stores 8 bytes per LOB column in the cursor result set buffer.
The sum of the lengths of the non-LOB columns plus the sum of 8 bytes per LOB column
cannot exceed 32 KB. The separate LOB buffer resides in storage above the 16 MB line and
is only limited by the available memory above the 16 MB line.

The message DSNU1178I is issued when:

� The sum of the lengths of all non-LOB columns + 8 bytes per LOB column exceeds 32 KB.

� The sum of the lengths of all LOB columns exceeds half of the above-the-line available
memory.

If a user gets message DSNU1178I, increasing the region size likely results in successful
execution of the LOAD utility.

See Example 6-26 on page 176 for a cross loader job execution.

6.3.4 Impact of logging

LOAD allows you to specify LOG YES or NO during the execution. A LOB table space can
also be defined with LOG YES or LOG NO in DB2 V8. In DB2 9 also, the base table space
can be defined as LOGGED or NOT LOGGED.

Table 6-1 shows the effect on logging output and LOB table space in case the base table
space is LOGGED.

Table 6-1 Impact of logging if base table space is LOGGED

If the base table space is defined as NOT LOGGED and the LOB table spaces are defined as
LOGGED, the LOB table spaces with the LOGGED logging attribute are changed to NOT
LOGGED as well (however, this is recorded in the DB2 catalog, so that if the base table
space is altered to LOGGED, the LOB table spaces are also changed back to LOGGED). If
both base table space and LOB table spaces are NOT LOGGED, the LOG YES attribute of
the LOAD utility also is changed to LOG NO during execution. Nothing is logged and the LOB
table spaces are in the no pending state afterwards.

When the LOB table space ends up being in COPYP status, you should take a full image
copy afterwards to establish recoverability and allow update activity to the LOBs. Adding a
COPYDDN statement to the LOAD utility (with REPLACE) does not help because this only
takes an image copy of the base table space.

Important: Apply PTF UQ03226 (DB2 V7) or UQ03227 (DB2 V8) to use the cross loader
support for LOBs in DB2 V7 or DB2 V8.

Impact of logging on LOAD

LOAD
LOG keyword

LOB table space
LOG attribute

What is logged LOB table space
status after utility
completes

 LOG YES LOG YES Control information
and LOB data

No pending status

 LOG YES LOG NO Control information No pending status

 LOG NO LOG YES Nothing COPY Pending

 LOG NO LOG NO Nothing COPY Pending
Chapter 6. Utilities with LOBs 173

Examples
We demonstrate this with some examples.

In Example 6-21, we use the output of DSNTIAUL from Example 6-19 on page 170 to load a
newly created table ##T.NORMEN02. This table is created with the same DDL as the table
##T.NORMEN00 defined in Example 6-1 on page 160 with NORMEN00 replaced everywhere
by NORMEN02.

Example 6-21 LOAD LOB data with input from DSNTIAUL

//LOAD EXEC PGM=DSNUTILB,PARM='DB9B,LOAD.NORMEN02',COND=(4,LT)
//SYSTEMPL DD DUMMY
//UTPRINT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSREC00 DD DSN=PAOLOR2.DB9B.DSN8UNLD.LOBF.SYSREC00,DISP=SHR
//SYSIN DD *
TEMPLATE TSORTOUT
 DSN('DB2RE.&SS..&DB..&SN..S&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
TEMPLATE TSYSUT1
 DSN('DB2RE.&SS..&DB..&SN..U&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
 LOAD DATA LOG NO INDDN SYSREC00 INTO TABLE ##T.NORMEN02
 (DOC_ID POSITION(1) VARCHAR,
 PAGE_NUMBER POSITION(33) SMALLINT,

IMPORTER POSITION(35) CHAR(8),
IMPORT_TIME POSITION(43) TIMESTAMP EXTERNAL(26),
FORMAT POSITION(69) CHAR(8),
IMAGE POSITION(119) CHAR(34) BLOBF)

 SORTNUM 8 SORTDEVT 3390
 WORKDDN(TSYSUT1,TSORTOUT)

The result of this job is shown in Example 6-22.

Example 6-22 LOAD LOB data with input from DSNTIAUL

DSNU000I 207 20:07:27.58 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = LOAD.NORMEN02
DSNU1044I 207 20:07:27.63 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 207 20:07:27.64 DSNUGUTC - TEMPLATE TSORTOUT DSN('DB2RE.&SS..&DB..&SN..S&JU(3,5)..#&TI.') DISP(MOD,
DELETE, CATLG)
DSNU1035I 207 20:07:27.65 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 207 20:07:27.65 DSNUGUTC - TEMPLATE TSYSUT1 DSN('DB2RE.&SS..&DB..&SN..U&JU(3,5)..#&TI.') DISP(MOD,
DELETE, CATLG)
DSNU1035I 207 20:07:27.65 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 207 20:07:27.65 DSNUGUTC - LOAD DATA LOG NO INDDN SYSREC00
DSNU650I -DB9B 207 20:07:27.65 DSNURWI - INTO TABLE ##T.NORMEN02
DSNU650I -DB9B 207 20:07:27.65 DSNURWI - (DOC_ID POSITION(1) VARCHAR,
DSNU650I -DB9B 207 20:07:27.65 DSNURWI - PAGE_NUMBER POSITION(33) SMALLINT,
DSNU650I -DB9B 207 20:07:27.65 DSNURWI - IMPORTER POSITION(35) CHAR(8),
DSNU650I -DB9B 207 20:07:27.65 DSNURWI - IMPORT_TIME POSITION(43) TIMESTAMP EXTERNAL(26),
DSNU650I -DB9B 207 20:07:27.65 DSNURWI - FORMAT POSITION(69) CHAR(8),
DSNU650I -DB9B 207 20:07:27.65 DSNURWI - IMAGE POSITION(119) CHAR(34) BLOBF) SORTNUM 8 SORTDEVT 3390 WORKDDN(
TSYSUT1, TSORTOUT)
DSNU1038I 207 20:07:28.01 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSUT1
 DDNAME=SYS00001
 DSN=DB2RE.DB9B.NORMEN02.NORMEN02.U06208.#000727
DSNU1038I 207 20:07:28.04 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSORTOUT
 DDNAME=SYS00002
 DSN=DB2RE.DB9B.NORMEN02.NORMEN02.S06208.#000727
DSNU080I 207 20:07:28.04 DSNUGPRS - NO UTILITY STATEMENTS FOUND IN SYSTEMPL
174 LOBs with DB2 for z/OS: Stronger and Faster

DSNU304I -DB9B 207 20:09:23.10 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=5883 FOR TABLE ##T.NORMEN02
DSNU1147I -DB9B 207 20:09:23.10 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF RECORDS LOADED=5883 FOR
TABLESPACE NORMEN02.NORMEN02
DSNU302I 207 20:09:23.10 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=5883
DSNU300I 207 20:09:23.10 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:01:55
DSNU042I 207 20:09:23.64 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=5883
 ELAPSED TIME=00:00:00
DSNU349I -DB9B 207 20:09:23.94 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5883 FOR INDEX ##T.I_NORMEN02_1
DSNU258I 207 20:09:23.95 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
DSNU259I 207 20:09:23.95 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU381I -DB9B 207 20:09:24.01 DSNUGSRX - TABLESPACE NORMEN02.NORMEN02 IS IN COPY PENDING
DSNU381I -DB9B 207 20:09:24.01 DSNUGSRX - TABLESPACE NORMEN02.NORMLOB IS IN COPY PENDING
DSNU568I -DB9B 207 20:09:24.01 DSNUGSRX - INDEX ##T.I_NORMEN02_AUX IS IN INFORMATIONAL COPY PENDING STATE
DSNU568I -DB9B 207 20:09:24.01 DSNUGSRX - INDEX ##T.I_NORMEN02_1 IS IN INFORMATIONAL COPY PENDING STATE
DSNU010I 207 20:09:24.03 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

In this case, nothing is logged (LOB table space defined as LOG NO, LOAD with LOG NO
and both the base table space and LOB table space are put in COPY Pending).

Similar tests were done if the input LOB files are members of a PDS, members of a PDSE, or
HFS files on a HFS directory (created by the UNLOAD utility).

When we do the same test again, but now, we create the base table space as NOT LOGGED
and the LOB table space as LOGGED, the resulting entries in SYSIBM.SYSTABLESPACE
look as shown in Example 6-23.

Example 6-23 Entries in SYSIBM.SYSTABLESPACE

NAME DBNAME TYPE LOG
-------- -------- ---- ---
NORMEN02 NORMEN02 N
NORMLOB NORMEN02 O X

The value X in the LOG column means that the LOB table space currently has the value NOT
LOGGED, because the base table space has the NOT LOGGED attribute. If we now do a
LOAD with LOG YES we get message DSNU1153I as shown in Example 6-24, and nothing is
logged. The base table space is put in INFORMATIONAL COPY PENDING STATE and the
LOB table space has no pending states after the LOAD.

Example 6-24 LOAD with LOG YES on NOT LOGGED table spaces

DSNU050I 208 12:13:59.66 DSNUGUTC - LOAD DATA LOG YES INDDN SYSREC00
DSNU1153I -DB9B 208 12:13:59.66 DSNURWI - LOG YES SPECIFIED FOR THE NOT LOGGED TABLESPACE NORMEN02.NORMEN02 WILL BE
IGNORED
DSNU650I -DB9B 208 12:13:59.66 DSNURWI - INTO TABLE ##T.NORMEN02
DSNU650I -DB9B 208 12:13:59.66 DSNURWI - (DOC_ID POSITION(1) VARCHAR,
DSNU650I -DB9B 208 12:13:59.66 DSNURWI - PAGE_NUMBER POSITION(33) SMALLINT,
DSNU650I -DB9B 208 12:13:59.66 DSNURWI - IMPORTER POSITION(35) CHAR(8),
DSNU650I -DB9B 208 12:13:59.66 DSNURWI - IMPORT_TIME POSITION(43) TIMESTAMP EXTERNAL(26),
DSNU650I -DB9B 208 12:13:59.66 DSNURWI - FORMAT POSITION(69) CHAR(8),
DSNU650I -DB9B 208 12:13:59.66 DSNURWI - IMAGE POSITION(119) CHAR(34) BLOBF) SORTNUM 8 SORTDEVT 3390 WORKDDN(
TSYSUT1, TSORTOUT)
DSNU1038I 208 12:14:00.11 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSUT1
 DDNAME=SYS00001
 DSN=DB2RE.DB9B.NORMEN02.NORMEN02.U06208.#161359
DSNU1038I 208 12:14:00.20 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSORTOUT
 DDNAME=SYS00002
 DSN=DB2RE.DB9B.NORMEN02.NORMEN02.S06208.#161359
DSNU080I 208 12:14:00.20 DSNUGPRS - NO UTILITY STATEMENTS FOUND IN SYSTEMPL
DSNU304I -DB9B 208 12:15:55.01 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=5883 FOR TABLE ##T.NORMEN02
DSNU1147I -DB9B 208 12:15:55.01 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF RECORDS LOADED=5883 FOR
Chapter 6. Utilities with LOBs 175

TABLESPACE NORMEN02.NORMEN02
DSNU302I 208 12:15:55.02 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=5883
DSNU300I 208 12:15:55.02 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:01:54
DSNU042I 208 12:15:55.58 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=5883

ELAPSED TIME=00:00:00
DSNU349I -DB9B 208 12:15:55.92 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5883 FOR INDEX ##T.I_NORMEN02_1
DSNU258I 208 12:15:55.93 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
DSNU259I 208 12:15:55.93 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU568I -DB9B 208 12:15:55.98 DSNUGSRX - TABLESPACE NORMEN02.NORMEN02 IS IN INFORMATIONAL COPY PENDING STATE
DSNU568I -DB9B 208 12:15:55.98 DSNUGSRX - INDEX ##T.I_NORMEN02_AUX IS IN INFORMATIONAL COPY PENDING STATE
DSNU568I -DB9B 208 12:15:55.98 DSNUGSRX - INDEX ##T.I_NORMEN02_1 IS IN INFORMATIONAL COPY PENDING STATE
DSNU010I 208 12:15:55.99 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

If DB2 cannot find one or more of the LOB input files, a new SQLCODE-452 is issued as
shown in Example 6-25.

Example 6-25 LOAD LOB input file not found

DSNU350I -DB9B 208 14:23:08.29 DSNURRST - EXISTING RECORDS DELETED FROM TABLESPACE
DSNU283I -DB9B 208 14:23:08.43 DSNURWBF - LOB ERROR SQLCODE =
-452
 SQLERRM = PAOLOR2.Q0000000.C0000006.R0000000 3
 SQLSTATE= 428A1
 SQLERRP = DSNOLFRV
 SQLERRD = 0000000A 00000000 00000000 FFFFFFFF 00000000 00000000
DSNU017I 208 14:23:12.08 DSNUGBAC - UTILITY DATA BASE SERVICES MEMORY EXECUTION ABENDED, REASON=X'00E40350'
CAUSE=X'00C90072

An example with the cross loader is shown in Example 6-26 where we LOAD
##T.NORMEN02 from ##T.NORMEN00 using a cursor.

Example 6-26 LOAD LOB data with cross loader

TEMPLATE TSORTOUT
 DSN('DB2RE.&SS..&DB..&SN..S&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
 SPACE(10,10) CYL
TEMPLATE TSYSUT1
 DSN('DB2RE.&SS..&DB..&SN..U&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
 SPACE(10,10) CYL
 EXEC SQL
 DECLARE C1 CURSOR FOR SELECT
 DOC_ID
 ,PAGE_NUMBER
 ,IMPORTER
 ,IMPORT_TIME
 ,FORMAT
 ,IMAGE
 FROM ##T.NORMEN00
ENDEXEC
LOAD DATA INCURSOR C1 REPLACE
 WORKDDN(TSYSUT1,TSORTOUT)
 SORTDEVT 3390 SORTNUM 8
 INTO TABLE ##T.NORMEN02

Because the ROWID column of table ##T.NORMEN00 is explicitly defined and the ROWID
column of ##T.NORMEN02 is explicitly defined as GENERATED ALWAYS, we cannot use
176 LOBs with DB2 for z/OS: Stronger and Faster

SELECT * here. We could have used SELECT * if both ROWIDs were implicitly created or
when the ROWID of ##T.NORMEN02 was created a GENERATED BY DEFAULT
(and with a unique index defined on it).

Some additional remarks
When using the LOAD utility to load LOB data, beware of:

� Indexes on the auxiliary tables are not built during the BUILD phase. Instead, LOB values
are inserted (not loaded) into auxiliary tables during the RELOAD phase as each row is
loaded into the base table, and each index on the auxiliary table is updated as part of the
INSERT operation. Because the LOAD utility inserts keys into an auxiliary index, free
space within the index might be consumed and index page splits might occur. Consider
reorganizing an index on the auxiliary table after LOAD completes to introduce free space
into the index for future INSERTs and LOADs.

� Using COPYDDN when loading a table with LOB columns does not create a copy of any
LOB table space or auxiliary index. You get the message:

DSNU068I - DSNURWI - KEYWORD COPYDDN IS NOT SUPPORTED FOR LOB OR XML TABLE
SPACES

You must perform these tasks separately.

� Using STATISTICS when loading a table with LOB columns only gathers statistics for the
base table space but not for the LOB table spaces. You must perform these tasks
separately.

� Since DB2 V8, the default value for SORTKEYS is SORTKEYS 0. If you plan to load a
table that has LOB columns using LOAD RESUME YES SHRLEVEL NONE, and you
might need to restart the LOAD job with RESTART(CURRENT), then you must specify
SORTKEYS NO; otherwise, the utility cannot be restarted.

� If you use RESTART PHASE to restart a LOAD job which specified RESUME NO, the
LOB table spaces and indexes on auxiliary tables are reset.

� If the SELECT statement in the cursor definition contains the ROWID column of the
source table, the table to be loaded must have a ROWID column with the same name and
defined as GENERATED BY DEFAULT (+ unique index defined on the ROWID column). If
the ROWID column of the source table was implicitly created, SELECT * does not contain
the ROWID of the table.

6.4 COPY

Both full and incremental image copies are supported for a LOB table space, as well as
SHRLEVEL REFERENCE, SHRLEVEL CHANGE, and the CONCURRENT options. COPY
without the CONCURRENT option does not copy empty or unformatted data pages of a LOB
table space.

You can also COPY the auxiliary indexes. You can copy both the base table space and the
LOB table spaces at the same time to establish a common recoverable point of consistency.
To create a common recoverable point of consistency, use SHRLEVEL REFERENCE.

If you copy a LOB table space that has a base table space with the NOT LOGGED attribute
(new DB2 9), copy the base table space and the LOB table space ALWAYS together so that a
RECOVER TOLASTCOPY of the entire set results in consistent data across the base table

Note: A common recoverable point of consistency is a point where both base table data
and LOB data are consistent and to which a point in time recovery can be done.
Chapter 6. Utilities with LOBs 177

space and all of the associated LOB table spaces. You cannot copy the base table space or
LOB table space with SHRLEVEL CHANGE if the base table space is defined as NOT
LOGGED.

If you take an inline image copy of a table with LOB columns (LOAD, REORG), DB2 makes a
copy of the base table space, but does not copy the LOB table spaces.

SHRLEVEL options
In general, when you use SHRLEVEL CHANGE for image copies of your LOB table space,
somebody can interfere with your job and manipulate the content of the table you are
currently backing up. Consider the following example, an image copy job backs up your LOB
table space and it takes a couple of minutes, depending on the number and size of your LOBs
stored in the auxiliary table. When somebody inserts a LOB value, some pages can be placed
in the already backed up area of your table space while other pages can be stored in an area
of your LOB table space that your job has not backed up yet. When you have used LOG YES
for the definition of the LOB table space, you can acquire a quiesce point after the image copy
is taken to create a recoverable point in time. But when you have specified LOG NO for your
LOB table space, you can be in trouble if you have to recover to an image copy taken with
SHRLEVEL CHANGE.

This means that you are not protected against an inconsistent status of your image copy
when using SHRLEVEL CHANGE. We recommend using SHRLEVEL REFERENCE for
copying the LOB table space, regardless of whether you take incremental or full image
copies.

You cannot copy the base table space or LOB table space with SHRLEVEL CHANGE if the
base table space is defined as NOT LOGGED. Only SHRLEVEL REFERENCE is allowed to
be able to create a recoverable point. If you try SHRLEVEL CHANGE, you get the message:

DSNU447I - COPY SHRLEVEL CHANGE OF TABLESPACE IS NOT ALLOWED BECAUSE IT
HAS A LOGGING ATTRIBUTE OF NOT LOGGED

LISTDEF and TEMPLATES
The easiest way to take a copy of the base table space and all of the LOB table spaces and
eventually the indexes of the base table and auxiliary indexes is to use TEMPLATES and
LISTDEF.

Because a non-partitioned or partitioned base table can contain many auxiliary objects (one
LOB table space and one auxiliary index per LOB column and per partition), we recommend
that you use a LISTDEF to generate a list of all these objects.

Use the LOB indicator keywords BASE, LOB, or ALL if you want to include the base objects
only, the auxiliary objects only, or both in your list. Use the INDEXSPACES COPY YES
keyword if you do not want to include the base table indexes for which the COPY YES
attribute is disabled. Use the PARALLEL keyword to take the copies in parallel.

If you specify a LISTDEF with SHRLEVEL REFERENCE, all copy data sets have the same
START_RBA value in the DB2 catalog table SYSIBM.SYSCOPY, resulting in a common
recoverable point of consistency. Use OPTIONS EVENT(ITEMERROR,SKIP) with
SHRLEVEL CHANGE if you want to minimize the time an object is put in the utility read/write
(UTRW) state (read claim).

CONCURRENT copy
You might be able to gain improved availability by using the concurrent copy function of the
DFSMSdss™ component of the Data Facility Storage Management Subsystem (DFSMS).
You can subsequently run the DB2 RECOVER utility to restore those image copies and apply
178 LOBs with DB2 for z/OS: Stronger and Faster

the necessary log records to them to complete recovery. The CONCURRENT option of
COPY invokes the DFSMSdss concurrent copy.

The COPY utility records the resulting DFSMSdss concurrent copies in the catalog table
SYSIBM.SYSCOPY with ICTYPE=F and STYPE=C or STYPE=J. STYPE=C indicates that
the concurrent copy was taken of the ‘I’ instance of the table space. STYPE=J indicates that
the concurrent copy was taken of the ‘J’ instance of the table space.

To obtain a consistent offline backup copy outside of DB2:

1. Start the DB2 objects that are being backed up for read-only access by issuing the
command:

-START DATABASE(database-name) SPACENAM(table space name) ACCESS(RO)

Allowing read-only access is necessary to ensure that no updates to data occur during this
procedure.

2. Run QUIESCE with the WRITE(YES) option to quiesce all DB2 objects that are being
backed up.

3. COPY CONCURRENT the DB2 objects.

4. Issue the following command to allow transactions to access the data:

-START DATABASE(database-name) SPACENAM(table space name)

If you specify COPY SHRLEVEL REFERENCE with the CONCURRENT option, and if you
want to copy all of the data sets for a list of table spaces to the same dump data set, specify
FILTERDDN in your COPY statement. This improves the table space availability, because if
you do not specify FILTERDDN, COPY might force DFSMSdss to process the list of table
spaces sequentially, which might limit the availability of some of the table spaces that are
being copied.

Examples
In Example 6-27, we take a consistent backup for all objects of the table ##T.NORMEN00 as
defined in Example 6-1 on page 160. We use the PARALLEL option to speed up the process.
The SHRLEVEL REFERENCE results in a common recoverable point of consistency.

Example 6-27 COPY LOB data

TEMPLATE TSYSCOPY
 DSN('DB2IM.&SS..&DB..&SN..&IC.&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
 INCLUDE INDEXSPACES COPY YES TABLE ##T.NORMEN00 ALL
COPY LIST MYLIST FULL YES SHRLEVEL REFERENCE
 PARALLEL COPYDDN(TSYSCOPY)

As a result, four image copies are taken with the same START_RBA in SYSIBM.SYSCOPY
as shown in Example 6-28: One copy for each table space and one copy for each index
space.

Example 6-28 Common START_RBA in SYSIBM.SYSCOPY

DBNAME TSNAME ICTYPE START RBA HEX DSNAME SHRLEVEL OTYPE ICBACKUP
-------- -------- ------ ------------- -- -------- ----- --------
NORMEN00 NORMEN00 F 00005A542C27 DB2IM.DB9B.NORMEN00.NORMEN00.F06208.#230717 R T
NORMEN00 NORMLOB F 00005A542C27 DB2IM.DB9B.NORMEN00.NORMLOB.F06208.#230717 R T
NORMEN00 IRNORMEN F 00005A542C27 DB2IM.DB9B.NORMEN00.IRNORMEN.F06208.#230717 R I
NORMEN00 IRNO189G F 00005A542C27 DB2IM.DB9B.NORMEN00.IRNO189G.F06208.#230717 R I
Chapter 6. Utilities with LOBs 179

In Example 6-29, we use the CONCURRENT copy option to invoke the DFSMSdss
concurrent copy function and create a common recoverable point of consistency.

Example 6-29 CONCURRENT COPY of LOB data

TEMPLATE TSYSCOPY
 DSN('DB2IM.&SS..&DB..&SN..&IC.&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
 INCLUDE INDEXSPACES COPY YES TABLE ##T.NORMEN00 ALL
COPY LIST MYLIST CONCURRENT SHRLEVEL REFERENCE
 COPYDDN(TSYSCOPY)

The resulting entries in SYSIBM.SYSCOPY are shown in Example 6-30. They all have the
same START_RBA.

Example 6-30 CONCURRENT COPY entries in SYSIBM.SYSCOPY

DBNAME TSNAME ICTYPE START RBA HEX DSNAME SHRLEVEL STYPE ICBACKUP
-------- -------- ------ ------------- --- -------- ----- --------
NORMEN00 NORMEN00 F 00005A575C9D DB2IM.DB9B.NORMEN00.NORMEN00.F06208.#234445 R C
NORMEN00 NORMLOB F 00005A575C9D DB2IM.DB9B.NORMEN00.NORMLOB.F06208.#234445 R C
NORMEN00 IRNORMEN F 00005A575C9D DB2IM.DB9B.NORMEN00.IRNORMEN.F06208.#234445 R C
NORMEN00 IRNO189G F 00005A575C9D DB2IM.DB9B.NORMEN00.IRNO189G.F06208.#234445 R C

In Example 6-31, we use the FILTERDDN option to copy all of the objects to the same dump
data set. We use the &LI. template variable, because &SN. makes little sense here.

Example 6-31 CONCURRENT COPY of LOB data to one dump data set

TEMPLATE TSYSCOPY
 DSN('DB2IM.&SS..&DB..&LI..&IC.&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
TEMPLATE TFILTER
 DSN('DB2IM.&SS..&DB..&LI..Z&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
 INCLUDE INDEXSPACES COPY YES TABLE ##T.NORMEN00 ALL
COPY LIST MYLIST CONCURRENT SHRLEVEL REFERENCE
 COPYDDN(TSYSCOPY) FILTERDDN(TFILTER)

If you specify FILTERDDN, the SYSCOPY records for all objects in the list have the same
data set name and START_RBA as shown in Example 6-32.

Example 6-32 CONCURRENT COPY entries in SYSIBM.SYSCOPY with FILTERDDN

DBNAME TSNAME ICTYPE START RBA HEX DSNAME SHRLEVEL STYPE ICBACKUP
 -------- -------- ------ ------------- --- -------- ----- --------
NORMEN00 NORMEN00 F 00005A95B112 DB2IM.DB9B.NORMEN00.MYLIST.F06209.#172934 R C
NORMEN00 NORMLOB F 00005A95B112 DB2IM.DB9B.NORMEN00.MYLIST.F06209.#172934 R C
NORMEN00 IRNORMEN F 00005A95B112 DB2IM.DB9B.NORMEN00.MYLIST.F06209.#172934 R C
NORMEN00 IRNO189G F 00005A95B112 DB2IM.DB9B.NORMEN00.MYLIST.F06209.#172934 R C

6.5 COPYTOCOPY

COPYTOCOPY can also be run on image copies of LOB table spaces.
180 LOBs with DB2 for z/OS: Stronger and Faster

The COPYTOCOPY utility makes image copies from an image copy that was taken by the
COPY utility. This includes inline copies that the REORG or LOAD utilities make. Starting with
either the local primary or recovery-site primary copy, COPYTOCOPY can make up to three
copies of one or more of the following types of copies:

� Local primary
� Local backup
� Recovery site primary
� Recovery site backup

However, you cannot run COPYTOCOPY on concurrent copies.

In Example 6-33, you see how to take a set of recovery site primary image copies starting
from the last local primary image copies (because you cannot COPYTOCOPY from
concurrent copies, we first had to take a new set of FULL image copies as in Example 6-27
on page 179).

Example 6-33 COPYTOCOPY

TEMPLATE TSYSCOPY
 DSN('DB2IM.&SS..&DB..&SN..&IC.&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
 INCLUDE INDEXSPACES COPY YES TABLE ##T.NORMEN00 ALL
COPYTOCOPY LIST MYLIST FROMLASTCOPY
 RECOVERYDDN(TSYSCOPY)

Both sets of primary and recovery site image copies have the same START_RBA as shown
in Example 6-34.

Example 6-34 Primary and COPYTOCOPY entries in SYSIBM.SYSCOPY

DBNAME TSNAME ICTYPE START RBA HEX DSNAME SHRLEVEL STYPE ICBACKUP
-------- -------- ------ ------------- --- -------- ----- --------
NORMEN00 NORMEN00 F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.NORMEN00.F06209.#174842 R
NORMEN00 NORMLOB F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.NORMLOB.F06209.#174842 R
NORMEN00 IRNORMEN F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.IRNORMEN.F06209.#174842 R
NORMEN00 IRNO189G F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.IRNO189G.F06209.#174842 R
NORMEN00 NORMEN00 F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.NORMEN00.F06209.#174904 R RP
NORMEN00 NORMLOB F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.NORMLOB.F06209.#174904 R RP
NORMEN00 IRNORMEN F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.IRNORMEN.F06209.#174904 R RP
NORMEN00 IRNO189G F 00005A9E3DE6 DB2IM.DB9B.NORMEN00.IRNO189G.F06209.#174904 R RP

6.6 QUIESCE

The QUIESCE utility establishes a quiesce point for a table space, partition, table space set,
or list of table spaces and table space sets. A quiesce point is the current log RBA or log
record sequence number (LRSN). QUIESCE then records the quiesce point in the
SYSIBM.SYSCOPY catalog table. A successful QUIESCE improves the probability of a
successful RECOVER or COPY.

if you want to establish a quiesce point for the point in time recovery of a base table and all of
its related LOB objects, you have to look at these objects as a table space set (like tables
related with referential integrity).

The Quiesce utility drains all writers on the table space objects. The default is to write the
changed pages from the table spaces and index spaces to disk (WRITE YES).
Chapter 6. Utilities with LOBs 181

Because a non-partitioned or partitioned base table can contain many auxiliary table space
objects (one LOB table space per LOB column and per partition), we recommend that you
use a LISTDEF to generate a list of all the table space objects with the ALL LOB indicator
keyword, as shown in Example 6-35. This creates a common quiesce point.

Example 6-35 QUIESCE a base table space and all LOB table spaces

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
QUIESCE LIST MYLIST

The resulting SYSIBM.SYSCOPY entries are shown in Example 6-36. STYPE=W means that
the QUIESCE was done with WRITE(YES). All table spaces have the same START_RBA
resulting in a common quiesce point.

Example 6-36 QUIESCE entries in SYSIBM.SYSCOPY

DBNAME TSNAME ICTYPE START RBA HEX STYPE OTYPE
-------- -------- ------ ------------- ----- -----
NORMEN00 NORMEN00 Q 00005AABD468 W T
NORMEN00 NORMLOB Q 00005AABD468 W T
NORMEN00 IRNORMEN Q 00005AABD468 W I
NORMEN00 IRNO189G Q 00005AABD468 W I

A valid alternative to create a common quiesce point is to use the TABLESPACESET keyword
with the base table space or one of the involved LOB table spaces as shown in Example 6-37.

Example 6-37 QUIESCE a table space set

QUIESCE TABLESPACESET NORMEN00.NORMEN00

A common quiesce point is a common recoverable point of consistency when both the base
table space and LOB table spaces were created as LOG YES (V7 and V8) or LOGGED
(DB2 9). Be aware that to recover to a common quiesce point is not being able to recover the
LOBS if the LOB table is defined as LOG NO (V7 and V8) or NOT LOGGED (DB2 9),
because of the missing log records. Also, if the base table space is defined as NOT LOGGED,
the quiesce point is not a common recoverable point of consistency. See “Recovering to a
prior point in time” on page 196 for more details.

6.7 REPORT

The REPORT utility provides information about table spaces, tables, and indexes. Use
REPORT TABLESPACESET to find the names of all the table spaces and tables in a
referential structure, including LOB table spaces. The REPORT utility also provides
information about the LOB table spaces that are associated with a base table space. Use
REPORT RECOVERY to find information that is necessary for recovering a base table space
and its indexes, and LOB table space and its indexes.

The REPORT TABLESPACESET is also useful when the base and LOB table spaces have
been created by using the automatic creation of objects (DB2 9 only).

In Example 6-38 on page 183, we show how to use the REPORT TABLESPACESET on the
underlying table spaces of the table ##T.NORMEN00 defined in Example 6-1 on page 160.
Because the REPORT TABLESPACESET command does not support the use of a LISTDEF,
the name of the base table space must first be retrieved from SYSIBM.SYSTABLES.
182 LOBs with DB2 for z/OS: Stronger and Faster

Example 6-38 REPORT TABLESPACESET on automatic created objects

REPORT TABLESPACESET TABLESPACE DSN00030.NORMEN01

The resulting report is shown in Example 6-39.

Example 6-39 REPORT TABLESPACESET report

DSNU000I 209 15:06:45.13 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REPORT.NORMEN00
DSNU1044I 209 15:06:45.19 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 209 15:06:45.19 DSNUGUTC - REPORT TABLESPACESET TABLESPACE DSN00030.NORMEN01
DSNU587I -DB9B 209 15:06:45.20 DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSN00030.NORMEN01

TABLESPACE SET REPORT:

TABLESPACE : DSN00030.NORMEN01
 TABLE : ##T.NORMEN01

LOB TABLESPACE SET REPORT:

TABLESPACE : DSN00030.NORMEN01

 BASE TABLE : ##T.NORMEN01
PART: 0001 COLUMN : IMAGE
 LOB TABLESPACE : DSN00030.L96UX60E
 AUX TABLE : ##T.NORMEIMAGE96UXYNM9
 AUX INDEXSPACE : DSN00030.INORMEIM
 AUX INDEX : ##T.INORMEIMAGE96UXYYX

DSNU580I 209 15:06:45.20 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 209 15:06:45.20 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

A report on the recovery information about all automatically created objects related to table
##T.NORMEN01 can be obtained as shown in Example 6-40.

Example 6-40 REPORT RECOVERY

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN01 ALL
REPORT RECOVERY TABLESPACE LIST MYLIST INDEX ALL

6.8 RUNSTATS

When dealing with LOBs, you can run the RUNSTATS utility against the base table space, the
LOB table space, or the index on the auxiliary table. We do not discuss the HISTORY catalog
tables in this paragraph, but they contain similar statistics when RUNSTATS is run to collect
historical data. You can run RUNSTATS on the auxiliary objects, but the statistics do not have
any effect on access paths and there are no column statistics. The statistics can be used to
monitor space usage (such as number of extents) and ORGRATIO to schedule a REORG of
the LOB table space. ORGRATIO is used for LOBs to indicate the percentage of LOBs that
are properly chunked (that is, allocated in contiguous sets of 16 pages). This is explained in
more detail at “Monitoring ORGRATIO” on page 191.

RUNSTATS on the base table space
In SYSIBM.SYSCOLUMNS, the cardinality of a LOB column, COLCARDF, is determined by
counting only non-null and non-zero length columns. HIGH2KEY and LOW2KEY are not
applicable for the LOB column and contain blanks.
Chapter 6. Utilities with LOBs 183

In SYSIBM.SYSCOLSTATS, the cardinality of a LOB column, COLCARDF, is determined by
counting only non-null and non-zero length columns. HIGHKEY, LOWKEY, HIGH2KEY, and
LOW2KEY are not applicable for the LOB column and contain blanks.

RUNSTATS on the index of the auxiliary table
For an index on the auxiliary table, the CARDF column of SYSIBM.SYSINDEXPART indicates
the number of keys in the index which refer to LOBs. Also LEAFNEAR, LEAFFAR, and
PSEUDO_DEL_ENTRIES contain meaningful information. The statistics CLUSTERED,
CLUSTERRATIO, NEAROFFPOSF, FAROFFPOSF, and LEAFDIST in
SYSIBM.SYSINDEXPART are not applicable for the index on the auxiliary table.

RUNSTATS on the LOB table space
You can run RUNSTATS on a LOB table space to collect space statistics so that you can
determine when the LOB table space should be reorganized. The statistics on the LOB table
do not affect access path selection and are not taken into account by the optimizer.

Statistics in SYSIBM.SYSTABLES are not updated except for CARDF and SPACEF, which
contain the number of LOBs in the auxiliary table and the number of KB. The statistics in
SYSIBM.SYSTABLEPART that are updated are CARDF, SPACEF, PQTY, SQTY, DSNUM,
and EXTENTS. PERCACTIVE contains -2 to indicate that this field is not updated for
auxiliary tables. Statistics in SYSIBM.SYSCOLUMNS are not updated. HIGH2KEY and
LOW2KEY contain blanks for the columns of the auxiliary table, and COLCARDF contains -2
to indicate that this field is not updated for auxiliary tables. The statistics for a LOB table
space are stored in a new catalog table called SYSIBM.SYSLOBSTATS, which is explained
in “SYSIBM.SYSLOBSTATS” on page 214.

If the table space that is specified by the TABLESPACE keyword is a LOB table space, you
can specify only the following additional keywords: SHRLEVEL, REPORT, UPDATE, and
HISTORY. You cannot specify the TABLE option for a LOB table space, nor options such as
SAMPLE, COLUMN(ALL), COLGROUP, or the INDEX options: KEYCARD and FREQVAL.

As with the other utilities, because a non-partitioned or partitioned base table can contain
many auxiliary table space objects (one LOB table space per LOB column and per partition),
we recommend that you use a LISTDEF to generate a list of all the objects. Because you
cannot specify all keywords for a LOB table space, you probably use two LISTDEFs, one for
the base objects and one for the auxiliary objects as shown in Example 6-41.

Example 6-41 RUNSTATS on LOB data

LISTDEF BASETS INCLUDE TABLESPACES TABLE ##T.NORMEN00 BASE
RUNSTATS TABLESPACE LIST BASETS TABLE (ALL)
 INDEX(ALL KEYCARD FREQVAL NUMCOLS 1 COUNT 10
 FREQVAL NUMCOLS 2 COUNT 10
 FREQVAL NUMCOLS 3 COUNT 10
 FREQVAL NUMCOLS 4 COUNT 10
 FREQVAL NUMCOLS 5 COUNT 10)
 SHRLEVEL CHANGE REPORT YES HISTORY ALL
LISTDEF LOBTS INCLUDE TABLESPACES TABLE ##T.NORMEN00 LOB
RUNSTATS TABLESPACE LIST LOBTS INDEX (ALL)
 SHRLEVEL CHANGE REPORT YES HISTORY ALL

When using REPORT YES, you can actually see which statistics are gathered and what their
values are.
184 LOBs with DB2 for z/OS: Stronger and Faster

6.9 REORG

In this section, we discuss the REORG of LOB objects.

As with normal table spaces and indexes, the REORG utility can be used to:

� Reorg a LOB table space to reclaim fragmented space and improve access performance

� Reorg an auxiliary index to reclaim fragmented space and improve access performance

For REORG TABLESPACE on a LOB table space, there are two kinds of REORG possible:

� REORG TABLESPACE SHRLEVEL NONE (this is the only one possible in DB2 V7 and
DB2 V8)

� REORG TABLESPACE SHRLEVEL REFERENCE (new and recommended in DB2 9)

For REORG INDEX on an auxiliary index, three REORG methods are allowed:

� REORG INDEX SHRLEVEL NONE
� REORG INDEX SHRLEVEL REFERENCE
� REORG INDEX SHRLEVEL CHANGE (recommended)

REORG TABLESPACE SHRLEVEL NONE
This REORG method was introduced with DB2 V6. It is quite different from a normal REORG
and has some drawbacks:

� No access to LOB data is allowed while the REORG executes.

� It is an inline REORG, which means that LOBS are moved within the existing LOB table
space without unload and reload and without delete and define of the underlying VSAM
cluster; there is no means of reclaiming physical space from the LOB data set by resizing
it. ALTER of PRIQTY and SECQTY values of the LOB table space are not taken into
account.

� Its aim is to store all pages belonging to an individual LOB as contiguous pages
(chunking); this results in a trade-off between optimal reorganization and physical space
consumption, because it does not always remove all holes between LOBs.

� It is always LOG YES, resulting in additional logging, particularly for LOB table spaces
defined as LOG YES (V7 and V8) or LOGGED (DB2 9). See also “Impact of logging” on
page 173.

� Inline image copy using the COPYDDN keyword is not allowed.

� The utility is not restartable during REORGLOB phase and the LOB is left in RECP status
if a failure happens; a recovery is always needed afterwards in case of a failure.

The main goal of this REORG method is to improve the prefetch performance of LOB data:

� Make LOB pages as contiguous as possible.
� Properly chunk all LOBs to reach ORGRATIO = 100.

There is no delete and define done of the primary data set A001, but a delete of the
secondary data sets A002 and A003 is done when they are no longer needed after the
REORG. With versions prior to DB2 9, you always need to use the RECOVER utility to resize
the LOB table space after changing the PRIQTY and SECQTY allocated values and the
number of extents.

Tip: Remember that it is possible to combine REORG and RUNSTATS in one run using the
STATISTICS options in the REORG command.
Chapter 6. Utilities with LOBs 185

This REORG method has three utility phases: UTILINIT, REORGLOB, and UTILTERM.
During the REORGLOB phase, the LOB table space is rebuilt in place without unloading and
reloading the LOB data to and from an external data set.

The utility is not restartable during the REORGLOB phase, and it is left in RECP status if a
failure happens. You have to run RECOVER to recover the LOB table space. If the LOB table
space is defined with LOG NO (V7 and V8) or NOT LOGGED (DB2 9), then the LOB table
space is left in a COPYP status after a successful REORG, and you should take a full image
copy to assure recoverability.

No records are inserted in SYSIBM.SYSCOPY for REORG SHRLEVEL NONE.

As with the other utilities, because a non-partitioned or partitioned base table can contain
many auxiliary table space objects (one LOB table space per LOB column and per partition),
you can use a LISTDEF to generate a list of all the LOB table spaces. However in this case,
this implies a REORG of all the LOB table spaces, and this might not be what you want.

An example of REORG SHRLEVEL NONE is shown in Example 6-42.

Example 6-42 REORG SHRLEVEL NONE of one LOB table space

REORG TABLESPACE NORMEN00.NORMLOB LOG YES
SHRLEVEL NONE

An example of REORG with a LISTDEF is shown in Example 6-43.

Example 6-43 REORG SHRLEVEL NONE of all LOB objects

LISTDEF LOBTS INCLUDE TABLESPACES TABLE ##T.NORMEN00 LOB
REORG TABLESPACE LIST LOBTS LOG YES
SHRLEVEL NONE

REORG TABLESPACE SHRLEVEL REFERENCE
This new method for REORG of LOB table spaces was introduced in DB2 9. The original LOB
table space is drained of writers; that is, no update access is allowed during the REORG. All
LOBs are then extracted from the original data set and inserted into a shadow data set. A new
auxiliary index is also built in a shadow data set. Once this is complete, all access to the LOB
table space is stopped for a short period while the original data sets are switched with the
shadows. At this point, full access to the new data set is allowed. An inline copy is taken to
ensure recoverability.

The allocation of the shadow and deallocation of the old original data set follow the same
rules that exist today for REORG SHRLEVEL REFERENCE and CHANGE of normal table
spaces.

The new method has the following benefits:

� REORG SHRLEVEL REFERENCE allows full read access to LOB data for the duration of
the REORG with the exception of the switch phase during which readers are also drained.
Once the switch has occurred, full access is restored.

� LOBs are reorganized implicitly during LOB allocation to the shadow data set.

Tip: With REORG SHRLEVEL NONE, we always recommend that you take a full image
COPY SHRLEVEL REFERENCE before and after the REORG to assure recoverability.
186 LOBs with DB2 for z/OS: Stronger and Faster

� Physical space is reclaimed, because after REORG, the original data set is deleted and
the shadow data set is governed by normal space allocation rules. Shadow data sets are
allocated according to normal space allocation rules for the LOB table space. Changes
made to PRIQTY and SECQTY with ALTER before the REORG are honored. RECOVER
is therefore no longer needed to resize a LOB table space but could still be useful as
described in “Use of RECOVERY for reallocating LOB table spaces” on page 199.

� As with the pre-DB2 9 REORG of LOB table spaces, the new solution has no dependency
on the base table or base table indexes. Therefore, REORG of a LOB table space
continues to have no impact on access to base table data.

� LOG YES is not valid for REORG SHRLEVEL REFERENCE of a LOB table space. This
results in reduced logging requirements for LOB table spaces with no loss of recoverability.

An example of the differences between REORG SHRLEVEL NONE in DB2 V8 (and prior
releases) is shown in Figure 6-1, Figure 6-2 on page 188, and Figure 6-3 on page 188. We
assume we have an auxiliary table space for a LOB column and a heavy update workload has
taken place since the initial allocation. Note, we are focusing entirely on the auxiliary table
space and not the accompanying auxiliary index for this example.

Figure 6-1 Heavily updated LOB table space

This shows a LOB auxiliary table space that has undergone significant change activity,
leading both to disorganization of pages, as well as allocation of many extents for the
underlying data sets.

LOBs extents - Heavily updated table

rowid 1

rowid 3
rowid 2

extent 1

Auxiliary index

Auxiliary table (LOB table space)

extent 2 extent 3 extent 4 extent 5,6,7....
Chapter 6. Utilities with LOBs 187

Figure 6-2 LOB Table space REORG with DB2 V8 and prior

Figure 6-2 shows that while the data within the table space has been reordered, and “holes”
between objects removed, the physical layout of the data set has not been altered. If there is
significant free space, this effectively means a lot of disk space remains unusable, because it
is still allocated. The space can be used for subsequent expansion only with data of rows
within the table in the auxiliary table space. There is also the residual inefficiency of the data
spanning many extents.

Figure 6-3 LOB Table space REORG with DB2 9

Figure 6-3 shows a table space where REORG SHRLEVEL REFERENCE has been
performed. It is assumed that an ALTER of the primary quantity of the table space has been
issued before the REORG reflecting the correct allocation for the table space size required for
the present data volume, allowing for anticipated growth if desired, and a suitable secondary
quantity also determined and ALTERed to take effect.

LOBs extents - REORGed with V7/8

rowid 1

rowid 3
rowid 2

extent 1

Auxiliary index

Auxiliary table (LOB table space)

extent 2 extent 3 extent 4 extent 5,6,7....

LOBs extents - REORGed with V9

rowid 1

rowid 3
rowid 2

extent 1
(resized)

Auxiliary index

Auxiliary table (LOB table space)

unallocated secondary extents
(resized)

 ALTER PRIQTY nnnnn
 ALTER SEQQTY mmm
188 LOBs with DB2 for z/OS: Stronger and Faster

An inline copy is always taken to ensure recoverability. This is required and the COPYDDN
parameter is needed unless a SYSCOPY DD card is specified in the utility JCL. As with a
normal REORG SHRLEVEL REFERENCE, the REORG of a LOB table space now inserts
two SYSCOPY records. The first SYSCOPY record represents the REORG itself, which is a
nonrecoverable event, and the second SYSCOPY record represents the inline image copy.

The switch from original to shadow data sets is a nonrecoverable event requiring an inline
copy to be taken during the REORG. During recovery, DB2 cannot apply log records across
the switch from the original data set to the shadows. Recovery to a point after the REORG
must rely upon the inline copy taken during the REORG process. In the event of a failure
during the REORG, the shadow copy is discarded. The utility cannot be restarted.

The implications of using shadow data sets are:

� Before the new REORG, LOB table spaces and the associated auxiliary indexes could
only have an instance of "I".

� The new REORG causes LOB table space instances and auxiliary index instances to
alternate between "I" and "J".

� Any tools or applications, which assume that LOB table spaces are "I" data sets, have to
change to also tolerate "J" data sets.

This REORG method has four utility phases: UTILINIT, REORGLOB, SWITCH, and
UTILTERM. During the REORGLOB phase, the LOB table space is unloaded to the shadow
data set and any error during this phase leaves the original data set intact. The utility is not
restartable during the REORGLOB phase, but the original data set is never put in RECP
status if a failure happens. You no longer have to run RECOVER to recover the LOB table
space afterwards. The inline image copy assures recoverability.

As with the other utilities, because a non-partitioned or partitioned base table can contain
many auxiliary table space objects (one LOB table space per LOB column and per partition),
you can use a LISTDEF to generate a list of all the LOB table spaces. However in this case,
you do a REORG of all the LOB table spaces, which might not be the intention. An example
of REORG SHRLEVEL REFERENCE is shown in Example 6-44.

Example 6-44 REORG SHRLEVEL REFERENCE

TEMPLATE TSYSCOPY
 DSN('DB2IM.&SS..&DB..&SN..&IC.&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
REORG TABLESPACE NORMEN00.NORMLOB LOG NO
 COPYDDN(TSYSCOPY)
 SHRLEVEL REFERENCE

The resulting job output is shown in Example 6-45.

Example 6-45 REORG SHRLEVEL REFERENCE output

DSNU000I 212 19:44:43.16 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REORG.NORMEN00
DSNU1044I 212 19:44:43.22 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 212 19:44:43.22 DSNUGUTC - TEMPLATE TSYSCOPY DSN('DB2IM.&SS..&DB..&SN..&IC.&JU(3,5)..#&TI.') DISP(MOD,
 CATLG, CATLG)
DSNU1035I 212 19:44:43.22 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 212 19:44:43.23 DSNUGUTC - REORG TABLESPACE NORMEN00.NORMLOB LOG NO COPYDDN(TSYSCOPY) SHRLEVEL
REFERENCE
DSNU1038I 212 19:44:45.01 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TSYSCOPY
 DDNAME=SYS00001
 DSN=DB2IM.DB9B.NORMEN00.NORMLOB.F06212.#234443
DSNU1151I -DB9B 212 19:45:16.29 DSNURLOB - REORGLOB PHASE COMPLETE - NUMBER OF RECORDS PROCESSED=5883
DSNU387I 212 19:45:16.67 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU428I 212 19:45:16.68 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE NORMEN00.NORMLOB
Chapter 6. Utilities with LOBs 189

DSNU400I 212 19:45:16.69 DSNURBID - COPY PROCESSED FOR TABLESPACE NORMEN00.NORMLOB
 NUMBER OF PAGES=50057
 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00

PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:00:31
DSNU406I -DB9B 212 19:45:16.58 DSNURWT - FULL IMAGE COPY SHOULD BE TAKEN FOR BOTH LOCAL
 SITE AND RECOVERY SITE FOR TABLESPACE NORMEN00.NORMLOB
DSNU568I -DB9B 212 19:45:17.10 DSNUGSRX - INDEX ##T.I_NORMEN00_AUX IS IN INFORMATIONAL COPY PENDING STATE
DSNU010I 212 19:45:17.11 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

Message DSNU406I is issued, because previously we took image copies for a recovery site.

An example of REORG with a LISTDEF is shown in Example 6-46.

Example 6-46 REORG SHRLEVEL REFERENCE with LISTDEF

LISTDEF LOBTS INCLUDE TABLESPACES TABLE ##T.NORMEN00 LOB
REORG TABLESPACE LIST LOBTS LOG NO
SHRLEVEL REFERENCE

REORG INDEX of an auxiliary index
The REORG INDEX utility statement for an auxiliary index is identical to a REORG INDEX
statement of a normal index. See Example 6-47.

Example 6-47 REORG INDEX auxiliary index

TEMPLATE TSYSUT1
 DSN('DB2RE.&SS..&DB..&SN..U&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
REORG INDEX ##T.I_NORMEN00_AUX SHRLEVEL CHANGE
 MAXRO 20 DRAIN ALL
 DRAIN_WAIT 20 RETRY 120 RETRY_DELAY 60 TIMEOUT TERM
 SORTDEVT 3390 SORTNUM 6
 WORKDDN(TSYSUT1)

Be aware that REORG TABLESPACE of a LOB table space also rebuilds the auxiliary index,
and in this case, there is no need to run a separate REORG INDEX utility on the auxiliary
index.

Impact of logging
REORG forces you to specify LOG YES for REORG SHRLEVEL NONE and LOG NO with
COPYDDN for SHRLEVEL REFERENCE. A LOB table space can also be defined with LOG
YES or LOG NO. In DB2 9 also, the base table space can be defined as LOGGED or NON
LOGGED.

Table 6-2 on page 191 shows the effect on logging output and LOB table space in case the
base table space is LOGGED.
190 LOBs with DB2 for z/OS: Stronger and Faster

Table 6-2 Impact of logging if base table space is LOGGED

If the base table space is defined as NOT LOGGED and the LOB table spaces are defined as
LOGGED, the LOB table spaces with the LOGGED logging attribute are changed to NOT
LOGGED as well. However, this is recorded in the DB2 catalog so that if the base table space
is altered to LOGGED, the LOB table spaces are also changed back to LOGGED. If both
base table space and LOB table spaces are NOT LOGGED, the LOG YES attribute of the
REORG SHRLEVEL NONE utility is also changed to LOG NO during execution. Nothing is
logged.

When to REORG a LOB table space or auxiliary index
There are two reasons for REORGing a LOB table space or auxiliary index:

� To improve access performance
� To resize the object and reclaim physical space

The main indicators to monitor are:

� ORGRATIO and FREESPACE in SYSIBM.SYSLOBSTATS

� DSNUM and EXTENTS in SYSIBM.SYSTABLEPART

� DSNUM, EXTENTS, LEAFNEAR, LEAFFAR, and PSEUDO_DEL_ENTRIES in
SYSIBM.SYSINDEXPART

� REORGINSERTS, REORGDELETES, REORGUPDATES, REORGDISORGLOB,
REORGMASSDELETE, and EXTENTS in SYSIBM.SYSTABLESPACESTATS
(SYSIBM.TABLESPACESTATS in V7 and V8)

Monitoring ORGRATIO
ORGRATIO is the percent of organization of the LOB table space. A value of 100 indicates
perfect organization. A value of 1 indicates that the LOB table space is disorganized. A value
of 0 means that the LOB table space is totally disorganized. A LOB table space is considered
to be perfectly organized if all the LOB groups of 16 pages (called chunks) belonging to a
single LOB are stored in contiguous pages.

A LOB column always has an auxiliary index, which locates the LOB within the LOB table
space. Access path is not an issue, because LOB access is always done through an index
probe using the auxiliary index. However, performance can be affected if LOBs are scattered
into more physical pieces than necessary, therefore, involving more I/O to scan and
materialize.

Figure 6-4 on page 192 shows that there are four LOBs accessed via the auxiliary index.
These LOBs are stored in chunks of pages. A chunk consists of 16 contiguous pages of LOB

Impact of logging on REORG

REORG
LOG keyword

LOB table space
LOG attribute

What is logged LOB table space
status after utility
completes

 LOG YES LOG YES Control information
and LOB data

No pending status

 LOG YES LOG NO Control information No pending status

 LOG NO LOG YES Nothing No pending status
because of inline copy

 LOG NO LOG NO Nothing No pending status
because of inline copy
Chapter 6. Utilities with LOBs 191

data. If the size of a LOB is smaller than a chunk (smaller than 16 pages), then the LOB is
expected to fit in one chunk. If the size of the LOB is greater than a chunk (greater than 16
pages), then it is optimized to fit into the minimum number of chunks (LOB size divided by
chunk size). If, because of fragmentation within chunks, LOBs are split up to store in more
chunks than optimal, the ORGRATIO decreases. In our example, the first part of LOB 1
(accessed by ROWID 1) is stored in chunk 1, the remaining bytes are placed in data pages of
chunk number 2.

Because of its size, LOB number 1 could fit into one chunk, but two chunks are used to store
its value. This means that one extra chunk is used to store LOB number 1. Because of its
size, LOB number 2 needs at least two chunks to be stored, and this is what is used by DB2
to store LOB number 2. So, there are no extra chunks for LOB number 2. The value of LOB
number 3 should fit into one chunk and is also stored in one chunk, which means that there
are no extra chunks used for its storage. Things are different for LOB number 4. The value of
LOB number 4 is expected to fit in two chunks, but DB2 uses three chunks. So there is
another extra chunk used for LOB number 4.

In this case, ORGRATIO would be 50, since two out of four LOBs are properly chunked.

Figure 6-4 Fragmented LOB table space

As shown in Figure 6-5 on page 193, after reorganization of the LOB space, the LOBs are
placed in the optimal number of chunks. Since there are no extra chunks allocated, the
ORGRATIO is 100.

E

LOBs ORGRATIO - fragmented

No access path statistics for LOBs orgratio<100
 #LOBs = 4
 #extra chunks = 2

rowid 1

rowid 4
rowid 3
rowid 2

chunk 1 chunk 2 chunk 3 chunk 4 chunk 5

Auxiliary index

Auxiliary table (LOB table space)

E EE
192 LOBs with DB2 for z/OS: Stronger and Faster

Figure 6-5 Non-fragmented LOB table space

Based on chunking considerations, you could decide to REORG a LOB table space when
either:

� ORGRATIO >10

� REORGDISLOB (number of LOBs inserted since the last REORG that are not perfectly
chunked)/TOTALROWS > 10%

The threshold value is set pretty low, because the impact of low ORGRATIO is less than one
of the other factors not related to chunking. In the case of a large LOB being read, DB2 uses
list prefetch, which always reads pages in ascending page number sequence after sorting.
DB2 V8 has removed the 180 CI limit in list prefetch. For small LOBs, which can fit in a page,
they are considered perfectly chunked and give ORGRATIO 100.

Monitoring FREESPACE
As explained before, FREESPACE gives the number of kilobytes of free space in extents with
respect to high used relative byte address (RBA) or (HURBA). The FREESPACE gives you
an indication of how much allocated space is available for more LOBs.

For LOB table spaces, an updated LOB is written without immediately reclaiming the old
version of the LOB. The old version of the LOB becomes free space at commit time and when
no more readers claim these old versions. The same is true for deleted LOBs.

Note: APAR PK29750 corrects ORGRATIO calculations in DB2 V8.

LOBs ORGRATIO - after REORG

Improved performance after REORG orgratio=100
 #LOBs = 4
 #extra chunks = 0

rowid 1

rowid 4
rowid 3
rowid 2

chunk 1 chunk 2 chunk 3 chunk 4 chunk 5

Auxiliary index

Auxiliary table (LOB table space)

EE
Chapter 6. Utilities with LOBs 193

When FREESPACE approaches zero for a LOB table space, it might be a good idea to resize
the LOB table space using REORG SHRLEVEL REFERENCE. FREESPACE can also be
used to reduce the size of the LOB table space if a much too large PQTY was used to create
the LOB table space or to reclaim physical space after many DELETEs. ALTER PQTY
followed by REORG SHRLEVEL REFERENCE resizes the LOB table space.

Monitoring Real Time Statistics (RTS)
You could decide to REORG a LOB table space when:

� REORGDISORGLOB (number of LOBs inserted since the last REORG that are not
perfectly chunked)/TOTALROWS > 10%

� REORGMASSDELETE > 0

Or use the stored procedures DSNACCOR (DB2 V7 and DB2 V8) or DSNACCOX (planned
for DB2 9) to automatically decide when to REORG. The stored procedures used for RTS are
described in Appendix B of the DB2 Version 9.1 for z/OS Utility Guide and Reference,
SC18-9855.

The new formula that is planned for DSNACCOX to execute when deciding to REORG a
table space) is listed in Example 6-48.

Example 6-48 RTS DSNACCOX query for REORG TABLESPACE

(((QueryType='REORG' OR QueryType='ALL') AND
(ObjectType='TS' OR ObjectType='ALL')) AND
(REORGLASTTIME IS NULL AND LOADRLASTTIME IS NULL) OR
(NACTIVE IS NULL OR NACTIVE > 5) AND
((((REORGINSERTS*100)/TOTALROWS>RRTInsertPct) AND
REORGINSERTS>RRTInsertAbs) OR
(((REORGDELETE*100)/TOTALROWS>RRTDeletePct) AND
REORGDELETE>RRTDeleteAbs) OR
(REORGUNCLUSTINS*100)/TOTALROWS>RRTUnclustInsPct OR
(REORGDISORGLOB*100)/TOTALROWS>RRTDisorgLOBPct OR
((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS>RRTIndRefLimit OR
REORGMASSDELETE>RRTMassDelLimit OR
EXTENTS>ExtentLimit)) OR
((QueryType='RESTRICT' OR QueryType='ALL') AND
(ObjectType='TS' OR ObjectType='ALL') AND
The table space is in advisory or informational reorg pending status) OR
((QueryType='RESTRICT' OR QueryType='ALL') AND
(ObjectType='IX' OR ObjectType='ALL')) AND
An index on the tablespace is in advisory-REBUILD-pending stats (ARBDP)))

The new formula that is planned for DSNACCOX to execute when deciding to REORG an
index is listed in Example 6-49.

Example 6-49 RTS DSNACCOX query for REORG INDEX

(((QueryType='REORG' OR QueryType='ALL') AND
(ObjectType='IX' OR ObjectType='ALL') AND
(REORGLASTTIME IS NULL AND REBUILDLASTTIME IS NULL) OR
(NACTIVE IS NULL OR NACTIVE > 5) AND
((((REORGINSERTS*100)/TOTALENTRIES>RRIInsertPct) AND
REORGINSERTS>RRIInsertAbs) OR
(((REORGDELETE*100)/TOTALENTRIES>RRIDeletePct) AND
REORGDELETE>RRIDeleteAbs) OR
(REORGAPPENDINSERT*100)/TOTALENTRIES>RRIAppendInsertPct OR
194 LOBs with DB2 for z/OS: Stronger and Faster

(REORGPSEUDODELETES*100)/TOTALENTRIES>RRIPseudoDeletePct OR
REORGMASSDELETE>RRIMassDeleteLimit OR
(REORGLEAFFAR*100)/NACTIVE>RRILeafLimit OR
REORGNUMLEVELS>RRINumLevelsLimit OR
EXTENTS>ExtentLimit)) OR
((QueryType='RESTRICT' OR QueryType='ALL') AND
(ObjectType='IX' OR ObjectType='ALL') AND
An index is in advisory-REBUILD-pending stats (ARBDP)))

Monitoring the auxiliary index
You could decide to REORG an auxiliary index when:

� LEAFFAR (Number of leaf pages located physically far away from previous leaf pages) /
NLEAF > 10%

� PSEUDO_DEL_ENTRIES (entries that are logically deleted but still physically present in
the index) / NLEAF >10%

Or use the stored procedures DSNACCOR (DB2 V7 and DB2 V8) or DSNACCOX (DB2 9) to
automatically decide when to REORG as shown in Example 6-48 on page 194 and
Example 6-49 on page 194.

When loading LOB data, the auxiliary indexes are not built during the BUILD phase. Instead,
LOB values are inserted (not loaded) into auxiliary tables during the RELOAD phase as each
row is loaded into the base table, and each index on the auxiliary table is updated as part of
the INSERT operation. Because the LOAD utility inserts keys into an auxiliary index, free
space within the index might be consumed and index page splits might occur. Consider
reorganizing an index on the auxiliary table after the LOAD completes to introduce free space
into the index for future INSERTs and LOADs.

Some additional remarks
When using the REORG utility on LOB table spaces, be aware that:

� You cannot specify the following parameters when REORGing a LOB table space: PART,
REBALANCE, SHRLEVEL CHANGE, OFFPOSLIMIT, INDREFLIMIT, UNLOAD,
STATISTICS, and SAMPLE.

� If the partition-by-growth table space contains LOB columns, the REORG TABLESPACE
utility minimizes partitions by eliminating existing holes, but does not move the data from
one partition to another.

� When you specify the UNLOAD ONLY option on the base table space, REORG unloads
only the data that physically resides in the base table space; LOB columns are not
unloaded and you do not get any warning message.

� When you specify the UNLOAD EXTERNAL option on the base table space, REORG
unloads both base columns and LOB columns, but only if the total record length does not
exceed 32 KB. Otherwise, you get an error message:

“DSNU297I - COMPOSITE RECORD SIZE TOO LARGE FOR”

6.10 RECOVER and REBUILD

The RECOVER utility recovers data to the current state or to a previous point in time by
restoring a copy and then applying log records if available.
Chapter 6. Utilities with LOBs 195

In some ways, planning for LOB recovery is similar to that for user-defined referential
integrity, because you have to remember that there is a relationship between a table with a
LOB column and the associated LOB table space. It is true that tables involved in referential
integrity relationships must be considered as part of the same table space set for recovery
purposes. Similarly, a LOB table space and its associated base table space are part of a table
space set. That set, too, is reported using REPORT table space.

For better understanding, it is important to know that each LOB has two invalid flags to mark
the LOB as invalid: One in the base table space and one in the LOB table space. The one in
the base table space (in the LOB indicator) can be set by the CHECK DATA utility, and the
one in the LOB table space (in the LOB space map pages) by RECOVER.

Recovering to a prior point in time
You can recover your LOB table space to a prior point in time, using the TOLOGPOINT,
TORBA, TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY option to recover data to a point
in time. Ideally, you should recover your base table space and related LOB table spaces
together to a common point of consistency:

� A common set of SHRLEVEL REFERENCE image copies (with the same START_RBA in
SYSIBM.SYSCOPY)

� A common QUIESCE point (with the same START_RBA in SYSIBM.SYSCOPY)

A common point of consistency is a common recoverable point of consistency when the
RECOVER utility is able to recover all objects using image copies and eventually log records.
A common point of consistency is a not a common recoverable point of consistency when the
RECOVER utility is unable to recover all objects because of missing log records.

See 6.4, “COPY” on page 177 and 6.6, “QUIESCE” on page 181 for how to create a common
point of consistency (recoverable or nonrecoverable) for the base table space and LOB table
spaces.

If you do not recover the base table space and LOB table spaces together to a common point
of consistency, the base table space is marked as auxiliary check pending (ACHKP).
Furthermore, if the LOB table space is defined as LOG NO (V7 and V8) or NOT LOGGED
(DB2 9), all LOBs with missing log records between the last image copy and the
recover-to-point are marked invalid in the LOB table space (but not in the base table space)
and the LOB table space is put in the auxiliary warning state (AUXW). Indexes are put in
rebuild pending (RBDP) or check pending state (CHKP) when the indexes are not recovered
together with their table spaces to a point in time.

You should use the CHECK LOB utility on the LOB table space to find the invalid LOBs in the
LOB table space. You can correct them using the SQL update of the LOB values or SQL
delete of the entire rows.

You should use the CHECK DATA utility on the base table space to find and invalidate LOBs
in the base table that are not synchronized with the LOB table space. You can correct them
using SQL update of the LOB values or SQL delete of the entire rows.

If the base table space is defined as NOT LOGGED (DB2 9), you can only do a point in time
recovery to a recoverable point with a RBA or a log record sequence number (LRSN)
recorded in SYSIBM.SYSCOPY (for example, the START_RBA of a full SHRLEVEL
REFERENCE image copy).
196 LOBs with DB2 for z/OS: Stronger and Faster

If you specify a TOLOGPOINT or LOGRBA, which is not recorded as a recoverable point in
SYSIBM.SYSCOPY, you get this message:

DSNU1504I DSNUCASA - RECOVERY OF NOT LOGGED TABLESPACECANNOT PROCEED
BECAUSE THE TOLOGPOINT OR TORBA SPECIFIED IS NOT A RECOVERABLE POINT.

Recovering to the current point in time
Recovering to the current point in time for a base table containing a LOB column is no
different than it was in the past. DB2 applies the appropriate image copy to the base table
space and reads the log since copy time until present, redoing all the changes. This is also
true for the LOB table space.

However, if the LOB table space is defined with LOG NO and log records must be applied to
the LOB, the LOB is marked invalid and DB2 sets the auxiliary warning state (AUXW) for that
LOB table space (The invalid flag is set in the LOB table space but not in the base table
space).

You should use the CHECK LOB utility on the LOB table space to find the invalid LOBs in the
LOB table space. You should use the CHECK DATA utility on the base table space to find
and invalidate LOBs in the base table that are not synchronized with the LOB table space.
Afterwards, you can correct them using SQL update of the LOB values or SQL delete of the
entire rows.

If the base table space is defined as NOT LOGGED (DB2 9) and you try to recover to the
current point in time, the RECOVER utility only recovers to the last recoverable point with the
RBA or LRSN recorded in SYSIBM.SYSCOPY (for example, the START_RBA of the last full
SHRLEVEL REFERENCE image copy). If changes have been made to the data after this
recoverable point, the recover utility is unable to apply them and issues this warning
message:

DSNU1505I - DSNUCATM - RECOVERY OF NOT LOGGED TABLESPACE ... WAS TO THE LAST
RECOVERABLE POINT: RBA/LRSN X'............'. THE OBJECT HAS BEEN CHANGED SINCE
THAT POINT.

And, the base table space is put in the auxiliary check pending status (ACHKP).

Recovering LOB pages on the Logical Page List
If there are logical page list (LPL) entries for a LOB table space, then the same procedure has
to take place as for regular table spaces (START DATABASE command with the
SPACENAM option). But, if the LOB table space is defined with LOG NO or NOT LOGGED
and that log data is needed, then check pending (CHKP) is turned on for that table space.
Therefore, you have to run the CHECK LOB utility to identify which LOBs are invalid.

New to V9 is that auxiliary index spaces can be put into the LPL and marked RECP or RBDP
if the base table space is not logged, and rollback and restart are required.

Use of LISTDEFs for recovery
As with the other utilities, because a non-partitioned or partitioned base table can contain
many auxiliary table space objects (one LOB table space per LOB column and per partition),
and because each table space can have one or more indexes, you should use LISTDEFs to
generate a list of all of the involved objects when trying to RECOVER to keep everything in
sync and to avoid having lots of objects in pending states such as CHKP, RECP, RBDB, and
so forth, because you did not include all of the objects involved.

For the recovery of the index, you should use RECOVER INDEX or REBUILD INDEX. Use
RECOVER INDEX when you regularly take full image copies of all your indexes. Use
Chapter 6. Utilities with LOBs 197

REBUILD INDEX if you do not have full image copies of all your indexes or when you take
them so infrequently that RECOVER INDEX would take a long time to finish when scanning
the log (Remember that DB2 does not support incremental copies of indexes). You can also
try to mix RECOVER and REBUILD index, but this can become very confusing at the end.

If you have regular full image copies of all your normal and auxiliary indexes, a typical
RECOVERY job could look as shown in Example 6-50.

Example 6-50 Recover table spaces an indexes

recovery to the current point in time:
LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
 INCLUDE INDEXSPACES TABLE ##T.NORMEN00 ALL
RECOVER LIST MYLIST PARALLEL

point in time recovery to previous RBA:
LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
 INCLUDE INDEXSPACES TABLE ##T.NORMEN00 ALL
RECOVER LIST MYLIST TORBA X'0000729D9B16' PARALLEL (non-data sharing)
or
RECOVER LIST MYLIST TOLOGPOINT X'0000729D9B16' PARALLEL (data sharing)

You cannot use the keywords TOLASTCOPY or TOLASTFULLCOPY with LISTDEF. They
must be seen as extensions of the TOCOPY data set name keyword.

If you do not have regular full image copies of all your normal and auxiliary indexes, you
should use the REBUILD INDEX command as shown in Example 6-51.

Example 6-51 Recover table spaces and rebuild indexes

recovery to the current point in time:
LISTDEF MYTSLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
LISTDEF MYIXLIST INCLUDE INDEXSPACES TABLE ##T.NORMEN00 ALL
RECOVER LIST MYTSLIST PARALLEL
REBUILD INDEX LIST MYIXLIST SORTDEVT 3390 SORTNUM 6

point in time recovery to previous RBA:
LISTDEF MYTSLIST INCLUDE TABLESPACES TABLE ##T.NORMEN00 ALL
LISTDEF MYIXLIST INCLUDE INDEXSPACES TABLE ##T.NORMEN00 ALL
RECOVER LIST MYTSLIST TORBA X'0000729D9B16' PARALLEL
REBUILD INDEX LIST MYIXLIST SORTDEVT 3390 SORTNUM 6

REBUILD INDEX SHRLEVEL CHANGE
Starting with DB2 9, you can also use the SHRLEVEL CHANGE option when REBUILDING
indexes to keep the table space data available for scanning during the rebuilding of the
indexes. This new feature is only allowed when the table spaces are defined as LOGGED,
because the logs are applied.

Also since DB2 9, as with the online REORG utility, you can now specify drain options such
as DRAIN_WAIT, RETRY, and RETRY_DELAY to have the utility retry the drain operation if it
fails (both SHRLEVEL REFERENCE and CHANGE). You can also specify MAXRO,
LONGLOG, and DELAY options with SHRLEVEL CHANGE.

Although this feature is not very useful for auxiliary indexes, because the LOB data is always
accessed through the auxiliary index, you can still specify it to use the same REBUILD INDEX
198 LOBs with DB2 for z/OS: Stronger and Faster

syntax for all the indexes (LISTDEF), provided that the LOB table space has the LOGGED
attribute.

An example is shown in Example 6-52.

Example 6-52 REBUILD SHRLEVEL CHANGE of the indexes

LISTDEF MYIXLIST INCLUDE INDEXSPACES TABLE ##T.NORMEN00 ALL
REBUILD INDEX LIST MYIXLIST
SHRLEVEL CHANGE
SORTNUM 8 SORTDEVT 3390
DRAIN_WAIT 20 RETRY 120 RETRY_DELAY 60
MAXRO 20

Use of RECOVERY for reallocating LOB table spaces
The recommended method for resizing LOB table spaces after ALTERing PRIQTY and
SECQTY values in DB2 9 is using the REORG SHRLEVEL REFERENCE utility as explained
in “REORG TABLESPACE SHRLEVEL REFERENCE” on page 186. We recommend this
because you do not have to take image copies before and because the LOB table space is
available for read during most of the operation. However in DB2 V7 and V8, you must still use
the RECOVERY utility for resizing LOB table spaces.

In practice, a LOB table space consists of many VSAM clusters, A001, A002, A003, and so
forth, when the total size is bigger than the DSSIZE. For example, a 400 GB LOB table space
with a DSSIZE of 4 GB has 100 VSAM clusters: a001 up to A100.

If for some reason, you only want to reallocate one of the VSAM data sets, for example, to
lower the number of extents or to move it to another disk, it might still be a good idea to use
RECOVER instead of REORG. If you want to reallocate one VSAM data set only, without
reorganizing internally, use RECOVER with the DSNUM clause instead of reorganizing the
whole LOB table space to save elapsed time and needed disk space. You could use a utility
command as shown in Example 6-53 for reallocating the A003 cluster. During this operation,
the whole LOB table space is unavailable.

Example 6-53 Using RECOVER to reallocate a single VSAM cluster of a LOB table space

TEMPLATE TSYSCPP1
 DSN('DB2IM.&SS..&DB..&SN..&IC.&JU(3,5)..#&PA.')
 DISP(MOD,CATLG,CATLG)
COPY TABLESPACE NORMEN00.NORMLOB DSNUM 3 COPYDDN(TSYSCPP1)
 SHRLEVEL REFERENCE FULL YES
RECOVER TABLESPACE NORMEN00.NORMLOB DSNUM 3 TOLASTCOPY
REPAIR OBJECT SET iNDEX (##T.I_NORMEN00_AUX) NORBDPEND
REPAIR OBJECT SET TABLESPACE NORMEN00.NORMEN00 NOAUXCHKP

The REPAIR statements are necessary to remove the pending states without running
additional utilities.

6.11 CHECK DATA

The CHECK DATA utility checks for consistency between a base table space and the
corresponding LOB table spaces. Run CHECK DATA after a conditional restart or a point in
time recovery where base tables and auxiliary tables might not be synchronized or when the
Chapter 6. Utilities with LOBs 199

base table space is in the auxiliary check pending state (ACHKP) or auxiliary warning state
(AUXW).

The CHECK DATA utility can only be run on a base table space, not on a LOB table space.

The CHECK DATA utility accesses the base table space and all related auxiliary indexes of
the LOB table spaces. CHECK DATA relies on information in the LOB table space and the
auxiliary indexes being correct. It might be necessary to first run CHECK LOB on the LOB
table space and CHECK INDEX and REBUILD INDEX on the auxiliary indexes to ensure the
validity of the LOB table spaces and auxiliary indexes.

CHECK DATA can be run in two modes:

� SHRLEVEL REFERENCE: Applications can read but cannot write.
� SHRLEVEL CHANGE: Applications can read and write (This is new with DB2 9).

CHECK DATA reports the following errors:

� Orphan LOBs

An orphan LOB column is a LOB entry found in the auxiliary index but not referenced by
the base table space. An orphan can result if you recover the base table space and
auxiliary index to a point in time prior to the insertion of the base table row or prior to the
definition of the LOB column. An orphan can also result if you recover the LOB table space
and auxiliary index to a point in time prior to the deletion of a base table row.

� Missing LOBs

A missing LOB column is a LOB referenced by the base table space, but the LOB entry is
not in the auxiliary index. A missing LOB can result if you recover the LOB table space and
auxiliary index to a point in time when the LOB column is not in the LOB table space. This
could be a point in time prior to the first insertion of the LOB into the base table, or when
the LOB column is null or has a zero length.

� Out-of-sync LOBs

An out-of-sync LOB error occurs when DB2 detects a LOB that is found in both the base
table and the auxiliary index, but the LOB entry in the auxiliary index is at a different
version. A LOB column is also out-of-sync if the base table LOB column is null or has a
zero length, but the LOB is found through the auxiliary index. An out-of-sync LOB can
occur anytime you recover the LOB table space and auxiliary index or the base table
space to a prior point in time.

� Invalid LOBs in the base table space

An invalid LOB is an uncorrected LOB column error found by a previous execution of
CHECK DATA AUXERROR INVALIDATE. An invalid LOB in the base table space has the
invalid flag set in the base table space.

CHECK DATA SHRLEVEL REFERENCE removes the ACHKP and AUXW status on a base
table space if no errors are found, and it sets ACHKP or AUXW status on the base table
space if there was no pending state before and errors are found. CHECK DATA SHRLEVEL
CHANGE never sets or resets the ACHKP or AUXW states.

Note: CHECK DATA does not report invalid LOBs in the LOB table space. CHECK
DATA does not invalidate LOBs in the base table space that are marked invalid in the
LOB table space. CHECK DATA only inspects the auxiliary index and does not access
the LOB table space itself. CHECK LOB must be run on the LOB table space to find
invalid LOBs in the LOB table space.
200 LOBs with DB2 for z/OS: Stronger and Faster

CHECK DATA fails if the LOB table space is in check pending (CHKP) status or recovery
pending (RECP) status or when the auxiliary index is in the rebuild pending (RBDP) status.

You can use the SCOPE AUXONLY to limit the checks for LOBs only; otherwise, the CHECK
DATA also checks the referential integrity constraints and table constraints.

With DB2 9, the CHECK DATA keywords AUXERROR and AUXONLY cover both LOB data
and XML data.

With DB2 9, as for the online REORG utility, you can specify drain options such as
DRAIN_WAIT, RETRY, and RETRY_DELAY to have the utility retry the drain operation if it
fails (both SHRLEVEL REFERENCE and CHANGE).

CHECK DATA SHRLEVEL REFERENCE
Depending on the REPORT or INVALIDATE clause specified, the following actions are
performed when using CHECK DATA SHRLEVEL REFERENCE:

� With AUXERROR REPORT

If the base table space is not yet in auxiliary check pending (ACHKP) status, DB2 drains
all SQL writers and sets the base table space and auxiliary table space in UTRO. The data
is still available for SQL readers. If errors are found, then the base table space is set to the
auxiliary check pending (ACHKP) status. The whole table, or partition, if the table space is
partitioned, is now unavailable for applications. The applications get SQLCODE - 904
resource unavailable reason code 00C900C5. If CHECK DATA encounters no errors and
the auxiliary check pending (ACHKP) status was already set, it is reset.

If CHECK DATA encounters only invalid LOB columns, the base table space is set to the
auxiliary warning status (AUXW), and the table is available for applications. Orphan LOBS
in the LOB table space do not cause the AUXW status to be set. You can use SQL to
populate invalid LOBs using update or to delete the entire row; however, any other attempt
to access the LOB column results in a -904 SQL return code.

The ACHKP pending state on the base table space can be reset by:

– “Fix” reported LOBs and rerun CHECK DATA.

– Run CHECK DATA with AUXERROR INVALIDATE to invalidate them and make them
available for SQL (table space set in AUXW).

– REPAIR SET NOAUXCHKP or START ACCESS(FORCE) of the base table space.

“Fixing” the reported LOBS can be done by using the REPAIR utility or the RECOVER
utility to recover the data to another point in time, depending on which is the most
appropriate.

� With AUXERROR INVALIDATE

If the base table space is not yet in auxiliary check pending (ACHKP) status, DB2 drains
all SQL readers and writers, sets the base table space and auxiliary table space in UTUT,
and the data is no longer available for SQL. DB2 invalidates the LOB columns that are in
error (it sets the invalid flag in the base table space for the LOB value). DB2 resets the
invalid status of LOB columns that have been corrected.

If CHECK DATA encounters no more invalid LOBs, then the table space is reset in no
pending state. If invalid LOB columns remain, CHECK DATA sets the base table space to
the auxiliary warning (AUXW) status and the table is available for applications. Orphan
LOBS in the LOB table space do not cause the AUXW status to be set. You can use SQL
to populate invalid LOBs using update or delete the entire row; however, any other
attempt to access the column results in a -904 SQL return code. But, the base table and
all other non-invalid LOBs are available for applications.
Chapter 6. Utilities with LOBs 201

The AUXW pending state on the base table space can be reset by:

– “Fix” invalid LOBs and rerun CHECK DATA.
– REPAIR SET NOAUXWARN or START ACCESS(FORCE).

“Fixing” the reported LOBS can be done by using SQL, the REPAIR utility, or the
RECOVER utility to recover the data to another point in time, depending on which is the
most appropriate.

SHRLEVEL REFERENCE AND DELETE YES
If you use exception tables for checking referential integrity or table constraint problems, the
exception table for the base table must have a similar LOB column and a LOB table space for
each LOB column. If an exception is found, DB2 moves the base table row with its LOB
column to the exception table, and moves the LOB column into the exception table's LOB
table space. If you specify DELETE YES, DB2 deletes the base table row and the LOB
column. Exception tables can only be used to remove rows with referential integrity or table
constraint errors, not for rows with “bad” LOBs.

CHECK DATA SHRLEVEL CHANGE (DB2 9)
The CHECK DATA SHRLEVEL CHANGE utility leaves the base table space available for
applications during its processing by running on a shadow copy of the base table space taken
by a flashcopy snapshot. The shadow copy is deleted at the end of the utility (UTILTERM).

Once CHECK DATA has created the shadow data sets, it drains all writers until the snapshot
is complete. All table spaces are in UTRO during that time. You can specify drain options
such as DRAIN_WAIT, RETRY, and RETRY_DELAY to have the utility retry the drain
operation if it fails. After the snapshot is complete, the table spaces are put in UTRW.

CHECK DATA SHRLEVEL CHANGE does not set nor reset any table space state. Depending
on the REPORT or INVALIDATE clause specified, the following actions are performed when
using CHECK DATA SHRLEVEL CHANGE after the snapshot:

� With AUXERROR REPORT

CHECK DATA runs on the snapshot data sets, and during its execution, the base table
space remains available for applications if it was not yet in the ACHKP status. If errors are
found, the shadow data sets are deleted, but the base table space is not set to the
auxiliary check pending (ACHKP) status at the end of the utility. The whole table stays
available for applications. If the base table space was already in ACHKP and no errors
were found anymore, the ACHKP status is not reset at the end.

� With AUXERROR INVALIDATE

CHECK DATA runs on the snapshot data sets, and during its execution, the base table
space remains available for applications if it was not yet in the ACHKP status. DB2 does
not invalidate the LOB columns that are in error in the base table space (it does not set the
invalid flag in the base table). DB2 does not reset the invalid status of LOB columns that
have been corrected in the base table space. However, CHECK DATA generates REPAIR

Note: For user-managed table spaces, it is your responsibility to create the shadow data
sets and delete them afterwards. See the DB2 Version 9.1 for z/OS Utility Guide and
Reference, SC18-9855, for how to allocate them.

Important: If your DASD hardware does not support the FlashCopy® Version 2
capabilities needed for SHRLEVEL CHANGE, DFSMSDSS uses the standard REPRO
utility to copy the shadow data sets and the utility does not fail. However, the UTRO phase,
in which SQL writers are not allowed to update the data, is significantly longer.
202 LOBs with DB2 for z/OS: Stronger and Faster

statements to a PUNCHDDN data set to invalidate the LOBs in the base table space that
you can execute later on.

If CHECK DATA does not encounter any more invalid LOBs, the base table space is not
reset in no pending state if it was in ACHKP and the table remains unavailable for
applications. If invalid LOB columns remain, CHECK DATA does not set the base table
space to the auxiliary warning (AUXW) status.

SHRLEVEL CHANGE AND DELETE YES
The CHECK DATA SHRLEVEL CHANGE does not set the base table space in check
pending (CHKP) status when referential integrity or table constraint errors are found, because
this might disrupt executing applications. Nor can it reset the CHKP status when no more
such errors exist. It does not delete rows when DELETE YES is specified but generates
REPAIR LOCATE DELETE statements to a PUNCHDDN data set.

Examples
CHECK DATA does not allow the use of LISTDEFS and the name of the base table space
must be explicitly specified. If it was automatically created, the name of the base table space
must first be retrieved from SYSIBM.SYSTABLES. Examples for SHRLEVEL REFERENCE
(V8 syntax) and SHRLEVEL CHANGE (DB2 9 syntax) are shown in Example 6-54.

Example 6-54 Examples of CHECK DATA

TEMPLATE TSORTOUT
 DSN('DB2RE.&SS..&DB..&SN..S&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
TEMPLATE TSYSUT1
 DSN('DB2RE.&SS..&DB..&SN..U&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
TEMPLATE TSYSERR
 DSN('DB2RE.&SS..&DB..&SN..E&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)

-- check data shrlevel reference
CHECK DATA TABLESPACE NORMEN00.NORMEN00
SCOPE AUXONLY
AUXERROR REPORT or INVALIDATE
SORTNUM 8 SORTDEVT 3390
WORKDDN(TSYSUT1,TSORTOUT) ERRDDN(TSYSERR)

-- check data shrlevel change
TEMPLATE TSYSPUN
 DSN('DB2RE.&SS..&DB..&SN..E&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
CHECK DATA TABLESPACE NORMEN00.NORMEN00
SHRLEVEL CHANGE
SCOPE AUXONLY
AUXERROR REPORT or INVALIDATE
SORTNUM 8 SORTDEVT 3390
WORKDDN(TSYSUT1,TSORTOUT) ERRDDN(TSYSERR)
DRAIN_WAIT 20 RETRY 120 RETRY_DELAY 60
PUNCHDDN(TSYSPUN)
Chapter 6. Utilities with LOBs 203

6.12 CHECK LOB

The CHECK LOB online utility can be run against a LOB table space to identify any structural
defects in the LOB table space and signal any invalid LOB values. Run CHECK LOB when
you suspect there might be structural defects or when the LOB table space is in the check
pending state (CHKP) or auxiliary warning state (AUXW).

The CHECK LOB utility can only be run on a LOB table space, not on a base table space.

The CHECK LOB utility only accesses the LOB table space. It does not access the base table
space or the auxiliary index.

CHECK LOB can be run in two modes:

� SHRLEVEL REFERENCE: Applications can read but cannot write.
� SHRLEVEL CHANGE: Applications can read and write (new with DB2 9).

If you plan to run CHECK DATA on a base table space containing at least one LOB column,
you might consider the following steps prior to running CHECK DATA to ensure the validity of
the LOB table spaces and auxiliary indexes. CHECK DATA relies on information in the LOB
table space and the auxiliary indexes being correct. The steps are:

1. Run CHECK LOB on the LOB table space.
2. Run CHECK INDEX on the auxiliary index.
3. Run CHECK INDEX on the base table space indexes.

If the LOB table space is in either the check pending (CHKP) status or recover pending
(RECP) status, or if the index on the auxiliary table is in rebuild pending (RBPD) status,
CHECK DATA issues an error message and fails.

CHECK LOB reports the following errors:

� Invalid LOBs

An invalid LOB is the status of a LOB as set by RECOVER when an uncorrected LOB
column error is found. CHECK LOB examines the invalid flag in the LOB table space, but
it never sets it.

� Defective LOBs

A defective LOB is a logically inconsistent LOB with a structural defect (most probably as
the result of an operational problem that left the LOB table space in an inconsistent state
or as the result of a software defect).

When the LOB table space is in CHKP status or AUXW status, and no errors are found
anymore, CHECK LOB SHRLEVEL REFERENCE resets the check pending and auxiliary
warning states. CHECK LOB SHRLEVEL CHANGE does NOT reset these pending states.

Important: If you want to run CHECK DATA when you suspect LOB errors, and you do not
want your base table space to become unavailable for applications when errors are found,
run CHECK DATA with SHRLEVEL CHANGE.

Important: CHECK LOB does not access the base table space. So, missing LOBs are not
detected during CHECK LOB.
204 LOBs with DB2 for z/OS: Stronger and Faster

When the LOB table space is in no pending state and errors are found, the CHECK LOB
SHRLEVEL REFERENCE sets the CHKP or AUXW pending states, but CHECK LOB
SHRLEVEL CHANGE does not.

CHECK LOB fails if the LOB table space is in recovery pending (RECP) status. You must first
run the RECOVER utility on the LOB table space.

Since DB2 9, as with the online REORG utility and CHECK DATA utility, you can now specify
drain options such as DRAIN_WAIT, RETRY, and RETRY_DELAY to have the utility retry the
drain operation if it fails (both SHRLEVEL REFERENCE and CHANGE).

CHECK LOB SHRLEVEL REFERENCE
The following actions are performed when using CHECK LOB SHRLEVEL REFERENCE:

� DB2 drains all SQL readers and writers and set the LOB table space in check pending
(CHKP) status, which makes it unavailable for all applications. The LOB table space is put
in UTRO status, and the applications get SQLCODE- 904 resource unavailable with
reason code 00C900A3.

� CHECK LOB issues message DSNU743I whenever it finds a LOB value that is invalid in
the LOB table space. The violation is identified by the ROWID and version number of the
LOB, a reason code for the error, and the page number where the error was found. Other
messages are issued when it detects a defective LOB.

� If CHECK LOB encounters no more invalid LOBs and no other errors, the LOB table
space is reset in no pending state. If invalid LOB columns remain, CHECK LOB sets the
LOB table space to the auxiliary warning (AUXW) status and the table is available for
applications.

� You can use SQL to populate an invalid LOB by updating or deleting the entire row;
however, any other attempt to access the column results in a -904 SQL return code
(reason code 00C900D0). But the base table and all other non-invalid LOBs are available
for applications. If CHECK LOB encountered defective LOBs, the LOB table space is left
in CHKP status and is unavailable for applications.

The AUXW or CHKP pending states on the LOB table space can be reset if you:

� “Fix” invalid LOBs and rerun CHECK LOB.
� REPAIR SET NOAUXCHKP or START ACCESS(FORCE).
� REPAIR SET NOCHECKPENDING or START ACCESS(FORCE).

“Fixing” the reported LOBS can be done by using SQL, the REPAIR utility, or the RECOVER
utility to recover the data to another point in time, depending on which is the most appropriate.

CHECK LOB SHRLEVEL CHANGE (DB2 9)
The CHECK LOB SHRLEVEL CHANGE utility leaves the LOB table space available for
applications during its processing by running on a shadow copy of the LOB table space taken
by a flashcopy snapshot. These shadow copies are deleted at the end of the utility
(UTILTERM).

Once CHECK LOB has created the shadow data set, it drains all writers until the snapshot is
complete. The LOB table space is in UTRO during that time. You can specify drain options

Note: For user-managed table spaces, it is your responsibility to create the shadow data
sets and delete them afterwards. See DB2 UDB for z/OS Version 8 Utility Guide and
Reference, SC18-7427, for how to allocate them.
Chapter 6. Utilities with LOBs 205

such as DRAIN_WAIT, RETRY, and RETRY_DELAY to have the utility retry the drain
operation if it fails. After the snapshot is complete, the LOB table space is put in UTRW.

The following actions are performed when using CHECK LOB SHRLEVEL CHANGE after the
snapshot:

� CHECK LOB runs on the snapshot data set, and during its execution, the LOB table space
remains available for applications if it was not yet in the CHKP status. CHECK LOB issues
message DSNU743I whenever it finds a LOB value with the invalid flag set in the LOB
table space. The violation is identified by the ROWID and version number of the LOB, a
reason code for the error, and the page number where the error was found.

� If you provide a SYSPUNCH data set, the CHECK LOB utility generates REPAIR DELETE
statements to delete the bad LOBs afterwards. You can also use SQL to update or delete
these LOB columns. CHECK LOB SHRLEVEL CHANGE never sets or resets CHKP or
AUXW states on the LOB table space.

Examples
CHECK LOB does not allow the use of LISTDEFS and the name of the LOB table space must
be explicitly specified. If it was automatically created, the name of the LOB table space must
first be retrieved from the DB2 catalog. It resides in the same database as the base table
space. Remember that each LOB column and each partition have their own LOB table
spaces. Examples for SHRLEVEL REFERENCE (V8 syntax) and SHRLEVEL CHANGE
(DB2 9 syntax) are shown in Example 6-55.

Example 6-55 Examples of CHECK LOB

-- check LOB shrlevel reference
CHECK LOB TABLESPACE NORMEN00.NORMLOB
SORTNUM 8 SORTDEVT 3390

-- check LOB shrlevel change
TEMPLATE TSYSPUN
 DSN('DB2RE.&SS..&DB..&SN..E&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG)
CHECK LOB TABLESPACE NORMEN00.NORMLOB
SHRLEVEL CHANGE
SORTNUM 8 SORTDEVT 3390
DRAIN_WAIT 20 RETRY 120 RETRY_DELAY 60
PUNCHDDN(TSYSPUN)

Important: If your DASD hardware does not support the FlashCopy Version 2 capabilities
needed for SHRLEVEL CHANGE, DFSMSDSS uses the standard REPRO utility to copy
the shadow data set and the utility does not fail. However, the UTRO phase, in which SQL
writers are not allowed to update the data, is significantly longer.

Important: If you want to run CHECK LOB when you suspect LOB errors and you do not
want your LOB table space to become unavailable for applications when errors are found,
run CHECK LOB with SHRLEVEL CHANGE.
206 LOBs with DB2 for z/OS: Stronger and Faster

6.13 CHECK INDEX

The CHECK INDEX online utility can be run against an auxiliary index to verify that each LOB
is represented by an index entry. Run CHECK INDEX when you suspect there might be
inconsistencies between the LOB table space and the auxiliary index. The CHECK INDEX
issues warning messages when inconsistencies are found.

The CHECK INDEX utility accesses the auxiliary index and the LOB table space. It does not
access the base table space.

CHECK INDEX can be run in two modes:

� SHRLEVEL REFERENCE: Applications can read but cannot write LOBs.
� SHRLEVEL CHANGE: Applications can read and write LOBs.

If you plan to run CHECK DATA on a base table space containing at least one LOB column,
you might consider performing the following steps prior to running CHECK DATA to ensure
the validity of the LOB table spaces and auxiliary indexes. CHECK DATA relies on information
in the LOB table space and the auxiliary indexes being correct. The steps are:

1. Run CHECK LOB on the LOB table space.
2. Run CHECK INDEX on the auxiliary index.
3. Run CHECK INDEX on the base table space indexes.

If the LOB table space is in recover pending (RECP) status, or if the auxiliary index is in
rebuild pending (RBPD) status, CHECK INDEX fails.

CHECK INDEX reports the following errors:

� Missing LOBs in the LOB table space compared to the auxiliary index
� Missing entries in the auxiliary index compared to the LOB table space

CHECK INDEX does not set pending states, nor does it correct inconsistencies.

Like with the other online utilities, you can specify drain options such as DRAIN_WAIT,
RETRY, and RETRY_DELAY to have the utility retry the drain operation if it fails (both
SHRLEVEL REFERENCE and CHANGE).

CHECK INDEX SHRLEVEL REFERENCE
The following actions are performed when using CHECK INDEX SHRLEVEL REFERENCE:

� DB2 drains all SQL writers and set the LOB table space and auxiliary index in UTRO. It
then unloads all the entries from the LOB table space and compares them with the entries
in the auxiliary index.

� Invalid entries in the LOB table space can be deleted by using REPAIR LOCATE DELETE
specifying the ROWID and VERSION of the LOB or by doing a point in time recovery of
the LOB table space to bring it in sync again with the auxiliary index. Invalid entries in the
auxiliary index can be removed by doing a REBUILD INDEX of the auxiliary index.

CHECK INDEX SHRLEVEL CHANGE (DB2 9)
This support is also provided in V8 through PQ96956.

The CHECK INDEX SHRLEVEL CHANGE utility leaves the LOB table space and auxiliary
index available for SQL writers during its processing by running on a shadow copy of the LOB
table space and auxiliary index taken by a flashcopy snapshot. These shadow copies are
deleted at the end of the utility (UTILTERM).
Chapter 6. Utilities with LOBs 207

Once CHECK INDEX has created the shadow data sets, it drains all writers until the snapshot
is complete. The LOB table space and auxiliary index are in UTRO during that time. You can
specify drain options such as DRAIN_WAIT, RETRY, and RETRY_DELAY to have the utility
retry the drain operation if it fails. After the snapshot is complete, the LOB table space is put
in UTRW.

The following actions are performed when using CHECK INDEX SHRLEVEL CHANGE after
the snapshot:

� CHECK INDEX runs on the snapshot data sets, and during its execution, the LOB table
space and auxiliary index remain available for SQL writers. It then unloads all the entries
from the LOB table space shadow data set and compares them with the entries in the
auxiliary index shadow data set.

� Invalid entries in the LOB table space can be deleted by using REPAIR LOCATE DELETE
specifying the ROWID and VERSION of the LOB or by doing a point in time recovery of
the LOB table space to bring it in sync again with the auxiliary index. Invalid entries in the
auxiliary index can be removed by doing a REBUILD INDEX.

Examples
CHECK INDEX does allow the use of a LISTDEF if you do not explicitly want to name the
auxiliary index. This is very convenient if the auxiliary index was automatically created,
because the name must be retrieved from the DB2 catalog. See Example 6-56.

Example 6-56 Example of CHECK INDEX using a LISTDEF

LISTDEF MYLIST INCLUDE INDEXSPACES TABLE ##T.NORMEN00 LOB
CHECK INDEX LIST MYLIST
SHRLEVEL REFERENCE or CHANGE
SORTNUM 8 SORTDEVT 3390
DRAIN_WAIT 20 RETRY 120 RETRY_DELAY 60

6.14 REPAIR

The REPAIR utility can be used to:

� Reset pending states on a base or LOB table space

� DUMP or DELETE LOBs from the LOB table space

� Verify and replace the contents of data areas in LOB table spaces and auxiliary indexes
(including the invalidation of LOBs by setting the invalid flag)

� Rebuild object descriptors (OBDs) for a LOB table space

We describe the first two options briefly.

Note: For user-managed table spaces, it is your responsibility to create the shadow data
sets and delete them afterwards. See DB2 Version 9.1 for z/OS Utility Guide and
Reference, SC18-9855, for how to allocate them.

Important: If your DASD hardware does not support the FlashCopy Version 2 capabilities
needed for SHRLEVEL CHANGE, DFSMSDSS uses the standard REPRO utility to copy
the shadow data sets, and the utility does not fail. However, the UTRO phase, in which
SQL writers are not allowed to update the data, is significantly longer.
208 LOBs with DB2 for z/OS: Stronger and Faster

Resetting pending states of a table space
As described before, certain pending states can be set on a base table space or LOB table
space. The REPAIR utility can be used to reset these pending states as shown in Table 6-3.

Table 6-3 Resetting pending states using REPAIR

Here, we only showed the LOB-related pending states.

LOCATE LOBs to DELETE or DUMP
Use the LOCATE statement with the ROWID and VERSION keywords to locate a LOB in a
LOB table space.

When you specify LOCATE ROWID and VERSION for a LOB table space, with the DUMP
option, the entire LOB specified is dumped in hexadecimal format. You can use the MAP and
DATA keywords to only dump LOB map pages or LOB data pages.

When you specify LOCATE ROWID and VERSION for a LOB table space, with the DELETE
option, the entire LOB specified is deleted with its index entry. All pages occupied by the LOB
are converted to free space.

One LOCATE statement is required for each unit of data to be repaired. Several LOCATE
statements can appear after each REPAIR statement.

Typically, the ROWID and VERSION values are displayed in warning or error messages
issued by the CHECK DATA or CHECK LOB utilities when reporting orphaned or out-of-sync
LOBs.

See Example 6-57 for the syntax of how to DUMP or DELETE a LOB from a LOB table space.

Example 6-57 DUMP or DELETE an entire LOB value

REPAIR OBJECT
LOCATE TABLESPACE NORMEN00.NORMLOB

ROWID X'6B8F05C204CFDE392104015C56300100000000000201'
VERSION X’0001’

DUMP or DELETE

Pending state Base table space LOB table space REPAIR command to
reset

ACHKP Yes No SET NOAUXCHKP

AUXW Yes Yes SET NOAUXWARN

CHKP (Yes) a

a. A base table space can be set in check pending state only for non-LOB related reasons.

Yes SET NOCHECKPEND

Important: The DELETE statement does not remove any reference to the deleted LOB in
the base table space.
Chapter 6. Utilities with LOBs 209

6.15 DSN1COPY and DSN1PRNT

The stand-alone utilities DSN1COPY and DSN1PRNT work on LOB table spaces just as with
other types, with the exception that, when working with LOB table spaces, the PARM field
LOB must be specified.

LOB specifies that the SYSUT1 data set is a LOB table space. You cannot specify the
SEGMENT and INLCOPY options with the LOB parameter.
210 LOBs with DB2 for z/OS: Stronger and Faster

Chapter 7. Data administration with LOBs

In this chapter, we discuss administration information related to table spaces containing
tables with LOB columns. We describe the metadata related to LOB objects as contained in
the DB2 catalog. We discuss backup and recovery scenarios as well as techniques for
altering tables where online schema changes do not apply.

The chapter is structured as follows:

� LOBs in the DB2 catalog

– Catalog definitions for LOBs
– LOBs defined in DB2 catalog
– Real Time Statistics

� Recovery strategies and considerations

– Recovery of LOGGED base table space with LOGGED LOB table space
– Recovery of LOGGED base table space with NOT LOGGED LOB table space
– Recovery of NOT LOGGED base table space with NOT LOGGED LOB table space
– LOBs and SYSTEM RECOVERY
– Conclusions of recovery of LOB data

� Altering tables with LOB columns

7

© Copyright IBM Corp. 2006. All rights reserved. 211

7.1 LOBs in the DB2 catalog

In this section, you find a description of the major columns that have been provided by DB2 to
the system catalog in order to support LOBs. This might help you navigating through the DB2
system catalog searching for LOB-related information. We also briefly describe the LOB
tables that are created within the DB2 system catalog and the support for LOB table spaces
and auxiliary indexes in the Real Time Statistics database.

7.1.1 Catalog definitions for LOBs

In this section, we discuss the most important catalog tables that contain entries related to
LOBs. As an example, we take a look at the entries for table ##T.NORMEN00, which
contains a BLOB column IMAGE. The table is used for storing scanned documents in formats
such as TIFF, GIF, BMP, PDF, and so forth. The table is created with the DDL listed in
Example 7-1. In this example, we have explicitly specified the ROWID column. We use the
DB2 9 syntax of the LOG keyword. The base table space is defined as LOGGED, the LOB
table space is defined as NOT LOGGED. All indexes are defined as COPY YES.

Example 7-1 DDL for table ##T.NORMEN00

CREATE DATABASE NORMEN00
CCSID EBCDIC ;

CREATE TABLESPACE NORMEN00 IN NORMEN00
 USING STOGROUP PAOLOSG
 PRIQTY 100
 SECQTY 28
 ERASE NO

LOGGED
GBPCACHE CHANGED
COMPRESS NO

 BUFFERPOOL BP1
 LOCKSIZE PAGE
 LOCKMAX 0
 CLOSE YES
 SEGSIZE 4
 CCSID EBCDIC
 MAXROWS 255 ;
CREATE TABLE ##T.NORMEN00
 (DOC_ID VARCHAR(30) FOR SBCS DATA NOT NULL
 ,PAGE_NUMBER SMALLINT NOT NULL
 ,IMPORTER CHAR(8) FOR SBCS DATA NOT NULL
 WITH DEFAULT USER
 ,IMPORT_TIME TIMESTAMP NOT NULL
 WITH DEFAULT
 ,FORMAT CHAR(8) FOR SBCS DATA NOT NULL
 ,ROW_ID ROWID NOT NULL
 GENERATED ALWAYS
 ,IMAGE BLOB(2097152)
 WITH DEFAULT NULL)
 IN NORMEN00.NORMEN00 ;
CREATE UNIQUE INDEX ##T.I_NORMEN00_1
 ON ##T.NORMEN00
 (DOC_ID ASC,
 PAGE_NUMBER ASC,
 FORMAT ASC)
212 LOBs with DB2 for z/OS: Stronger and Faster

 USING STOGROUP PAOLOSG
 PRIQTY 12
 SECQTY 12
 ERASE NO

GBPCACHE CHANGED
 CLUSTER
 BUFFERPOOL BP2
 CLOSE YES
 COPY YES
 PIECESIZE 2 G ;
CREATE LOB TABLESPACE NORMLOB IN NORMEN00
 USING STOGROUP PAOLOSG
 PRIQTY 20000
 SECQTY 5000
 ERASE NO
 GBPCACHE CHANGED
 NOT LOGGED
 DSSIZE 4G
 BUFFERPOOL BP1
 LOCKSIZE LOB
 LOCKMAX 0
 CLOSE YES ;
CREATE UNIQUE INDEX ##T.I_NORMEN00_AUX
 ON ##T.NORMEN00_AUX
 USING STOGROUP PAOLOSG
 PRIQTY 52
 SECQTY 20
 ERASE NO

GBPCACHE CHANGED
 BUFFERPOOL BP2
 CLOSE YES
 COPY YES
 PIECESIZE 2 G
 DEFINE YES ;

SYSIBM.SYSAUXRELS
The table SYSIBM.SYSAUXRELS contains one row per auxiliary table and shows the
relationship with the corresponding base table. When you have a partitioned base table
space, the partition number is also indicated. The columns of interest are:

� TBOWNER, authorization ID of the owner of the base table
� TBNAME, name of the base table
� COLNAME, name of the LOB column in the base table
� PARTITION, partition number when the base table space is partitioned, otherwise it is 0
� AUXTBOWNER, authorization ID of the owner of the auxiliary table
� AUXTBNAME, name of the auxiliary table
� RELCREATED, the release of DB2 that was used to create the object (new DB2 9)

Example 7-2 shows what we can find for table ##T.NORMEN00.

Example 7-2 Select from SYSIBM.SYSAUXRELS

TBOWNER TBNAME COLNAME PARTITION AUXTBOWNER AUXTBNAME RELCREATED
------- ----- ------ --------- ---------- --------- ----------
##T NORMEN00 IMAGE 0 ##T NORMEN00_AUX M
Chapter 7. Data administration with LOBs 213

The release indicator is M when the object is created in DB2 9.

SYSIBM.SYSCOLUMNS
The LOB columns defined within a base table can be found in the catalog table
SYSIBM.SYSCOLUMNS as listed in Example 7-3.

Example 7-3 Select from SYSIBM.SYSCOLUMNS

NAME TBNAME COLTYPE LENGTH LENGTH2 HIDDEN
------------ ------------ -------- ------ -------- ------
DOC_ID NORMEN00 VARCHAR 30 0 N
PAGE_NUMBER NORMEN00 SMALLINT 2 0 N
IMPORTER NORMEN00 CHAR 8 0 N
IMPORT_TIME NORMEN00 TIMESTMP 10 0 N
FORMAT NORMEN00 CHAR 8 0 N
ROW_ID NORMEN00 ROWID 17 40 N
IMAGE NORMEN00 BLOB 4 2097152 N
AUXID NORMEN00_AUX VARCHAR 17 0 N
AUXVER NORMEN00_AUX SMALLINT 2 0 N
AUXVALUE NORMEN00_AUX BLOB 4 2097152 N

The columns of interest are:

� The TBNAME specified within the SYSIBM.SYSCOLUMNS row indicates the name of the
base table, because the LOB column is logically part of the base table.

� The field COLTYPE in the table is set to indicate the data types of BLOB, CLOB, and
DBCLOB.

� The LENGTH catalog column also is set to a value of four for all LOB columns, because
four bytes of internally defined information is stored within each row of the base table for
every defined LOB.

� The LENGTH2 column is set to the actual maximum length of the LOB column.

� The HIDDEN column contains a value P (partially hidden) when the ROWID column is
implicitly generated.

The catalog table SYSIBM.SYSCOLUMNS always contains three column entries: AUXID,
AUXVER, and AUXVALUE for an auxiliary table.

SYSIBM.SYSCOLUMNS_HIST
The catalog table SYSIBM.SYSCOLUMNS_HIST contains similar rows for LOB columns as
SYSIBM.SYSCOLUMNS when RUNSTATS has been run to collect historical data.

SYSIBM.SYSLOBSTATS
The catalog table SYSIBM.SYSLOBSTATS contains one row for each LOB table space. It
holds statistics to manage the space of the LOB table space. It is populated by running
RUNSTATS on the LOB table space. The columns of interest are:

� FREESPACE, kilobytes of free space in extents with respect to high used RBA (HURBA)

� AVGSIZE, average size of a LOB in bytes

� ORGRATIO, the percent of organization of the LOB table space. A value of 100 indicates
perfect organization. A value of 1 indicates that the LOB table space is disorganized. A
value of 0 means that the LOB table space is totally disorganized.
214 LOBs with DB2 for z/OS: Stronger and Faster

After creation and the initial load of the table ##T.NORMEN00, there are no entries in
SYSIBM.SYSLOBSTATS. Only after running RUNSTATS on LOB table space
NORMEN00.NORMLOB can we find the entries shown in Example 7-4.

Example 7-4 Select from SYSIBM.SYSLOBSTATS

DBNAME NAME FREESPACE AVGSIZE ORGRATIO
-------- -------- --------- -------- --------
NORMEN00 NORMLOB 68 29920 60.81

SYSIBM.SYSLOBSTATS_HIST
The catalog table SYSIBM.SYSLOBSTATS_HIST contains similar rows as
SYSIBM.SYSLOBSTATS for LOB table spaces when RUNSTATS has been run with the
option HISTORY SPACE or HISTORY ALL to collect historical data.

SYSIBM.SYSTABLEPART
There are some more fields from SYSIBM.SYSTABLEPART, already used for regular table
spaces, that can also be used to manage your LOB table spaces:

� CARDF, the number of LOBs in the LOB table space
� SPACEF, KB of space allocated
� DSNUM, number of linear data sets for the LOB table space
� EXTENTS, number of extents of the last DSNUM of the LOB table space

The results after running RUNSTATS on all table spaces of database NORMEN00 are shown
in Example 7-5.

Example 7-5 Select from SYSIBM.SYSTABLEPART

DBNAME TSNAME CARDF SPACEF DSNUM EXTENTS
-------- -------- ---------- ---------- ----- -------
NORMEN00 NORMEN00 5.883E+03 1.584E+03 1 2
NORMEN00 NORMLOB 5.883E+03 1.915E+05 1 20

SYSIBM.SYSTABLEPART_HIST
The catalog table SYSIBM.SYSTABLEPART_HIST contains similar rows as
SYSIBM.SYSTABLEPART for LOB table spaces when RUNSTATS has been run with the
option HISTORY SPACE or HISTORY ALL to collect historical data.

SYSIBM.SYSTABLES
The rows contained in SYSIBM.SYSTABLES describe the base table and the auxiliary table
as listed in Example 7-6.

Example 7-6 Select from SYSIBM.SYSTABLES

NAME CREATOR TYPE RECLENGTH CARDF NPAGESF SPACEF
-------- ------- ---- --------- --------- --------- ---------
NORMEN00 ##T T 93 5.88E+03 1.00E+02 4.00E+02
NORMEN00 ##T X 0 5.88E+03 -1.00E+00 1.92E+05

Note: An empty LOB table space has a value of 100 after running RUNSTATS.
Chapter 7. Data administration with LOBs 215

The fields from SYSIBM.SYSTABLES used to manage your LOB table spaces are:

� NAME, the name of the base table or auxiliary table

� CREATOR, the schema of the base table or auxiliary table

� TYPE, contains T for a base table, X for an auxiliary table

� RECLENGTH is set to 0 for an auxiliary table. For a base table containing LOB columns,
it includes the actual four bytes of internally defined information that are stored within the
base table for each defined LOB column.

� CARDF, total number of rows in the base table or number of LOBs in the auxiliary table

� NPAGESF, number of pages used by the table (always -1.00E+00 for auxiliary table!)

� SPACEF, number of KB of disk storage

If some of the auxiliary objects have not been defined for a base table, this is reflected in:

� STATUS, contains 'I' if the base table definition is complete. The reason the table is
incomplete is defined in the TABLESTATUS column.

� TABLESTATUS, contains 'L' if the base table definition is incomplete, because an
auxiliary table or auxiliary index has not been defined for a LOB column.

SYSIBM.SYSTABLES_HIST
The catalog table SYSIBM.SYSTABLES_HIST contains similar rows as
SYSIBM.SYSTABLES for base tables and auxiliary tables when RUNSTATS has been run to
collect historical data.

SYSIBM.SYSTABLESPACE
The catalog table SYSIBM.SYSTABLESPACE contains one row for each LOB table space.
The columns of interest are:

� NAME, the name of the LOB table space

� DBNAME, the database containing the base table and auxiliary objects

� BPOOL, buffer pool used for the LOB table space

� LOCKRULE, locksize of the LOB table space (can be A, L, S for ANY, LOB, or
TABLESPACE)

� IMPLICIT, whether the LOB table space was created implicitly (can be N or Y)

� SPACEF, number of KB of disk storage (populated only by STOSPACE utility)

� LOCKMAX, maximum number of LOB locks per user before escalation to TABLESPACE
lock (0 means no escalation, -1 means LOCKMAX SYSTEM)

� TYPE, always O for LOB table space

� LOG, whether the changes to the LOB table space are logged:

– Y when LOB table space is defined with LOGGED (DB2 9) or LOG YES (V8)

– N when LOB table space is defined with NOT LOGGED (DB2 9) or LOG NO (V8)

– X when base table space is defined with NOT LOGGED and LOB table space is
defined with LOGGED (in this case, the changes to the LOB table space are NOT
LOGGED because of the base table space having NOT LOGGED - DB2 9 only)

Example 7-7 on page 217 shows the entries we get after running the RUNSTATS
STOSPACE utility.
216 LOBs with DB2 for z/OS: Stronger and Faster

Example 7-7 Select from SYSIBM.SYSTABLESPACE

NAME DBNAME BPOOL LOCKRULE IMPLICIT SPACEF LOCKMAX TYPE LOG
-------- -------- ----- -------- -------- --------- ------- ---- ---
NORMEN00 NORMEN00 BP1 P N 1.58E+03 0 Y
NORMLOB NORMEN00 BP1 L N 1.92E+05 0 O N

Here it is also interesting to see what happens if we let DB2 create all underlying objects
automatically by not specifying a table space for the base table. See Example 7-8 (DB2 9
only).

Example 7-8 DB2 9, automatic creation of objects

CREATE TABLE ##T.NORMEN01
 (DOC_ID VARCHAR(30) FOR SBCS DATA NOT NULL
 ,PAGE_NUMBER SMALLINT NOT NULL
 ,IMPORTER CHAR(8) FOR SBCS DATA NOT NULL
 WITH DEFAULT USER
 ,IMPORT_TIME TIMESTAMP NOT NULL
 WITH DEFAULT
 ,FORMAT CHAR(8) FOR SBCS DATA NOT NULL

,IMAGE BLOB(2097152)
 WITH DEFAULT NULL) ;

In this case, DB2 creates a base table space and LOB table space in a new database as
shown in SYSIBM.SYSTABLESPACE in Example 7-9.

Example 7-9 Select from SYSIBM.SYSTABLESPACE

NAME DBNAME BPOOL LOCKRULE IMPLICIT SPACEF LOCKMAX TYPE LOG
-------- -------- ----- -------- -------- --------- ------- ---- ---
NORMEN01 DSN00030 BP0 R Y 7.20E+02 0 G Y
L96UX60E DSN00030 BP0 A Y 1.89E+05 -1 O Y

Both base and LOB table spaces are created with default settings for buffer pool, locksize,
lockmax, and logging (and others not shown here).

7.1.2 LOBs defined in DB2 catalog
Even if you have no application using DB2 large objects in your environment, you already
have LOBs in the DB2 catalog in DBSNDB06. If you run a SELECT on
SYSIBM.SYSAUXRELS using WHERE clause AUXTBOWNER = ‘SYSIBM’, you see the
auxiliary tables listed in Example 7-10.

Example 7-10 DB2 catalog query

SELECT TBOWNER,TBNAME,COLNAME,AUXTBOWNER,AUXTBNAME,RELCREATED
FROM SYSIBM.SYSAUXRELS WHERE TBOWNER = 'SYSIBM' ;

 AUX REL
TBOWNER TBNAME COLNAME TBOWNER AUXTBNAME CREATED
------- ------------------- ------------ ------- ------------------ -------
SYSIBM SYSJARCONTENTS CLASS_SOURCE SYSIBM SYSJARCLASS_SOURCE
SYSIBM SYSJAROBJECTS JAR_DATA SYSIBM SYSJARDATA
SYSIBM SYSROUTINES TEXT SYSIBM SYSROUTINESTEXT
SYSIBM XSROBJECTS GRAMMAR SYSIBM XSROBJECTGRAMMAR M
SYSIBM XSROBJECTS PROPERTIES SYSIBM XSROBJECTPROPERTY M
Chapter 7. Data administration with LOBs 217

SYSIBM XSROBJECTCOMPONENTS COMPONENT SYSIBM XSRCOMPONENT M
SYSIBM XSROBJECTCOMPONENTS PROPERTIES SYSIBM XSRPROPERTY M

The first two tables are related to the JAVA stored procedures implementation within DB2:

� SYSIBM.SYSJARCLASS_SOURCE has a 10 MB CLOB for the contents of the class in
JAR files and is the auxiliary table for column CLASS_SOURCE of catalog table
SYSIBM.SYSJARCONTENTS.

� SYSIBM.SYSJARDATA has a 100 MB BLOB column for the contents of JAR files and is
the auxiliary table for column JAR_DATA of table SYSIBM.SYSJAROBJECTS.

SYSIBM.SYSROUTINESTEXT contains a 2 MB CLOB to contain the source text of the
CREATE statement or ALTER statement with the body for the routine and is the auxiliary table
for column TEXT of table SYSIBM.SYSROUTINES (new with DB2 9).

The SYSIBM.XSR tables are the new catalog tables to support storing XML documents in
DB2 9.

7.1.3 Real Time Statistics

In this section, we discuss the entries related to LOBs in the Real Time Statistics tables
(RTS). The RTS tables can be used to decide when a certain utility such as REORG,
RUNSTATS, or COPY should be run on the table space or index space based on certain
thresholds set by your installation. For a complete discussion about the use of RTS, we refer
to the DB2 manuals.

SYSIBM.SYSTABLESPACESTATS
The RTS table SYSIBM.SYSTABLESPACESTATS contains real-time statistics for base and
LOB table spaces. For LOB table spaces, you might be interested in columns such as:

� REORGINSERTS, the number of LOBs that have been inserted since the last REORG or
LOAD REPLACE

� REORGDELETES, the number of LOBs that have been deleted since the last REORG or
LOAD REPLACE

� REORGUPDATES, this value does not include LOB updates, because LOB updates are
really deletions followed by insertions

� REORGDISORGLOB, the number of imperfectly chunked LOBs that were inserted since
the last REORG or LOAD REPLACE (a LOB is perfectly chunked if the allocated pages
are in the minimum number of chunks)

� REORGMASSDELETE, the number of mass deletes on the base table since the last
REORG or LOAD REPLACE

� STATSINSERTS, the number of LOBs that have been inserted since the last RUNSTATS

� STATSDELETES, the number of LOBs that have been deleted since the last RUNSTATS

� STATSUPDATES, this value does not include LOB updates, because LOB updates are
really deletions followed by insertions

� STATSMASSDELETE, the number of mass deletes on the base table since the last
RUNSTATS

� TOTALROWS, the total number of LOBs in the LOB table space

Other columns, such as NACTIVE, EXTENTS, and DATASIZE can also be examined to
monitor the space statistics of the LOB table space or columns such as COPYLASTTIME and
218 LOBs with DB2 for z/OS: Stronger and Faster

COPYUPDATEDPAGES, to decide when to take a new image copy. See the DB2 Version
9.1 for z/OS SQL Reference, SC18-9854, Appendix D, for a complete description of the
columns of SYSIBM.SYSTABLESPACESTATS.

SYSIBM.SYSINDEXSPACESTATS
The RTS table SYSIBM.SYSINDEXSPACESTATS contains real-time statistics for normal
indexes and auxiliary indexes. There are no special columns dedicated to auxiliary indexes.
See the DB2 Version 9.1 for z/OS SQL Reference, SC18-9854, Appendix D for a complete
description of the columns of SYSIBM.SYSINDEXSPACESTATS.

7.2 Recovery strategies and considerations

In this section, we give some examples of recovery scenarios. We provide special attention to
the consequences of using the LOG NO (V7 and V8) or NOT LOGGED (DB2 9) parameter for
LOB table spaces and the NOT LOGGED parameter for base table spaces (DB2 9 only). We
use a newly created table ##T.NORMEN03. This table is created with the same DDL as the
table ##T.NORMEN00 defined in Example 7-1 on page 212 with NORMEN00 replaced
everywhere by NORMEN03 but with varying values for the LOGGED parameter of base and
LOB table space.

7.2.1 LOGGED base table space with LOGGED LOB table space

In the first scenario, we create both the base and LOB table space as LOGGED and LOAD
the data with the same contents as table ##T.NORMEN00 (5,883 rows). We can use
UNLOAD+RELOAD, DSNTIAUL+RELOAD, or the cross loader as demonstrated in 6.3,
“LOAD” on page 171. We then create a common recoverable point of consistency using the
COPY utility with LISTDEF and SHRLEVEL REFERENCE as shown in Example 7-11.

Example 7-11 Creating a common recoverable point of consistency using COPY

TEMPLATE TSYSCOPY
 DSN('DB2IM.&SS..&DB..&SN..&IC.&JU(3,5)..#&TI.')
 DISP(MOD,CATLG,CATLG) VOLUMES(SBOX61)
LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL
 INCLUDE INDEXSPACES TABLE ##T.NORMEN03 ALL
COPY LIST MYLIST FULL YES SHRLEVEL REFERENCE
 PARALLEL COPYDDN(TSYSCOPY)

We can verify that all objects have the same START_RBA = X'000072988DE6' by looking at
SYSIBM.SYSCOPY as shown in Example 7-12.

Example 7-12 Common START_RBA in SYSIBM.SYSCOPY

DBNAME TSNAME ICTYPE START RBA HEX DSNAME
-------- -------- ------ ------------- --
NORMEN03 NORMEN03 C 0000677E731A NORMEN03.NORMEN03
NORMEN03 NORMLOB C 0000677F173F NORMEN03.NORMLOB
NORMEN03 NORMEN03 Z 0000677FE4CA NORMEN03.NORMEN03
NORMEN03 NORMEN03 F 000072988DE6 DB2IM.DB9B.NORMEN03.NORMEN03.F06214.#220426
NORMEN03 IRNORMEN F 000072988DE6 DB2IM.DB9B.NORMEN03.IRNORMEN.F06214.#220426

Important: Before DB2 9, the RTS tables were called SYSIBM.TABLESPACESTATS and
SYSIBM.INDEXSPACESTATS. The RTS tables resided in database DSNRTSDB, which
had to be installed and activated optionally. Starting with DB2 9, the RTS tables are part of
the DB2 catalog in a new table space DSNDB06.SYSRTSTS, and RTS is always enabled.
Chapter 7. Data administration with LOBs 219

NORMEN03 NORMLOB F 000072988DE6 DB2IM.DB9B.NORMEN03.NORMLOB.F06214.#220426
NORMEN03 IRNO1OS7 F 000072988DE6 DB2IM.DB9B.NORMEN03.IRNO1OS7.F06214.#220426

Afterwards, we delete some LOBs using SPUFI as shown in Example 7-13 to create some
log activity.

Example 7-13 SPUFI delete

DELETE FROM ##T.NORMEN03 WHERE DOC_ID LIKE '%E%' ;
---------+---------+---------+---------+---------+---------+-----
DSNE615I NUMBER OF ROWS AFFECTED IS 6
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+-----
---------+---------+---------+---------+---------+---------+-----
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+-----
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1
DSNE621I NUMBER OF INPUT RECORDS READ IS 1
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 14

We then stopped and started all spaces of database NORMEN03 and deleted the VSAM
clusters using ISPF 3.4 as shown in Example 7-14:

Example 7-14 Delete VSAM clusters

delete DB9BU.DSNDBC.NORMEN03.IRNORMEN.I0001.A001 *VSAM*
= DB9BU.DSNDBC.NORMEN03.IRNO1OS7.I0001.A001 *VSAM*
= DB9BU.DSNDBC.NORMEN03.NORMEN03.I0001.A001 *VSAM*
= DB9BU.DSNDBC.NORMEN03.NORMLOB.I0001.A001 *VSAM*
 DB9BU.DSNDBD.NORMEN03.IRNORMEN.I0001.A001 SBOX49
 DB9BU.DSNDBD.NORMEN03.IRNO1OS7.I0001.A001 SBOX49
 DB9BU.DSNDBD.NORMEN03.NORMEN03.I0001.A001 SBOX49
 DB9BU.DSNDBD.NORMEN03.NORMLOB.I0001.A001 SBOX49

Then, we try to recover the VSAMs back to the current point in time as shown in
Example 7-15.

Example 7-15 RECOVER to current point in time

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL
 INCLUDE INDEXSPACES TABLE ##T.NORMEN03 ALL
RECOVER LIST MYLIST PARALLEL

The result of the RECOVER is shown in Example 7-16.

Example 7-16 RECOVER to current point in time

DSNU000I 214 18:34:30.94 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RECOV.NORMEN03
DSNU1044I 214 18:34:31.00 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 214 18:34:31.01 DSNUGUTC - LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL INCLUDE
INDEXSPACES TABLE ##T.NORMEN03 ALL
DSNU1035I 214 18:34:31.01 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 214 18:34:31.01 DSNUGUTC - RECOVER LIST MYLIST PARALLEL
DSNU1033I 214 18:34:31.02 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMEN03
DSNU1033I 214 18:34:31.02 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMLOB
DSNU1033I 214 18:34:31.02 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNORMEN
DSNU1033I 214 18:34:31.02 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNO1OS7
DSNU427I 214 18:34:31.04 DSNUCBMT - OBJECTS WILL BE PROCESSED IN PARALLEL,
 NUMBER OF OBJECTS = 4
220 LOBs with DB2 for z/OS: Stronger and Faster

DSNU532I 214 18:34:31.04 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNORMEN START
DSNU515I 214 18:34:31.04 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNORMEN.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNORMEN
DSNU532I 214 18:34:31.48 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNO1OS7 START
DSNU515I 214 18:34:31.48 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNO1OS7.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
 IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNO1OS7
DSNU504I 214 18:34:31.62 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNORMEN -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=43
 ELAPSED TIME=00:00:00
DSNU532I 214 18:34:31.78 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMEN03 START
DSNU515I 214 18:34:31.78 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMEN03.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMEN03
DSNU504I 214 18:34:31.98 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNO1OS7 -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=65
 ELAPSED TIME=00:00:00
DSNU532I 214 18:34:32.17 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMLOB START
DSNU515I 214 18:34:32.17 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMLOB.F06214.#220426 WITH
DATE=20060802 AND TIME=180440
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMLOB
DSNU504I 214 18:34:32.36 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMEN03 -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=102
 ELAPSED TIME=00:00:00
DSNU504I 214 18:34:58.85 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMLOB -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=46308
 ELAPSED TIME=00:00:26
DSNU513I -DB9B 214 18:34:58.88 DSNUCALA - RECOVER UTILITY LOG APPLY RANGE IS RBA 00007299C000 LRSN 00007299C000 TO
 RBA 00007299DF72 LRSN 00007299DF72
DSNU1510I 214 18:34:58.90 DSNUCBLA - LOG APPLY PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU500I 214 18:34:59.03 DSNUCBDR - RECOVERY COMPLETE, ELAPSED TIME=00:00:28
DSNU010I 214 18:34:59.04 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

As a result, all of the objects have been recovered and the data is in perfect shape again (no
pending states) as shown in the output of the -DISPLAY DATABASE(NORMEN03)
SPACENAM(*) command in Example 7-17.

Example 7-17 Display database command

DSNT360I -DB9B ***********************************
DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB9B ***********************************
DSNT362I -DB9B DATABASE = NORMEN03 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB9B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
NORMEN03 TS RW
NORMLOB LS RW
IRNO1OS7 IX RW
IRNORMEN IX RW
******* DISPLAY OF DATABASE NORMEN03 ENDED **********************
DSN9022I -DB9B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

Chapter 7. Data administration with LOBs 221

We can now establish a quiesce point using the commands shown in Example 7-18 to
create a new common recoverable point of consistency.

Example 7-18 Creating a common recoverable point of consistency using QUIESCE

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL
QUIESCE LIST MYLIST WRITE YES

We then delete again some LOBs as shown in Example 7-19. In the QUIESCE job, we get the
message:

DSNU474I -DB9B 214 19:00:38.24 DSNUQUIA - QUIESCE AT RBA 0000729D9B16 AND AT
LRSN 0000729D9B16

Example 7-19 SPUFI delete

DELETE FROM ##T.NORMEN03 WHERE DOC_ID LIKE '%D%' ;
---------+---------+---------+---------+---------+---------+------
DSNE615I NUMBER OF ROWS AFFECTED IS 8
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+------
---------+---------+---------+---------+---------+---------+------
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

Because both the base table space and LOB table space are created with LOGGED, we have
now established two common recoverable points of consistency (one with COPY at LOGRBA
= X'000072988DE6'and one with QUIESCE at LOGRBA = X'0000729D9B16') to which we
can do a point in time recovery using statements as shown in Example 7-20.

Example 7-20 Point in time recovery to a common recoverable point of consistency

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL
 INCLUDE INDEXSPACES TABLE ##T.NORMEN03 ALL
RECOVER LIST MYLIST TORBA X'000072988DE6' PARALLEL

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL
 INCLUDE INDEXSPACES TABLE ##T.NORMEN03 ALL
RECOVER LIST MYLIST TORBA X'0000729D9B16' PARALLEL

An example job output is shown in Example 7-21.

Example 7-21 Point in time recovery to a recoverable quiesce point

DSNU000I 214 19:40:30.12 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RECOV.NORMEN03
DSNU1044I 214 19:40:30.18 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 214 19:40:30.18 DSNUGUTC - LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL INCLUDE
INDEXSPACES TABLE ##T.NORMEN03 ALL
DSNU1035I 214 19:40:30.19 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 214 19:40:30.19 DSNUGUTC - RECOVER LIST MYLIST TORBA X'0000729D9B16' PARALLEL
DSNU1033I 214 19:40:30.19 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMEN03
DSNU1033I 214 19:40:30.19 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMLOB
DSNU1033I 214 19:40:30.19 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNORMEN
DSNU1033I 214 19:40:30.19 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNO1OS7
DSNU427I 214 19:40:30.21 DSNUCBMT - OBJECTS WILL BE PROCESSED IN PARALLEL,
 NUMBER OF OBJECTS = 4
DSNU532I 214 19:40:30.21 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNORMEN START
DSNU515I 214 19:40:30.21 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNORMEN.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNORMEN
222 LOBs with DB2 for z/OS: Stronger and Faster

DSNU532I 214 19:40:30.81 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNO1OS7 START
DSNU515I 214 19:40:30.81 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNO1OS7.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
 IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNO1OS7
DSNU504I 214 19:40:30.97 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNORMEN -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=43
 ELAPSED TIME=00:00:00
DSNU532I 214 19:40:31.37 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMEN03 START
DSNU515I 214 19:40:31.37 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMEN03.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMEN03
DSNU504I 214 19:40:31.55 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNO1OS7 -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=65
 ELAPSED TIME=00:00:00
DSNU532I 214 19:40:31.92 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMLOB START
DSNU515I 214 19:40:31.92 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMLOB.F06214.#220426 WITH
DATE=20060802 AND TIME=180440
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMLOB
DSNU504I 214 19:40:32.13 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMEN03 -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=102
 ELAPSED TIME=00:00:00
DSNU504I 214 19:40:58.89 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMLOB -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=46308
 ELAPSED TIME=00:00:26
DSNU513I -DB9B 214 19:40:58.93 DSNUCALA - RECOVER UTILITY LOG APPLY RANGE IS RBA 00007299C000 LRSN 00007299C000 TO
 RBA 00007299DF72 LRSN 00007299DF72
DSNU1510I 214 19:40:59.02 DSNUCBLA - LOG APPLY PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU535I -DB9B 214 19:40:59.03 DSNUCATM - FOLLOWING TABLESPACES RECOVERED TO A CONSISTENT POINT
NORMEN03.NORMLOB
DSNU599I -DB9B 214 19:40:59.03 DSNUCATM - INDEXSPACE NORMEN03.IRNORMEN HAS BEEN RECOVERED TO A CONSISTENT
 POINT IN TIME WITH TABLESPACE NORMEN03.NORMEN03
DSNU599I -DB9B 214 19:40:59.03 DSNUCATM - INDEXSPACE NORMEN03.IRNO1OS7 HAS BEEN RECOVERED TO A CONSISTENT
 POINT IN TIME WITH TABLESPACE NORMEN03.NORMLOB
DSNU500I 214 19:40:59.15 DSNUCBDR - RECOVERY COMPLETE, ELAPSED TIME=00:00:28
DSNU010I 214 19:40:59.16 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

We get message DSNU599I, and no objects are put in a pending state. This is the ideal
situation, because no additional CHECK utilities must be run.

In the next step, we try to recover to an in-between log point, which is not a common
recoverable point of consistency, specifying TORBA X'00007299D000' in the RECOVER job.
This is an RBA in the middle of the delete statement from Example 7-13 on page 220. Here
we can see the effect of the new DB2 9 “RECOVER point time with consistency” feature,
where DB2 detects that the RBA is in the middle of an active UR and backs out all of the
updates of this active UR so that the data is at least consistent from the transaction point of
view after the RECOVER.

During the new LOGSCR phase, DB2 reads the log forward from the last checkpoint prior to
the recovery point and identifies the URs that were both active (INFLIGHT, INABORT,
INDOUBT, or POSTPONED ABORT) during the recovery point and also changed the objects
being recovered. During the new LOGUNDO phase, the RECOVER utility backs out the
changes made on the recovered objects by the active URs. No objects are put in a pending
state. See the new messages DSNU1550I up to DSNU1557I in the job output in
Example 7-22 on page 224.

Tip: The easiest point in time RECOVERY of LOB data is to recover all objects together to
a recoverable point of consistency.
Chapter 7. Data administration with LOBs 223

Example 7-22 Point in time recovery with consistency in DB2 9

DSNU000I 215 12:59:28.26 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RECOV.NORMEN03
DSNU1044I 215 12:59:28.32 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 215 12:59:28.33 DSNUGUTC - LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL INCLUDE
INDEXSPACES TABLE ##T.NORMEN03 ALL
DSNU1035I 215 12:59:28.33 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 215 12:59:28.33 DSNUGUTC - RECOVER LIST MYLIST TORBA X'00007299D000' PARALLEL
DSNU1033I 215 12:59:28.34 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMEN03
DSNU1033I 215 12:59:28.34 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMLOB
DSNU1033I 215 12:59:28.34 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNORMEN
DSNU1033I 215 12:59:28.34 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNO1OS7
DSNU427I 215 12:59:28.35 DSNUCBMT - OBJECTS WILL BE PROCESSED IN PARALLEL,
 NUMBER OF OBJECTS = 4

DSNU532I 215 12:59:28.35 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNORMEN START
DSNU515I 215 12:59:28.35 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNORMEN.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
 IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNORMEN
DSNU532I 215 12:59:28.94 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNO1OS7 START
DSNU515I 215 12:59:28.94 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNO1OS7.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
 IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNO1OS7
DSNU504I 215 12:59:29.11 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNORMEN -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=43
 ELAPSED TIME=00:00:00
DSNU532I 215 12:59:29.33 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMEN03 START
DSNU515I 215 12:59:29.33 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMEN03.F06214.#220426 WITH
DATE=20060802 AND TIME=180427
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMEN03
DSNU504I 215 12:59:29.53 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNO1OS7 -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=65
 ELAPSED TIME=00:00:00
DSNU532I 215 12:59:29.87 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMLOB START
DSNU515I 215 12:59:29.87 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMLOB.F06214.#220426 WITH
DATE=20060802 AND TIME=180440
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMLOB
DSNU504I 215 12:59:30.09 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMEN03 -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=102
 ELAPSED TIME=00:00:00
DSNU504I 215 12:59:56.84 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMLOB -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=46308
 ELAPSED TIME=00:00:26
DSNU513I -DB9B 215 12:59:56.88 DSNUCALA - RECOVER UTILITY LOG APPLY RANGE IS RBA 00007299C000 LRSN 00007299C000 TO
 RBA 00007299D000 LRSN 00007299D000
DSNU1510I 215 12:59:57.17 DSNUCBLA - LOG APPLY PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU1550I -DB9B 215 12:59:57.17 DSNUCALC - LOGCSR IS STARTED FOR MEMBER , PRIOR CHECKPOINT RBA =
X'000072439CFE'
DSNU1551I -DB9B 215 12:59:57.24 DSNUCALC - LOGCSR IS FINISHED FOR MEMBER , ELAPSED TIME = 00:00:00
DSNU1552I -DB9B 215 12:59:57.24 DSNUCALC - LOGCSR PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU1553I -DB9B 215 12:59:57.24 DSNUCALC - RECOVER DETECTS THE FOLLOWING ACTIVE URS:
 INFLIGHT = 1, INABORT = 0, INDOUBT = 0, POSTPONED ABORT = 0
 MEM T CONNID CORRID AUTHID PLAN S URID DATE TIME

B TSO PAOLOR2 PAOLOR2 DSNESPCS F 00007299C4BC 2006-08-02 22.16.02
 DBNAME SPACENAME DBID/PSID PART RBA
 NORMEN03 NORMLOB 014D/0007 0000 00007299CD90
 NORMEN03 IRNORMEN 014D/0005 0000 00007299C57B
 NORMEN03 NORMEN03 014D/0002 0000 00007299C9A1
DSNU1554I -DB9B 215 12:59:57.52 DSNUCALU - LOGUNDO IS STARTED FOR MEMBER
DSNU1556I -DB9B 215 12:59:57.55 DSNUCALU - LOGUNDO IS FINISHED FOR MEMBER , ELAPSED TIME = 00:00:00
DSNU1557I -DB9B 215 12:59:57.55 DSNUCALU - LOGUNDO PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU535I -DB9B 215 12:59:57.56 DSNUCATM - FOLLOWING TABLESPACES RECOVERED TO A CONSISTENT POINT
 NORMEN03.NORMEN03
224 LOBs with DB2 for z/OS: Stronger and Faster

 NORMEN03.NORMLOB
DSNU599I -DB9B 215 12:59:57.56 DSNUCATM - INDEXSPACE NORMEN03.IRNORMEN HAS BEEN RECOVERED TO A CONSISTENT
 POINT IN TIME WITH TABLESPACE NORMEN03.NORMEN03
DSNU599I -DB9B 215 12:59:57.56 DSNUCATM - INDEXSPACE NORMEN03.IRNO1OS7 HAS BEEN RECOVERED TO A CONSISTENT
 POINT IN TIME WITH TABLESPACE NORMEN03.NORMLOB
DSNU500I 215 12:59:57.67 DSNUCBDR - RECOVERY COMPLETE, ELAPSED TIME=00:00:29
DSNU010I 215 12:59:57.68 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

After this RECOVERY, the LOB table space contains 5,883 LOBs, which proves that the
delete statement has been backed out and is in its initial state after the LOAD utility.

In the next step, we first redo the deletes as in Example 7-13 on page 220 and Example 7-19
on page 222 as shown in Example 7-23. As expected, 14 rows are now deleted.

Example 7-23 SPUFI delete

DELETE FROM ##T.NORMEN03 WHERE DOC_ID LIKE '%D%'
 OR DOC_ID LIKE '%E%' ;
---------+---------+---------+---------+---------+---------+---
DSNE615I NUMBER OF ROWS AFFECTED IS 14
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---
---------+---------+---------+---------+---------+---------+---
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

We now do a point in time recovery of the base table only to the initial state as shown in
Example 7-24, which results in 14 missing LOBs in the LOB table space. This is a situation
which often occurs in client sites when the DBA wants to back out the changes of an invalid
transaction on the base data but forgets about the LOB table space.

Example 7-24 Point in time recovery of base table only

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 BASE
 INCLUDE INDEXSPACES TABLE ##T.NORMEN03 BASE
RECOVER LIST MYLIST TORBA X'000072988DE6' PARALLEL

As a result of the point in time recovery, the base table space is put in auxiliary check pending
(ACHKP) status as shown in Example 7-25. The base table is unavailable for applications
(resource unavailable with reason code 00C900C5).

Example 7-25 Base table space in ACHKP

DSNT360I -DB9B ***********************************
 DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * GLOBAL
 DSNT360I -DB9B ***********************************
 DSNT362I -DB9B DATABASE = NORMEN03 STATUS = RW
 DBD LENGTH = 4028
 DSNT397I -DB9B
 NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
 -------- ---- ----- ----------------- -------- -------- -------- -----
 NORMEN03 TS RW,ACHKP
 NORMLOB LS RW
 IRNO1OS7 IX RW
 IRNORMEN IX RW
 ******* DISPLAY OF DATABASE NORMEN03 ENDED **********************
 DSN9022I -DB9B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION
Chapter 7. Data administration with LOBs 225

To find the bad LOBs, we must now run a CHECK DATA. It makes little sense to run CHECK
LOB on the LOB table space here because the LOB table space is not in a pending state, and
missing LOBs are not found by the CHECK LOB utility. We first run CHECK DATA with the
AUXERROR REPORT as shown in Example 7-26 just to report the bad LOBs. Because the
table space is already in ACHKP, we use SHRLEVEL REFERENCE because the table space
is already unavailable for applications.

Example 7-26 CHECK DATA SHRLEVEL REFERENCE AUXERROR REPORT

TEMPLATE TSORTOUT
 DSN('DB2RE.&SS..&DB..&SN..S&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
TEMPLATE TSYSUT1
 DSN('DB2RE.&SS..&DB..&SN..U&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
TEMPLATE TSYSERR
 DSN('DB2RE.&SS..&DB..&SN..E&JU(3,5)..#&TI.')
 DISP(MOD,DELETE,CATLG)
CHECK DATA TABLESPACE NORMEN03.NORMEN03
SHRLEVEL REFERENCE
SCOPE AUXONLY
AUXERROR REPORT
SORTNUM 8 SORTDEVT 3390
WORKDDN(TSYSUT1,TSORTOUT) ERRDDN(TSYSERR)

As a result, we get 14 missing LOBs as indicated by message DSNU809I as shown in
Example 7-27. The base table space remains in ACHKP and is still unavailable for
applications.

Example 7-27 Result of CHECK DATA AUXERROR REPORT

...........
DSNU809I 216 14:35:32.93 DSNUKERK - TABLE=##T.NORMEN03 COLUMN=IMAGE IS MISSING IN INDEX ##T.I_NORMEN03_AUX
 ROWID=X'6B8F05C204CFDE392104015C56300100000000000201'
 VERSION=X'0001'
DSNU809I 216 14:35:32.93 DSNUKERK - TABLE=##T.NORMEN03 COLUMN=IMAGE IS MISSING IN INDEX ##T.I_NORMEN03_AUX
 ROWID=X'A9DB85C204CFD7052104015C56300100000000000202'
 VERSION=X'0001'
..............

We can also do a REPAIR OBJECT SET TABLESPACE NORMEN03.NORMEN03
NOAUXCHKP to remove the ACHKP state on the base table to make it available immediately
for the applications, and run a CHECK DATA SHRLEVEL CHANGE afterwards (DB2 9 only)
as shown in Example 7-28.

Example 7-28 CHECK DATA SHRLEVEL CHANGE AUXERROR REPORT

............
CHECK DATA TABLESPACE NORMEN03.NORMEN03
SHRLEVEL CHANGE
SCOPE AUXONLY
AUXERROR REPORT
SORTNUM 8 SORTDEVT 3390
WORKDDN(TSYSUT1,TSORTOUT) ERRDDN(TSYSERR)
DRAIN_WAIT 20 RETRY 120 RETRY_DELAY 60
226 LOBs with DB2 for z/OS: Stronger and Faster

PUNCHDDN(TSYSPUN)

The CHECK DATA is now run on a snapshot copy of the base table space without disturbing
the applications. The same 14 LOB errors are reported, and the base table space is set in
ACHKP at the end of the utility.

To make the table space available for applications when in ACHKP status, run CHECK DATA
with AUXERROR INVALIDATE and with SHRLEVEL REFERENCE or CHANGE (DB2 9). As
a result, the base table space is set in the auxiliary warning state (AUXW), which makes the
data available again for the applications. The 14 bad LOBS are invalidated in the base table
space as shown in Example 7-29.

Example 7-29 CHECK DATA AUXERROR INVALIDATE

...............
DSNU806I -DB9B 219 12:43:04.95 DSNUKRDN - TABLE=##T.NORMEN03 COLUMN=IMAGE WAS SET INVALID
 ROWID=X'2D1165C204CFD30A2104015C5630010000000000020A'
 VERSION=X'0001'
DSNU806I -DB9B 219 12:43:04.95 DSNUKRDN - TABLE=##T.NORMEN03 COLUMN=IMAGE WAS SET INVALID
 ROWID=X'50C8D45204CFD00D2104015C56300100000000005105'
 VERSION=X'0001'
DSNU816I -DB9B 219 12:43:05.81 DSNUGSRX - TABLESPACE NORMEN03.NORMEN03 IS IN AUX WARNING STATE
DSNU749I 219 12:43:05.81 DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:29
DSNU010I 219 12:43:05.89 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

We can now manually populate the missing LOBs using SQL update statements. However, in
this test case, because no applications have touched the table spaces since the base table
has been point in time recovered, we can also do a point in time recovery of the LOB table
space to the same RBA as the base table space as shown in Example 7-30.

Example 7-30 Point in time recovery of the LOB table space

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 LOB
 INCLUDE INDEXSPACES TABLE ##T.NORMEN03 LOB
RECOVER LIST MYLIST TORBA X'000072988DE6' PARALLEL

As a result, base and LOB table space are in sync again. However, the base table space is
now set in the ACHKP and AUXW states as shown in Example 7-31.

Example 7-31 State of the table spaces afterwards

DSNT360I -DB9B ***********************************
 DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * GLOBAL
 DSNT360I -DB9B ***********************************
 DSNT362I -DB9B DATABASE = NORMEN03 STATUS = RW
 DBD LENGTH = 4028
 DSNT397I -DB9B
 NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
 -------- ---- ----- ----------------- -------- -------- -------- -----
 NORMEN03 TS RW,ACHKP,AUXW
 NORMLOB LS RW
 IRNO1OS7 IX RW
 IRNORMEN IX RW,ICOPY
 ******* DISPLAY OF DATABASE NORMEN03 ENDED **********************
 DSN9022I -DB9B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION
Chapter 7. Data administration with LOBs 227

The only thing left now to remove the pending states is run CHECK DATA again with
AUXERROR REPORT and SHRLEVEL REFERENCE. Because no more inconsistencies are
found, the pending states are reset as shown in Example 7-32.

Example 7-32 State of the table spaces after CHECK DATA

DSNT360I -DB9B ***********************************
DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB9B ***********************************
DSNT362I -DB9B DATABASE = NORMEN03 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB9B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
NORMEN03 TS RW
NORMLOB LS RW
IRNO1OS7 IX RW
IRNORMEN IX RW,ICOPY
******* DISPLAY OF DATABASE NORMEN03 ENDED **********************
DSN9022I -DB9B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

This is a good time to create a new common recoverable point of consistency with the same
job as in Example 7-11 on page 219. The common START_RBA in SYSIBM.SYSCOPY is
now x’0000877165D0‘.

We now demonstrate the use of the REPAIR utility to delete orphan rows in the LOB table
space. We first delete again six rows as shown in Example 7-33.

Example 7-33 SPUFI delete

---------+---------+---------+---------+---------+---------+-----
DELETE FROM ##T.NORMEN03 WHERE DOC_ID LIKE '%E%' ;
---------+---------+---------+---------+---------+---------+-----
DSNE615I NUMBER OF ROWS AFFECTED IS 6
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+-----
---------+---------+---------+---------+---------+---------+-----
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+-----
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1
DSNE621I NUMBER OF INPUT RECORDS READ IS 1
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 14

We then perform a point in time recovery of the LOB table space to our most recent
consistency point as shown in Example 7-34 on page 229.
228 LOBs with DB2 for z/OS: Stronger and Faster

Example 7-34 Point in time recovery of LOB table space only

LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 LOB
 INCLUDE INDEXSPACES TABLE ##T.NORMEN03 LOB
RECOVER LIST MYLIST TORBA X'0000877165D0' PARALLEL

As a result, the base table space NORMEN03.NORMEN03 is again put in the ACHKP
restrictive pending state making it unavailable for applications. The LOB table space now
contains six orphan LOBs. We can identify these orphans by running CHECK DATA as in
Example 7-35, which resets the ACHKP pending state. Because the base table does not
contain invalid LOBs, it is not set in the AUXW status and is available again for the
applications.

Example 7-35 CHECK DATA AUXERROR INVALIDATE SHRLEVEL REFERENCE

.....
CHECK DATA TABLESPACE NORMEN03.NORMEN03
SCOPE AUXONLY
AUXERROR INVALIDATE
SORTNUM 8 SORTDEVT 3390
WORKDDN(TSYSUT1,TSORTOUT) ERRDDN(TSYSERR)

The CHECK data gives us the ROWID and VERSION of the orphan LOBs as shown in
Example 7-36.

Example 7-36 Identification and Invalidation of orphan LOBs

...........................
DSNU730I 221 14:55:23.80 DSNUKDST - CHECKING TABLE ##T.NORMEN03
DSNU042I 221 14:55:24.41 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=5877
 ELAPSED TIME=00:00:00
DSNU042I 221 14:55:25.08 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=6
 ELAPSED TIME=00:00:00
DSNU813I 221 14:55:25.08 DSNUKERK - LOB IN TABLE SPACE NORMEN03.NORMLOB WITH
 ROWID=X'05A455C204CFD1062104015C5630'
 AND VERSION=X'0001' HAS NO BASE TABLE ROW
DSNU813I 221 14:55:25.08 DSNUKERK - LOB IN TABLE SPACE NORMEN03.NORMLOB WITH
 ROWID=X'2D1165C204CFD30A2104015C5630'
 AND VERSION=X'0001' HAS NO BASE TABLE ROW
DSNU813I 221 14:55:25.08 DSNUKERK - LOB IN TABLE SPACE NORMEN03.NORMLOB WITH
 ROWID=X'3E8FB7D204CFDA0F2104015C5630'
 AND VERSION=X'0001' HAS NO BASE TABLE ROW
DSNU813I 221 14:55:25.08 DSNUKERK - LOB IN TABLE SPACE NORMEN03.NORMLOB WITH
 ROWID=X'50C8D45204CFD00D2104015C5630'
 AND VERSION=X'0001' HAS NO BASE TABLE ROW
DSNU813I 221 14:55:25.08 DSNUKERK - LOB IN TABLE SPACE NORMEN03.NORMLOB WITH
 ROWID=X'6B8F05C204CFDE392104015C5630'
 AND VERSION=X'0001' HAS NO BASE TABLE ROW
DSNU813I 221 14:55:25.08 DSNUKERK - LOB IN TABLE SPACE NORMEN03.NORMLOB WITH
 ROWID=X'9B4177D204CFD50B2104015C5630'
 AND VERSION=X'0001' HAS NO BASE TABLE ROW
DSNU739I 221 14:55:25.08 DSNUKDAT - CHECK TABLE ##T.NORMEN03 COMPLETE, ELAPSED TIME=00:00:00
DSNU749I 221 14:55:25.10 DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:01
DSNU010I 221 14:55:25.18 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

We can now use the REPAIR utility to delete the six orphan rows as shown in Example 7-37
on page 230 followed by the same CHECK DATA as in Example 7-35 to check if the orphan
LOBs are gone.
Chapter 7. Data administration with LOBs 229

Example 7-37 Use of REPAIR to delete orphan LOBs

REPAIR OBJECT
 LOCATE TABLESPACE NORMEN03.NORMLOB
 ROWID X'05A455C204CFD1062104015C5630' VERSION X'0001' DELETE
 REPAIR OBJECT
 LOCATE TABLESPACE NORMEN03.NORMLOB
 ROWID X'2D1165C204CFD30A2104015C5630' VERSION X'0001' DELETE
 REPAIR OBJECT
 LOCATE TABLESPACE NORMEN03.NORMLOB
 ROWID X'3E8FB7D204CFDA0F2104015C5630' VERSION X'0001' DELETE
 REPAIR OBJECT
 LOCATE TABLESPACE NORMEN03.NORMLOB
 ROWID X'50C8D45204CFD00D2104015C5630' VERSION X'0001' DELETE
 REPAIR OBJECT
 LOCATE TABLESPACE NORMEN03.NORMLOB
 ROWID X'6B8F05C204CFDE392104015C5630' VERSION X'0001' DELETE
 REPAIR OBJECT

LOCATE TABLESPACE NORMEN03.NORMLOB
 ROWID X'9B4177D204CFD50B2104015C5630' VERSION X'0001' DELETE

The REPAIR deletes the six orphan LOBs, and the base table space and the LOB table
space are in sync again.

7.2.2 LOGGED base table space with NOT LOGGED LOB table space

In the second scenario, we create the base table space as LOGGED and the LOB table
space as NOT LOGGED. We then redo the following steps as in the first scenario:

1. LOAD the data.

2. Create a common recoverable point of consistency using the COPY utility with LISTDEF
and SHRLEVEL REFERENCE as shown in Example 7-11 on page 219. In
SYSIBM.SYSCOPY, we now get a common START_RBA = X'00008927CDE6’.

3. Delete six LOBs using SPUFI as shown in Example 7-13 on page 220 to create some
update activity. As a result, the LOB table space is put in the informational copy (ICOPY)
status, because the changes to the LOB table spaces have not been logged.

4. Stop and start all spaces of database NORMEN03 and delete the VSAM clusters using
ISPF 3.4 as shown in Example 7-14 on page 220.

5. Recover the VSAM clusters back to the current point with the same statements as shown
in Example 7-15 on page 220. Because of the logged system pages, the recovery of the
LOB table space succeeds without problems. DB2 is able to delete the six LOBS again
from the full image copy of the LOB table space, even when the LOB table space is
created as NOT LOGGED.

6. We then reinsert the six rows with SPUFI as shown in Example 7-38.

Example 7-38 SPUFI Insert

INSERT INTO ##T.NORMEN03 (DOC_ID,PAGE_NUMBER,FORMAT,IMAGE)
SELECT DOC_ID,PAGE_NUMBER,FORMAT,IMAGE FROM ##T.NORMEN00
 WHERE DOC_ID LIKE '%E%' ;
---------+---------+---------+---------+---------+---------+-
DSNE615I NUMBER OF ROWS AFFECTED IS 6
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+-
230 LOBs with DB2 for z/OS: Stronger and Faster

---------+---------+---------+---------+---------+---------+-
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

7. Now it is interesting to see what happens if we stop, start, and delete all VSAM clusters
again and try to recover them back to the current point with the same statements as in
Example 7-15 on page 220. Because the inserts of the LOBs were not logged, the LOB
table space is put in AUXW and the six LOBs are invalidated in the LOB table space by the
RECOVER utility as shown in Example 7-39.

Example 7-39 LOB table space in AUXW

DSNT360I -DB9B ***********************************
DSNT361I -DB9B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB9B ***********************************
DSNT362I -DB9B DATABASE = NORMEN03 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB9B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
NORMEN03 TS RW
NORMLOB LS RW,ICOPY,AUXW
IRNO1BNY IX RW
IRNORMEN IX RW
******* DISPLAY OF DATABASE NORMEN03 ENDED **********************
DSN9022I -DB9B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

The invalid LOBS can be shown by running a CHECK LOB utility on the LOB table space. The
job output is shown in Example 7-40.

Example 7-40 CHECK LOB output

.......
DSNU743I 222 17:03:36.39 DSNUKLBD - LOB IS INVALID.
 ROWID X'00E0C2EC03CFD4062104015C5630' VERSION X'0001'
DSNU743I 222 17:03:36.40 DSNUKLBD - LOB IS INVALID.
 ROWID X'554542EC03CFD1372104015C5630' VERSION X'0001'
DSNU743I 222 17:03:36.41 DSNUKLBD - LOB IS INVALID.
 ROWID X'94EF82EC03CFD5092104015C5630' VERSION X'0001'
DSNU743I 222 17:03:36.41 DSNUKLBD - LOB IS INVALID.
 ROWID X'D3FD82EC03CFD4272104015C5630' VERSION X'0001'
DSNU743I 222 17:03:36.41 DSNUKLBD - LOB IS INVALID.
 ROWID X'D578C2EC03CFD4222104015C5630' VERSION X'0001'
DSNU743I 222 17:03:36.41 DSNUKLBD - LOB IS INVALID.
 ROWID X'F20AC2EC03CFD41F2104015C5630' VERSION X'0001'
DSNU796I 222 17:03:36.42 DSNUKLBD - REPRTLOB PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU568I -DB9B 222 17:03:36.62 DSNUGSRX - TABLESPACE NORMEN03.NORMLOB IS IN INFORMATIONAL COPY PENDING STATE
DSNU816I -DB9B 222 17:03:36.62 DSNUGSRX - TABLESPACE NORMEN03.NORMLOB IS IN AUX WARNING STATE
DSNU010I 222 17:03:36.63 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

These LOBs can now be populated using SQL update. CHECK DATA on the base table
space does not report or invalidate these LOBs in the base table space. We now use SPUFI
to update these invalid LOBs as shown in Example 7-41 on page 232.
Chapter 7. Data administration with LOBs 231

Example 7-41 SPUFI update invalid LOB

UPDATE ##T.NORMEN03
 SET IMAGE = BLOB('INVALID LOB')
 WHERE DOC_ID LIKE '%E%' ;
---------+---------+---------+---------+---------+---------+
DSNE615I NUMBER OF ROWS AFFECTED IS 6
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+
---------+---------+---------+---------+---------+---------+
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

Afterwards, CHECK LOB SHRLEVEL REFERENCE does not find invalid LOBs anymore and
the AUXW pending status on the LOB table space is reset.

More complicated scenarios could involve point in time recovery, but here the same
techniques apply as in the first scenario. The basic principles remain:

� LOBs with missing log records between the used image copy and the recovery point are
marked invalid by RECOVERY and the LOB table space is put in the auxiliary warning
state (AUXW). CHECK LOB is needed to identify the invalid LOBs, and SQL can be used
to populate them again using update or by deleting the entire row.

� If you do not recover the base table space and LOB table spaces together to a common
point of consistency, the base table space is marked as auxiliary check pending
(ACHKP). CHECK DATA is needed to identify and invalidate the LOBs, which are no
longer synchronized between the base and LOB table space, and SQL can be used to
populate them again using update or by deleting the entire row.

7.2.3 NOT LOGGED base table space with NOT LOGGED LOB table space

In the third scenario, we create both the base table space as NOT LOGGED and the LOB
table space as NOT LOGGED. We then redo the following steps:

1. LOAD the data.

2. Create a common recoverable point of consistency using the COPY utility with LISTDEF
and SHRLEVEL REFERENCE as shown in Example 7-11 on page 219. In
SYSIBM.SYSCOPY, we now get a common START_RBA = X'0002BB16C862’.

3. Delete six LOBs using SPUFI as shown in Example 7-13 on page 220 to create some
update activity. As a result, both the base table space and the LOB table space and all
underlying indexes are put in the informational copy (ICOPY) status, because no changes
have been logged at all.

4. Stop and start all spaces of database NORMEN03 and delete the VSAM clusters using
ISPF 3.4 as shown in Example 7-14 on page 220.

5. Recover the VSAM clusters back to the current point with the same statements as shown
in Example 7-15 on page 220. The job output is shown in Example 7-42.

Example 7-42 RECOVER of NOT LOGGED objects

DSNU000I 223 18:37:16.58 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RECOV.NORMEN03
DSNU1044I 223 18:37:16.64 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 223 18:37:16.65 DSNUGUTC - LISTDEF MYLIST INCLUDE TABLESPACES TABLE ##T.NORMEN03 ALL INCLUDE
INDEXSPACES TABLE ##T.NORMEN03 ALL
DSNU1035I 223 18:37:16.65 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 223 18:37:16.65 DSNUGUTC - RECOVER LIST MYLIST PARALLEL
DSNU1033I 223 18:37:16.67 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMEN03
232 LOBs with DB2 for z/OS: Stronger and Faster

DSNU1033I 223 18:37:16.67 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE NORMEN03.NORMLOB
DSNU1033I 223 18:37:16.67 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNORMEN
DSNU1033I 223 18:37:16.67 DSNUGULM - PROCESSING LIST ITEM: INDEXSPACE NORMEN03.IRNO1RLT
DSNU427I 223 18:37:16.68 DSNUCBMT - OBJECTS WILL BE PROCESSED IN PARALLEL,
 NUMBER OF OBJECTS = 4
DSNU532I 223 18:37:16.68 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNORMEN START
DSNU515I 223 18:37:16.68 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNORMEN.F06223.#222751 WITH
DATE=20060811 AND TIME=182751
 IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNORMEN
DSNU532I 223 18:37:17.18 DSNUCBMT - RECOVER INDEXSPACE NORMEN03.IRNO1RLT START
DSNU515I 223 18:37:17.18 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.IRNO1RLT.F06223.#222751 WITH
DATE=20060811 AND TIME=182751
 IS PARTICIPATING IN RECOVERY OF INDEXSPACE NORMEN03.IRNO1RLT
DSNU504I 223 18:37:17.28 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNORMEN -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=43
 ELAPSED TIME=00:00:00
DSNU532I 223 18:37:17.62 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMEN03 START
DSNU515I 223 18:37:17.62 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMEN03.F06223.#222751 WITH
DATE=20060811 AND TIME=182751
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMEN03
DSNU504I 223 18:37:17.72 DSNUCBRT - MERGE STATISTICS FOR INDEXSPACE NORMEN03.IRNO1RLT -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=63
 ELAPSED TIME=00:00:00
DSNU532I 223 18:37:18.07 DSNUCBMT - RECOVER TABLESPACE NORMEN03.NORMLOB START
DSNU515I 223 18:37:18.07 DSNUCBAL - THE IMAGE COPY DATA SET DB2IM.DB9B.NORMEN03.NORMLOB.F06223.#222751 WITH
DATE=20060811 AND TIME=182756
 IS PARTICIPATING IN RECOVERY OF TABLESPACE NORMEN03.NORMLOB
DSNU504I 223 18:37:18.17 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMEN03 -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=102
 ELAPSED TIME=00:00:00
DSNU504I 223 18:37:24.06 DSNUCBRT - MERGE STATISTICS FOR TABLESPACE NORMEN03.NORMLOB -
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=46308
 ELAPSED TIME=00:00:05
DSNU513I -DB9B 223 18:37:24.10 DSNUCALA - RECOVER UTILITY LOG APPLY RANGE IS RBA 0002BBB98311 LRSN 0002BBB98311 TO
 RBA 0002BBB98DC5 LRSN 0002BBB98DC5
DSNU1510I 223 18:37:24.11 DSNUCBLA - LOG APPLY PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU1505I -DB9B 223 18:37:24.12 DSNUCATM - RECOVERY OF NOT LOGGED INDEXSPACE NORMEN03.IRNORMEN WAS TO
 THE LAST RECOVERABLE POINT: RBA/LRSN X'0002BB16C862'.
 THE OBJECT HAS BEEN CHANGED SINCE THAT POINT
DSNU815I -DB9B 223 18:37:24.18 DSNUGSRX - TABLE SPACE NORMEN03.NORMEN03 IS IN AUX CHECK PENDING STATE
DSNU568I -DB9B 223 18:37:24.18 DSNUGSRX - TABLESPACE NORMEN03.NORMLOB IS IN INFORMATIONAL COPY PENDING STATE
DSNU500I 223 18:37:24.18 DSNUCBDR - RECOVERY COMPLETE, ELAPSED TIME=00:00:07
DSNU010I 223 18:37:24.19 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

DB2 is only able to recover the data to the last recoverable point 0002BB16C862 and issues
message DSN1505I. No effort is made to recover the lost data and the base table space is
put in the ACHKP status, making it unavailable for applications. We can now run CHECK
DATA SHRLEVEL REFERENCE as in Example 7-26 on page 226 to remove the pending
state and be sure that the LOB data is in good shape again. We are back now in the initial
position with the six deleted LOBS being back in the data.

7.2.4 LOBs and SYSTEM RECOVERY

The online BACKUP SYSTEM utility invokes z/OS DFSMShsm™ (Version 1 Release 7 or
above) to copy the volumes on which the DB2 data and log information resides for either a
DB2 subsystem or data sharing group. You can use BACKUP SYSTEM to copy all data for a
single application (for example, when DB2 is the database server for a resource planning
solution). All data sets that you want to copy must be SMS-managed data sets. You can
subsequently run the RESTORE SYSTEM utility to recover the data.
Chapter 7. Data administration with LOBs 233

The RESTORE SYSTEM utility invokes z/OS DFSMShsm (Version 1 Release 5 or above) to
recover a DB2 subsystem or a data sharing group to a previous point in time. To perform the
recovery, the utility uses data that is copied by the BACKUP SYSTEM utility. All data sets that
you want to recover must be SMS-managed data sets. You must use the change log inventory
utility DSNJU003 to record the log point to which you want to recover the system:

� CRESTART CREATE,SYSPITR=log-truncation-point: Specifies the log RBA (non-data
sharing system) or the log LRSN (data sharing system) that represents the log truncation
point for the point in time for system recovery.

� CRESTART CREATE,SYSPITRT=log-truncation-timestamp: Specifies the timestamp
value that represents the point in time log truncation point for system recovery.
Log-truncation-timestamp specifies a timestamp value that is to be used as the log
truncation point. A valid log truncation point is any GMT timestamp for which there exists a
log record with a timestamp that is greater than or equal to the specified timestamp value.
Any log information in the bootstrap data set, the active logs, and the archive logs with a
timestamp greater than SYSPITRT is discarded. If you omit SYSPITRT, DB2 determined
the end of the log range. The SYSPITRT keyword is new in DB2 9.

The RESTORE SYSTEM utility uses the most recent system-level backup of the database
copy pool that DB2 took prior to the SYSPITR or SYSPITRTlog truncation point.

Complete the following steps prior to running RESTORE SYSTEM:

1. Stop DB2.

2. Run DSNJU003 (Change Log Inventory) with the CRESTART SYSPITR or SYSPITRT
option. For SYSPITR or SYSPITRT, specify the log truncation point that corresponds to
the previous point in time to which the system is to be recovered.

3. Start DB2. When the restart that is specified by CRESTART SYSPITR or SYSPITRT
completes, DB2 enters system RECOVER-pending and access maintenance mode.
During system RECOVER-pending mode, you can run only the RESTORE SYSTEM
utility.

4. Ensure that the ICF catalog volumes for DB2 data are not active. The ICF catalog for the
data must be on a separate volume that the ICF catalog for the logs.

There are no other special considerations when your DB2 data contains LOB table spaces in
regard to the BACKUP SYSTEM and RESTORE SYSTEM utilities.

7.2.5 Conclusions on recovery of LOB data

Planning for LOB recovery is similar to planning for user-defined referential integrity, because
you have to remember that there is a relationship between a table with a LOB column and
the associated LOB table space. It is true that tables involved in referential integrity
relationships must be considered as part of the same table space set for recovery purposes.
Similarly, a base table space and related LOB table spaces are part of a table space set.

Recovery of LOB data is quite complex and can involve:

� RECOVER table space and index and REBUILD INDEX utilities
� CHECK LOB, CHECK DATA, and CHECK INDEX utilities

Important: If RESTORE SYSTEM determines that a NOT LOGGED base table space or
NOT LOGGED LOB table space was updated after the point at which the system level
copy was taken, the table space is marked RECOVER-pending. Use the RECOVER utility
and/or the REBUILD INDEX utility afterwards to recover all objects in RECOVER-pending
(RECP) or REBUILD-pending (RBDP) status.
234 LOBs with DB2 for z/OS: Stronger and Faster

� REPAIR utility
� SQL update and delete of LOB columns

To be prepared for recovery to the current point in time:

� Take image copies of all base and LOB table spaces using LISTDEFs.
� Eventually take image copies of the underlying indexes.
� Use LOGGED or LOG YES if possible to avoid missing log records when recovering.

To be prepared for point in time recovery:

� Take image copies of all base and LOB table spaces using LISTDEFs.

� Take quiesce point for all base and LOB table spaces using LISTDEFs to establish
meaningful recovery points from the application point of view.

� Use LOGGED or LOG YES if possible to avoid missing log records when recovering.

To make your life easy when doing point in time recovery:

� Create common recoverable points of consistency by taking full image copies with
SHRLEVEL REFERENCE and using LISTDEFs to include all objects.

� Create common recoverable quiesce points.

� Always recover all your objects together to a common recoverable consistency point.

� All this avoids the use of CHECK DATA, CHECK LOB, REPAIR, and so forth.

If LOGGED or LOG YES is not acceptable:

� Take image copies of all base and LOB table spaces using LISTDEFs before and after
updating the LOB data.

� Keep new LOB data, that is not yet included in a full image copy, aside to be able to correct
LOBs using SQL update when needed.

Take only image copies with SHRLEVEL CHANGE when you have no windows available for
taking image copies with SHRLEVEL REFERENCE. Image copies with SHRLEVEL
CHANGE do not create common recoverable points of consistency. As a consequence
during point in time recovery, the base table space can be set in the auxiliary check pending
(ACHKP) state, which makes it unavailable for applications as explained before.

7.3 Altering tables containing LOB columns

Prior to the introduction of the full UNLOAD and LOAD support for LOBs introduced by APAR
PK22910 for DB2 V7 and V8, changing a table with LOB columns required a drop and
recreate of the table:

� Dropping the base table requires a recreate of the auxiliary tables and indexes as well.

� How to UNLOAD and LOAD the LOB data if LOB columns > 32 KB?

– DB2 UNLOAD/LOAD was not applicable.
– No or limited support for LOBs in most commercial tools.
– Write your own unload and load programs with static or dynamic SQL.
– Copy to another DB2 table.

The same was true for a change of the base or LOB table spaces that required a drop and
recreate of the table space.
Chapter 7. Data administration with LOBs 235

So there are several ways to perform this task:

� Write your own program.

This requires a DB2 user or administrator to write a custom program for unloading and
loading LOBs. The programs would usually read the LOB columns of the tables and write
them to flat files. When the change is completed, the program inserts these LOB values
back into the tables. You could speed up the process by altering the LOB table spaces to
LOG NO and LOCKSIZE TABLESPACE to consume less of your system resources.
Afterwards, a recoverable point of consistency should be taken in the form of an Image
Copy.

This process has some disadvantages, because you have to code your programs and set
up the recoverable step. This also had a tremendous impact on logs, because massive
LOB writes were recorded in them, and you could prevent it only by changing LOG
attributes and again by setting up proper controls. And of course, the data was
inaccessible for a long period of time during this maintenance.

� Use shadow tables.

The recommended way was creating a shadow set of the objects, identical to the original
ones. Use DSN1COPY with OBIDXLAT to copy the original objects into the shadow ones.
Recreate the original table with new definitions and then use SQL INSERT INTO
original-table SELECT FROM shadow-table... to copy the data from the shadow table
back into the original one. In the end of the process, a recoverable point of consistency
could be taken in the form of a DB2 COPY.

You could speed up the process by altering the LOB table spaces to LOG NO and
LOCKSIZE TABLESPACE to consume less of your system resources. Also be careful not
to copy the ROWID values when the ROWID in the target table is defined as
GENERATED ALWAYS.

This process is usually faster than the one described before. And of course, there was a
great impact in the log I/O, so this process should have been made during the quiet hours
of the system. A great improvement to this method was using DB2 cross loader to load the
data back into the original changed table. For more information about cross loader, refer
to 6.3, “LOAD” on page 171.

� Today clients using DB2 V7 and DB2 V8 are encouraged to use the UNLOAD and LOAD
utilities to perform these changes that disrupt their business, because the new
maintenance allows UNLOAD and LOAD LOB to deal with values larger than 32 KB
together with the other columns of the base table. For more information, refer to the
following sections:

– 6.1, “UNLOAD” on page 160
– 6.2, “DSNTIAUL” on page 169
– 6.3, “LOAD” on page 171
236 LOBs with DB2 for z/OS: Stronger and Faster

Chapter 8. Performance with LOBs

In this chapter, we summarize general performance considerations, provide information
about trace fields for LOBs, and mention preliminary performance measurements.

We discuss the following:

� LOB materialization
� Virtual storage management for LOBs
� Buffer pools and group buffer pools
� Logging with LOBs
� Accessing LOBs
� Comparing SQL accounting profiles
� Important I/O aspects
� IFCID enhancements for LOBs
� DRDA LOB flow optimization performance
� LOB recommendations for performance

8

© Copyright IBM Corp. 2006. All rights reserved. 237

8.1 LOB materialization

It is essential to underline at this stage that buffer pools are part of a standard mechanism for
DB2 to move data from disks to applications. All of the data that is read or written passes
through buffer pools. Thus, when materialization of LOBs is discussed, we talk about the
storage that LOB manager allocates in storage areas that are different from buffer pools.
Since data spaces are no longer used for LOB materialization starting with DB2 V8, the
materialization area is now allocated in the DBM1 address space above the 2 GB bar.

LOB materialization is the function DB2 uses to place the whole LOB value into contiguous
storage in virtual storage. Materialization happens also on disk when the LOB is written into
table space, but we are especially interested in the cases where the LOB materializes in
DBM1 address space above the 2 GB bar or the user (allied) address space.

In several cases, you cannot avoid the materialization of LOBs in storage. Examples of when
the materialization is necessary are:

� A LOB needs to be converted from one CCSID to another.

� A LOB is an argument of a user-defined function.

� A LOB is moved into or out of a stored procedure.

� A LOB host variable is assigned to a LOB locator host variable (you are bringing the whole
LOB into your application local storage).

� A FETCH CONTINUE statement is used.

With or without the use of a locator, retrieving a LOB value always implies the passage of all
LOB pages through the buffer pool associated with the LOB table space. Then, if a LOB
needs to be materialized in storage, all the pages of the LOB value are placed in the
designated area above the 2 GB bar.

The amount of storage used in the DBM1 address space above the 2 GB bar for LOB
materialization depends upon a number of factors. They include the size of the LOB, the
number of LOBs in a statement that needs to be materialized, and the use of cursors to hold
the position in an application. Figure 8-1 on page 239 provides an overview of the
materialization process.
238 LOBs with DB2 for z/OS: Stronger and Faster

Figure 8-1 DB2 materialization overview illustration

8.1.1 The different cases of materialization

In order to give you a better picture of LOB materialization and when it occurs, we describe
different scenarios.

In general, you can UPDATE, INSERT, DELETE, or SELECT a LOB value. DB2 9 introduces
new and exciting ways of manipulating LOBs with LOB file reference variables. The FETCH
CONTINUE clause is introduced by DB2 9 to make the programmer’s life easier and the code
less complicated.

With versions prior to DB2 9, there are several good reasons for using LOCATORs when
processing LOB values. A LOCATOR is recommended if you care about storage allocation
within your users’ address spaces, overall performance, and useful handling of your LOB
data.

The V9 LOB file reference variables are very helpful when all you need to do is transfer data
between DB2 and a file that is external to DB2.

Materialization within your DB2 DBM1 virtual storage depends on the way the LOB value is
accessed.

SELECT
We assume we have three applications that select a LOB for further processing. This could
be printing a LOB that contains a book or storing it into a non-DB2 data set. Let us say we
have application A using a LOCATOR, application B using neither a LOCATOR nor file
reference variables, but rather a host variable, and application C using LOB file reference

Stored
Procedure

Address Space

User
Address Space

DB2 DDF
Address Space

Disk environment

DB2 DBM1 Address
Space

Virtual Pool

 B
uf

fe
r M

an
ag

er

 L
O

B
 M

an
ag

er

 D
at

a
M

an
ag

er

Materialized LOBs

2G bar

DB2 DBM1 Address
Space
Chapter 8. Performance with LOBs 239

variables. From the point of view of DB2 LOB materialization, application A, application B,
and application C do not materialize the LOB in DB2 virtual storage when they only select a
LOB value. See Figure 8-2.

Figure 8-2 LOB Materialization In user address space in case of data retrieval

Application A uses a locator and might just use the space it needs for the chunks of data
pointed to through the defined locator. Application B might require the complete LOB data.
Therefore, the private user address space might require, based on the size of the LOB, a
huge amount of storage. Application C uses LOB file reference variables, eliminating any
need to allocate any kind of variable for storing chunks of the LOB in its local address space.

If you have applications in a distributed environment selecting LOB values through the
network, they involve the DB2 DDF address space. You can minimize the server’s storage
consumption by utilizing the DRDA flow optimization functionality. See 4.3, “DRDA LOB flow
optimization” on page 79.

If you use stored procedures, the selected LOB data is not materialized within a DBM1
address space. Stored procedures use LOCATORs and move the data in small chunks from
disk through the stored procedure address space.

INSERT
Assume a scenario where your application A and application B INSERT into your LOB table
space. From the point of view of materialization, the picture is different. Now there are space
allocations in virtual storage involved. The materialization in DB2 virtual storage occurs if you
are using LOCATORs, and it probably does not occur if you use other techniques. However,
not using LOCATORs, like in application B, causes you to require more storage in your
private user address space, and depending on the size of your LOB, this could consume a
large amount of storage. See Figure 8-3 on page 241.

 User
Address Space

B

 User
Address Space

A

 User
Address Space

C

Disk environment

DB2 DBM1 Address
Space

Virtual Pool

 B
uf

fe
r M

an
ag

er

 L
O

B
 M

an
ag

er

 D
at

a
M

an
ag

er

2G bar

DB2 DBM1 Address
Space
240 LOBs with DB2 for z/OS: Stronger and Faster

Figure 8-3 LOB materialization with INSERT

If LOB file reference variables are used, as in application C, the materialization is avoided. On
the other hand, if an application INSERTs LOB values using the network (this implicates the
use of the DB2 DDF address space), or it uses a stored procedure, or it uses some kind of
conversion (for example from one CCSID to another), LOB materialization occurs in the
DBM1 address space.

8.1.2 Materialization avoidance techniques

We recommend the following techniques to avoid LOB materialization when programming
your applications.

LOB file reference variables
A LOB file reference variable manages the movement of LOBs from the database server to
an application-specified data set or from an application-specified data set to the database
server without going through the memory of the application. The other advantage that the file
reference variable gives is that it bypasses the host language limitation on the maximum size
allowed for dynamic storage to contain a LOB. So, you can INSERT a LOB from a file into a
DB2 table or SELECT a LOB from a DB2 table to put into a file without having to acquire any

 User
Address Space

A

 User
Address Space

B

Disk environment

DB2 DBM1 Address
Space

Virtual Pool

 B
uf

fe
r M

an
ag

er

 L
O

B
 M

an
ag

er

 D
at

a
M

an
ag

er

Materialized LOBs

2G bar

DB2 DBM1 Address
Space
Chapter 8. Performance with LOBs 241

application storage. LOB file reference variables bypass host language limitations on the
maximum allowed size for LOB values located in working storage as well. This technique is
recommended when no manipulation on the LOB has to be performed. See 2.1, “Introduction
to LOB data types” on page 10 and 4.2, “LOB locators” on page 73 for syntax examples and
explanations.

LOB locators
When the whole LOB is not needed in the program, you can use locators to operate on the
LOBs. Explanation about locators and the programming techniques is at 2.3, “LOB locators”
on page 16 and 4.2, “LOB locators” on page 73.

8.2 Virtual storage management for LOBs

Since the hardware and the operation system have evolved to 64-bit real and virtual
addressability, the need for data spaces and hyperspaces has disappeared. All the space
needed to materialize and operate LOBs in DB2 is allocated above the 2 GB bar, first in buffer
pools and then possibly in variable storage.

The amount of storage used for LOB materialization depends on a number of factors
including:

� The size of the LOBs
� The number of LOBs in a statement that needs to be materialized

Field QXSTLOBV in statistics or accounting traces for IFCID 0002 or IFCID 0003 contains the
maximum amount of storage used for LOB materialization.

You can monitor the memory consumption above the bar by running the statistics report of
IBM Tivoli® Omegamon XE for DB2 Performance Expert as shown on Example 8-1. Space
allocated by LOBs is counted under VARIABLE STORAGE.

Example 8-1 Omegamon XE for DB2 Performance Expert output

DBM1 STORAGE ABOVE 2 GB QUANTITY
-- ------------------
FIXED STORAGE (MB) 0.01
GETMAINED STORAGE (MB) 79.00
 COMPRESSION DICTIONARY (MB) 0.00
 CACHED DYNAMIC SQL STATEMENTS (MAX) (MB) 14.46
 DBD CACHE (MAX) (MB) 14.46
VARIABLE STORAGE (MB) 50.05
VIRTUAL BUFFER POOLS (MB) 179.69
VIRTUAL POOL CONTROL BLOCKS (MB) 0.07
CASTOUT BUFFERS (MB) 0.00

Note: When partial continuous retrieval of a LOB is required, you can use FETCH
CONTINUE instead of locators. It does not prevent LOBs from materializing. The data still
needs to be materialized in the server, but this new DB2 9 functionality enables writing
applications in a less complicated way. The technique is used to “stream” the data into the
application. After the original FETCH is performed and there is more of the LOB to retrieve,
it uses as many subsequent FETCH CONTINUE statements as necessary to finish
retrieving the data, using the same buffer area. This assumes that the data in the buffer is
processed after each FETCH or FETCH CONTINUE operation. The function is explained
in 4.6.2, “Using FETCH CONTINUE” on page 113.
242 LOBs with DB2 for z/OS: Stronger and Faster

STAR JOIN MEMORY POOL (MB) 0.00

8.2.1 DB2 subsystem parameters for LOBs

DB2 allocates storage as needed. LOB Manager keeps track of the amount used and
manages the space within the DBM1 address space above the 2 GB bar. You can set the
virtual storage limits in DSNZPARM by specifying the LOBVALA and LOBVALS parameters in
the installation panel DSNTIP7 as shown on Figure 8-4.

Figure 8-4 DSNTIPD installation panel

Both DSNZPARMs can be changed without stopping DB2. For details, refer to -SET
SYSPARM in the DB2 UDB for z/OS Version 8 Command Reference, SC18-7416, or DB2
Version 9.1 for z/OS Installation Guide, GC18-9846.

Table 8-1 LOB linked subsystem parameters

The value LOBVALA establishes an upper limit for the amount of variable storage that each
user can have for storing LOB values. The specified value indicates the numbers of kilobytes.

Note: In DB2 9, the parameter definitions for LOBVALA and LOBVALS system parameters
have moved from installation panel DSNTIP7 to DSNTIPD.

DSNTIPD INSTALL DB2 - SIZES
===>

Check numbers and reenter to change:

1 DATABASES ===> 200 In this subsystem
2 TABLES ===> 20 Per database (average)
3 COLUMNS ===> 10 Per table (average)
4 VIEWS ===> 3 Per table (average)
5 TABLE SPACES ===> 20 Per database (average)
6 PLANS ===> 200 In this subsystem
7 PLAN STATEMENTS ===> 30 SQL statements per plan (average)
8 PACKAGES ===> 300 In this subsystem
9 PACKAGE STATEMENTS ===> 10 SQL statements per package (average)
10 PACKAGE LISTS ===> 2 Package lists per plan (average)
11 EXECUTED STMTS ===> 15 SQL statements executed (average)
12 TABLES IN STMT ===> 2 Tables per SQL statement (average)

13 USER LOB VALUE STG ===> 10240 Max KB storage per user for LOB values
14 SYSTEM LOB VAL STG ===> 2048 Max MB storage per system for LOB values
15 MAXIMUM LE TOKENS ===> 20 Maximum tokens at any time. 0-50

PRESS: ENTER to continue RETURN to exit HELP for more information
. . .

Parameter Macro Panel Values range Default

LOBVALA DSN6SYSP DSNTIPD 1 - 2,097,152 KB 10,240 KB

LOBVALS DSN6SYSP DSNTIPD 1 - 51,200 MB 2,048 MB
Chapter 8. Performance with LOBs 243

The value LOBVALS establishes an upper limit for the amount of variable storage per system
that can be used for storing LOB values. The specified value indicates the numbers of
megabytes.

Because these definitions can have an impact on your DB2 subsystem (for example, if you
exceed the virtual storage backed up by real storage, the DB2 subsystem abends) and
operating system, specifically on paging and auxiliary storage, and these definitions depend
on how heavy the use of LOBs is within your DB2 subsystem, the values of these settings
represent a safeguard for your other workload. Set these values after consulting with your
z/OS system programmer.

If you run into a resource unavailable situation (SQLCODE -904) with virtual storage
allocations (resource 00000907), the reason codes you can expect are 00C900Dx (x = 1, 2,
and 3). The reason codes mean respectively:

� User limit exceeded

� System limit exceeded

� Out of space condition in the virtual storage above the bar (this one would be hard to
reach!)

8.3 Buffer pools and group buffer pools

This section gives you an overview of buffer pool and group buffer pool considerations for
when you are using large LOBs in your production or non-production environments.

8.3.1 Virtual buffer pools

Independently of how you have planned to use LOBs in your shop, you want to put LOB data
in separate buffer pools, in order not to interfere with data used by online transactions or
other work. If the LOBs have their own buffer pools, you have the capability of setting different
thresholds than with your other buffer pools, without affecting other work. The main
parameters you want to set uniquely for buffer pools containing LOBs are VPSEQT, DWQT,
and VDWQT.

Also, minimizing the buffer pool-wide deferred write threshold (DWQT) almost to 0 forces
DB2 to asynchronously write buffers sooner out of the buffer pool. At the data set level, DB2
has the vertical deferred write threshold (VDWQT). It is expressed as a percentage of the
virtual pool size for a single data set. This value should always be less than DWQT.

The effect of low values for both thresholds is to force DB2 to begin writing dirty pages to disk
early in the phase of updating LOB values. This avoids the complications that might arise if
the buffer pool is subjected to an intensive period of changes, such as multiple threads

Note: Some messages in DB2 V8 and DB2 9 might still use the term “data space”, but they
do not really mean data space. We include this just to remind you that since V8, data
spaces are no longer in use.

Tip: You should set the virtual pool sequential steal threshold (VPSEQT) to 99%, taking full
advantage of the sequential access, knowing that this buffer pool is only used for LOB
pages. Note that this is deliberately not set to 100%, to allow some non-sequential pages
in the buffer pool. They are the LOB space map pages, and they are fetched individually
and not marked as sequentially fetched.
244 LOBs with DB2 for z/OS: Stronger and Faster

updating large LOBs. In this case, if the write thresholds are high, the buffer pool might
become overwhelmed, and the number of dirty pages might reach levels where critical data
manager thresholds are triggered. The result of this would be for I/Os to become
synchronous. This could have a dramatic impact on the performance of the updates. Note
that this recommendation is based on the data length of the LOB values being quite large,
that is, you are using real LOBs.

One major factor affecting the design and setup of buffer pools for LOB objects relates to
whether you expect the LOB objects to be re-referenced, and the hit ratio for pages in the
buffer pool becomes significant to increase performance. The opposite scenario is that you
expect the re-reference of objects to be very low. See Figure 8-5.

Figure 8-5 Buffer pool strategies

With the advancement of 64-bit addressing, it is possible to provide large buffer pools for LOB
objects. But the availability of physical memory to back the allocated buffer pools must still be
carefully considered, so as not to cause paging problems with overallocation of real storage.

If re-reference of objects is not expected, it follows that storage resources can probably be
better utilized by other buffer pools to avoid I/O. The considerations for the buffer pool for
these LOBs is to allow prefetching and determine a minimum size to avoid effects such as
different threads stealing pages of LOB objects prior to their materialization.

If re-reference of objects is expected, the buffer pool for the LOBs is probably increased to
greater than the minimum. What then follows is the trade-off of what resources to allocate to
the respective buffer pools, within the available physical memory constraints. This is a topic
beyond the scope of this IBM Redbook as it is obviously a major DB2-wide issue. What is
needed with respect to LOBs is to determine the importance performance plays for the LOB
tables involved relative to the entire DB2 subsystem content.

Sizing the LOB buffer pools is an important issue. Due to LOBs being prefetched into virtual
pools for further processing, you would prefer having the buffer pool big enough to satisfy the
needs of all of the parallel executing threads, and avoid prefetched pages being paged out in
order to free enough space for some other LOB currently being read in. When DB2 9 is
prefetching LOBs, it is done using list prefetch in blocks of up to 64 pages of 4 KB. To prevent

LOB buffer pool strategies

Scenario 1
Expected re-reference of LOB data
Buffer pool setup is expected to give
performance gains by caching data

Scenario 2
Low expected re-reference of LOB data
Buffer pool setup is required to allow LOB
operations while minimizing impact on
"other" activity in the DB2 subsystem
Chapter 8. Performance with LOBs 245

active threads stealing pages from each other, you would prefer to have at least three
prefetched blocks to stay in the virtual buffer pool for processing.

Example 8-2 shows an algorithm to estimate the allocation for LOB buffer pool.

Example 8-2 LOB buffer pool allocation size

IOB - I/O read block for prefetch 3 * 32 pages * 4 KB = 384 KB
PT - Maximum number of active parallel threads reading\writing LOBs
TOTAL SIZE = PT * IOB

Example for LOB buffer pool:
PT = 100
TOTAL SIZE = 100 * 384 KB= 38400 KB

Figure 8-6 shows the separation of LOB buffer pools for better performance and monitoring.
In the figure, we have omitted BP7, associated to work files, and BP8K0, BP16K0, BP32K
needed for DB2 catalog access besides BP0.

Figure 8-6 Separation of LOB buffer pools

8.3.2 Considerations for a data sharing environment

Several settings for the GBPCACHE parameter are allowed when defining and altering table
spaces. If you choose GBPCACHE NONE or GBPCACHE SYSTEM, no user data pages are
actually stored in the group buffer pool. However, with GBPCACHE SYSTEM, which is the
default for LOB table spaces, space map pages for LOBs are cached in the coupling facility.
All other data pages are written directly to disk, similar to GBPCACHE NONE page sets. See
Figure 8-7 on page 247.

By choosing GBPCACHE ALL, you prevent multiple members from reading the same page in
from disk. For this reason, LOB table spaces containing small LOBs that typically have a high

Separation of LOB Buffer Pools

BP32K1

BP16K1

BP20

BP3

Sequential

Buffer Pool

BP2

VPSIZE
System

Buffer
Pool

Random

Buffer Pool

BP0

BP1

BP13

BP12

Index

Buffer Pool

BP10

VDWQT

DWQT

VPSEQT
S

e
p

a
r a

 t
e

DWAT
VDWAT

Example of usual Buffer Pools LOB Buffer Pools

VPSEQT
246 LOBs with DB2 for z/OS: Stronger and Faster

degree of inter-DB2 read interest are good candidates for GBPCACHE ALL. Keep in mind
that allowing GBPCACHE ALL demands increased coupling facility resources: processing
power, storage, and channel utilization.

Figure 8-7 LOB group buffer pool

When the LOB table space is NOT LOGGED, we recommend using GBPCACHE CHANGED
for LOB table spaces. In this case, if the coupling facility fails, the LOB table space is placed
in GRECP. When group buffer pool recovery occurs, all LOB values that were in the coupling
facility at the time of the failure are marked invalid, because the log records that are
necessary to perform the recovery for those values are missing due to the NOT LOGGED
attribute.

In DB2 9, consider specifying GBPCACHE CHANGED to flush changed pages to the CBP
rather than flushing changed pages to disk and delaying the release of LOB locks.

When extremely large objects are used, you might consider using GBCACHE SYSTEM to
avoid having large LOB values overwhelm the group buffer pool.

Castout threshold for group buffer pools
The castout threshold determines the total number of changed pages that can exist in the
group buffer pool before castout occurs. DB2 casts out enough class castout queues to bring
the number of changed pages below the threshold. DB2 periodically determines whether the
threshold is exceeded.

We recommend setting the group buffer pool castout threshold to zero, or a low value, to
reduce the need to have a large group buffer pool for LOBs.

Member A
ssnmDBM1

Buffer Pools

GBP CACHE SYSTEM or GBP CACHE SYSTEM or
CHANGEDCHANGED
 for LOB for LOB

Buffer Pool Buffer Pool

Primary
Coupling Facility

GBP GBP

Backup
Coupling Facility

DB2 data sharing environment

Member B
ssnmDBM1

Buffer Pools
Chapter 8. Performance with LOBs 247

For more information about DB2 Data Sharing, refer to DB2 Version 9.1 for z/OS Data
Sharing: Planning and Administration, SC18-9845.

8.4 Logging with LOBs

The two major changes introduced by DB2 9 in new function mode are described at 3.3,
“LOBs and LOG activity” on page 44:

� LOGGED and NOT LOGGED attributes
� Logging for all LOB sizes

While logging LOBs has performance implications for large LOBs and heavy parallel log
activity, the usability and operational considerations are always important, whatever the size
of LOBs and the workload. Therefore, the usability and operational considerations should be
taken into account at LOB creation time.

If your logging is becoming a bottleneck and it is I/O bound (that is you do not have a CPU or
latching issue with the log activity), you should consider striping to increase the parallelism of
I/O and reduce the synchronous suspension time.

8.5 Accessing LOBs

Because accessing large LOBs usually involves low CPU time compared to I/O time, LOB
applications tend to benefit greatly from fast devices and fast channels. LOB table spaces are
also good candidates for striping. This is valid for both read and write I/O.

8.5.1 Reading LOBs

The major considerations when selecting LOBs are:

� LOB processing is generally more efficient for larger LOB columns.

� You get more consistent responses and CPU times reading LOB data using locator
variables regardless of the size of the LOB column.

� The efficiency by which large LOBs can be processed is increased enormously by using
LOB file reference variables.

� Prefetch in DB2 9 allocatea twice as much storage per I/O if the buffer pool size is 200 MB
or greater, 400 MB in the case of utilities. This might reduce the elapsed time to read a
large LOB by 10% or more, and the benefit of such a "large" buffer pool is even higher if
combined with striping.

8.5.2 Writing LOBs

We examine the three cases of INSERT, UPDATE, and DELETE.

LOB INSERT
As with read processing, the greater the LOB length, the greater the efficiency of insert
processing. To insert 100 times the data does not require 100 times the resources. The
relative improvement of insert efficiency with respect to LOB size results, however, are less
dramatic than for SELECT processing. The reason is that the cost of preformatting disk space
to accommodate the newly inserted LOB can increase with the size of the LOB, and it
accounts for most of the elapsed time. With V9, depending on the allocation quantity, DB2
248 LOBs with DB2 for z/OS: Stronger and Faster

triggers the preformatting earlier and preformats 16 rather than 2 cylinders. This reduces the
impact of preformatting.

There is relatively little difference in insert performance if a LOB locator is used.

When the LOB file reference variables are used, the I/O operation of writing the data to disk
can be done at the device speed. Application logic needed to use the method is minimal.

LOB update
A LOB update is equivalent to a LOB insert and a LOB delete. Most of the cost of a LOB
update can, therefore, be attributed to the cost of the LOB insert.

LOB delete
A LOB delete is a logical delete, and therefore, it is relatively inexpensive and gives
consistently good performance. The CPU cost is somewhat independent of the size of the
LOB column. The larger the LOB column, the greater the number of space map pages that
have to be updated to reflect the logically deleted row, but the relationship between elapsed
time and LOB size for deletes is not linear. The larger the LOB column, the greater the
efficiency of the delete operation. DB2 can delete 833 KB per second if the LOB is 20 KB in
length. With a 2 MB LOB, DB2 can delete 45,511 KB per second, which is more than 50 times
faster.

8.6 Comparing SQL accounting profiles

There are good reasons for the use of LOBs, but there are also good reasons to consider
using VARCHAR or VARBINARY (DB2 9 only) instead, if possible. Even when dealing with
the wide variety of additional data types, such as audio, video, or mixed text, if they are below
32 KB in size, you should consider the possibility of storing them into a VARCHAR column.
The main reasons for still wanting to use VARCHAR, VARGRAPHIC, or VARBINARY, for
your small (<32 KB) multimedia objects, are that there is added complexity with LOBs, and
that there might be more SQL calls executed to process a LOB than when processing a
VARCHAR column. As an example, we have set up an environment:

� Simple base table and its associated LOB. The LOB is 5 KB in size. The table contains
1,200 rows.

� Simple base table and its associated LOB. The LOB is 30 KB in size. The table contains
200 rows.

� Normal table that contains the same structure as the base table, except that it has a
VARCHAR(5120) column. The table contains 1,200 rows.

For our comparison, we now use three different batch application programs, all of them using
host variables (not locators and not file reference variables). Two of them select LOBs and the
third selects the VARCHAR column into a host variable.

We now look at the accounting trace output provided by DB2 PM and reported in Figure 8-8
on page 250.
Chapter 8. Performance with LOBs 249

Figure 8-8 Accounting trace report for LOB and VARCHAR applications

The values shown for DB2 Class 2 elapsed time clearly indicates that when dealing with small
LOBs (<32 KB), it would be better to implement the VARCHAR, VARBINARY, and
VARGRAPHIC strategy. If you decide to span your LOB over several non-LOB columns (in
the example, we simulate dividing a 30 KB LOB into six 5 KB VARCHAR fields), you might
want to reconsider the spanning and use LOBs instead to avoid the whole process of merging
VARCHARs into one whole object in your application and save some application CPU time
and DB2 CPU time.

8.7 Important I/O aspects

As part of our tests, we tried to compare LOB writing between striped and regular LOB table
spaces. Both LOB table spaces were defined as not logged to avoid LOG write contention.
They were sized large enough to hold 100 5 MB LOBs in one extent. Both table spaces were
assigned to a very small 32 KB buffer pool to force synchronous I/O. The striped LOB table
space had 4 stripes (divided among 4 different DASD volumes).

A batch COBOL program inserts 100 5 MB LOBs into each table. Figure 8-9 on page 251
shows the output of accounting traces from the program’s run.

Selecting 30K LOBS
AVERAGE APPL(CL.1) DB2 (CL.2)
------------ ---------- ----------
ELAPSED TIME 0.032034 0.012463
CPU TIME 0.015927 0.010114

Selecting 5K LOBS
AVERAGE APPL(CL.1) DB2 (CL.2)
------------ ---------- ----------
ELAPSED TIME 0.076652 0.041317
CPU TIME 0.055328 0.039350

Selecting VARCHARs
AVERAGE APPL(CL.1) DB2 (CL.2)
------------ ---------- ----------
ELAPSED TIME 0.045266 0.013610
CPU TIME 0.027320 0.012744
250 LOBs with DB2 for z/OS: Stronger and Faster

Figure 8-9 Striped versus non-striped LOB table spaces

You can see that striping is extremely beneficial to performance. Though you do not save
much in terms of CPU, the elapsed time is considerably shorter. In this example, the
reduction of time is almost the same as the number of stripes (four), indicating that the
parallel access available to the different stripes was almost entirely concurrent. However, the
largest improvement is with 2 stripes. When increasing the stripes (in pairs), diminishing
returns apply.

This example is an isolated test case, so in an environment with a greater workload, you
would expect a smaller reduction. The value of striping is very sensitive to the speed of the
device and channel. Path utilization can be the limiting factor.

Striping is especially recommended in case you are running on older disk controller
technology as a means to obtain relief from performance constraints. The greatest
performance gain can be seen when massive sequential reads and writes are performed,
which should reflect the I/O associated with LOBs providing you are using the LOB data type
for truly “large” objects.

With introduction of z9 and new I/O controllers, MIDAW technology was introduced to
optimize the I/O stream and maximize channel throughput. It does not increase the bandwidth
of your FICON channel, but it increases the efficiency of the channels (efficiency in this case
is the ratio of throughput to channel utilization). More information is available in the redpaper
How does the MIDAW facility improve the performance of FICON channels using DB2 and
other workloads?”, REDP-4201.

8.8 IFCID enhancements for LOBs

If you have defined LOBs within your system, the need to track their performance and monitor
resources used by applications retrieving LOB data can become very important.
Inappropriate usage and techniques can have a dramatic effect on the system due to the
sheer volume of data potentially involved. The use of LOBs can increase in the near future
and getting to know the main counters within the IFCID environment can help you. Because
the IFCIDs are part of your DB2 traces, you might have to start them unless you already have
them active in your DB2 system.

STRIPED LOBs - 100 5Mb inserts
AVERAGE APPL(CL.1) DB2 (CL.2)
------------ ---------- ----------
ELAPSED TIME 16.485975 16.462227
CPU TIME 1.842678 1.834109
SUSPEND TIME 0.000000 13.665551

NON STRIPED LOBs - 100 5Mb inserts
AVERAGE APPL(CL.1) DB2 (CL.2)
------------ ---------- ----------
ELAPSED TIME 50.755741 50.731716
CPU TIME 2.036847 2.027694
SUSPEND TIME 0.000000 46.740564

Tip: Consider using striping for your active logs as well to speed up log writes, especially
when heavy sequential data updating is involved (large batch or busy OLTP environment).
Chapter 8. Performance with LOBs 251

A collection of the current IFCIDs providing information regarding LOBs is listed in Table 8-2.

Table 8-2 Current IFCIDs providing information regarding LOBs

IFCID Fields Description

0002 DB2 statistical data on the database services address space

QXSTLOBV Maximum storage used for LOB values

QXCRATB Number of CREATE AUXILIARY TABLE statements

QXHLDLOC Number of HOLD LOCATOR statements

QXFRELOC Number of FREE LOCATOR statements

0003 DB2 accounting record

QXSTLOBV Maximum storage used for LOB values

QWACLRN Number of log records written

QWACLRAB Total number of bytes of log records written

0018 Ends sequential scan, index scan, or insert. The additional pages scanned in a
LOB table space and for a count of the number of LOBs updated. Other fields in
IFCID 18 are only applicable to the base table.

QW0018PL Additional pages scanned in a LOB table space

QW0018UL Count of LOB data pages updated (either by an SQL INSERT or
an SQL UPDATE)

0020 Summary of page, row, and LOB locks held and lock escalation

QW0020TP Maximum number of page, row, and LOB locks held

QW0020PL Maximum number of either page, row, or LOB locks held for the
thread

QW0020F5 LOB table space

QW0020R3 LOB lock

0021 Detail lock trace LOB lock type

QW0021ML LOB lock type (value '30 'x)

QW0021KX ID of resource for LOB locks

QW0021K6 ROWID

QW0021K7 Version number

0023 Record utility start information

QW0023PH CHECKLOB is a new phase for the CHECK LOB utility.

0024 Record utility object or phase change record

QW0024PH CHECKLOB is a new phase for the CHECK LOB utility.

0025 Record utility start information

QW0025PH CHECKLOB is a new phase for the CHECK LOB utility.
252 LOBs with DB2 for z/OS: Stronger and Faster

0044 Records lock suspension. LOB lock type record utility start information

QW0044ML LOB lock type (value '30 'x)

QW0044KX ID of resource for LOB locks

QW0044K6 ROWID

QW0044K7 Version number

0058 End of SQL statement execution. Add fields for the additional pages scanned in
a LOB table space and for a count of the number of LOBs updated. Other fields
in IFCID 58 are only applicable to the base table.

QW0058PL Additional pages scanned in a LOB table space

QW0058UL Count of LOB data pages updated (either by an SQL INSERT or
an SQL UPDATE)

0059 DB2 performance record. Records the start of the execution of a “fired” SQL
statement.

QW0059CTU Continue clause
x’0000’ - CONTINUE not specified
x’0001’ - WITH CONTINUE specified
x’0002’ - CURRENT CONTINUE specified

0062 DDL (and other) execution statement start

QW0062CX Create auxiliary table. Value x'F2'

QW0062HL Hold locator. Value x'CE'.

QW0062FL Free locator. Value x'CF'.

0105 Maps the DBID and OBID to the database and table space name. Also maps the
DBID and OBID of the LOB table space and index on the auxiliary table to the
LOB table space name and name of the index on the auxiliary table. DDL (and
other) execution statement start.

0106 System initialization parameters

QWP1LVA Bytes for LOB values - per user

QWP1LVS Bytes for LOB values - per system

QWP1MOFR Maximum number of concurrently open data sets for processing
LOB file references. This value corresponds to "max open file
refs" on installation panel DSNTIPE, or DSNZPARM name:
MAXOFILR in DSN6SYSP.

0107 Open and close information. Also records open and close for LOB table spaces
and indexes on auxiliary tables.

0141 Records grants and revokes

QW0140BS For a LOB table space

QW0140BT For an auxiliary table

0148 DB2 monitor trace record

IFCID Fields Description
Chapter 8. Performance with LOBs 253

Traces to use with LOBs
� IFCID 58

– QW0058PL - pages scanned in LOB table space
– QW0058UL - pages updated in LOB table spaces

� IFCID 198, class 3

– Getpage activity

0150 Lock information for a given agent

QW0150ML LOB lock type (value '30 'x)

QW0150KX ID of resource for LOB locks

QW0150K6 ROWID

QW0150K7 Version number

0172 Deadlock trace

QW0172MO LOB lock type (value '30 'x)

QW0172KX ID of resource for LOB locks

QW0172K6 ROWID

QW0172K7 Version number

0185 Data capture information deadlock trace

QW0185ST For a LOB column, this is the data type of the LOB.

QW0185LE For a LOB column, this is the length of the indicator column.

0196 Time-out trace. Lock types are not explicitly specified for this trace.

QW0196FR This value represents a LOB lock '30 'X.

QW0196KX ID of resource for LOB locks

QW0196K6 ROWID

QW0196K7 Version number

0225 Historical storage usage. Used to determine which areas are responsible for the
REAL frames buildup.

QW0225VA TOTAL VARIABLE STORAGE ABOVE THE 31-BIT BAR

0306 Records log records. Note that when NOT LOGGED has been specified for a LOB
table space, log records are not written for the value of the LOB.

0321 Trace record to trace the beginning of a force-at-commit

0322 Trace record to trace the end of a force-at-commit

QW0322NP Number of pages written

0337 Lock escalation occurrences

IFCID Fields Description
254 LOBs with DB2 for z/OS: Stronger and Faster

� IFCID 321 and 322

– Respectively begin and end force-at-commit
– Belong to the same classes as other I/O wait events:

• Accounting classes 3 and 8
• Monitor classes 3 and 8
• Performance class 4

� QXSTLOBV - Maximum storage used for LOB values

– Value is in KB for accounting
– Value is in MB for statistics

8.9 DRDA LOB flow optimization performance

We have described the flow optimization for LOBs and XML data at 4.3, “DRDA LOB flow
optimization” on page 79. Some indication of the performance advantages can be seen from
test cases where the LOB length is varied around the streamBufferSize threshold, which
effectively compares the old non-progressive mechanism with the new progressive
streaming, using varying sized LOB workloads.

Figure 8-10 shows the effect of varying LOB data sizes with differing flow mechanisms. For
small LOB sizes, the longest run time comes from using LOB locators. It is somewhat more
efficient in terms of elapsed time to materialize the LOB instead of using a locator, because a
degree of overhead is removed from DB2, and a reduction occurs in the number of data
flows. Using progressive streaming further improves the performance by eliminating
overhead involved with invoking LOB specific flow mechanisms. However, when the LOB
size is increased to 80 KB, which is above our specified value of 70 KB, the same
performance is seen, because the mechanisms used are the same.

Figure 8-10 Performance of LOB Progressive Streaming

Tip: You can find the IFCID field descriptions in the member of the installation library
HLQ.SDSNIVPD(DSNWMSGS).

0

1 0

2 0

3 0

4 0

5 0

6 0

1 K 2 0 K 4 0 K 8 0 K

o ld lo c a to r

m a te r ia liz e d
L O B
p r o g r e s s iv e
s tr e a m in g

Retrieve 1000 CLOB values
with streamBufferSize = 70000

DRDA LOB flow optimization

LOB size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Chapter 8. Performance with LOBs 255

8.10 LOB recommendations for performance

In this section, we summarize performance recommendations:

� There are LOBs and small LOBs (<32 KB).

With DB2 V8 in general, the larger the LOB, the greater the efficiency. LOB insert (and
therefore update) processing is relatively expensive for small length LOB columns.

You must take into account that there is only one LOB per page; if you have specified a
pagesize of 32 KB, and a row of 100 bytes, the overhead in dealing with each row in terms
of I/O and CPU cannot be negligible.

When trying to avoid to use LOBs, keep in mind that until DB2 9, you had only CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC variables. However, DB2 9 has introduced
XML and the new types BINARY and VARBINARY to maximize the flexibility of data
formats.

DB2 9 also has improved the handling of small LOBs. When fetching LOBs, progressive
streaming (as described in 4.3, “DRDA LOB flow optimization” on page 79) can provide
improved system performance for small LOBs.

� Use the correct page size.

For really large LOBs, page size should be 32 KB. Because DB2 places only one LOB per
page, space can be wasted for small LOBs (less than the page size). Use a 4 KB page for
LOB table space to minimize wasted disk space and to achieve potentially much higher
I/O time if both small and large LOBs exist, because this is found to be a very common
situation.

� Use LOB locators to manipulate LOBs for V8 and prior versions.

For versions prior to DB2 9, we still recommend using LOB locators. They allow you to
process LOB data consistently and more efficiently than using host variables and to avoid
application buffering problems. When building a new application, consider coding LOB
handling processes in separate code parts to enable easy conversion to file reference
variables when possible.

� Use LOB file reference variables to manipulate LOBs for DB2 9.

When coding for DB2 9 and NO special processing is needed for LOBs (just simple
retrieval and update), use file reference variables. They dramatically increase processing
speed. Whether using SQL or one of the utilities, LOB file reference variables are simpler
to code than other techniques for managing external LOB files and achieve better
performance. Using file reference variables, the LOB does not use any storage in the
application; the file I/O can be overlapped with DB2 deferred writes or with network traffic
in the case of remote client applications. Also, the CPU time is less than other techniques.

� Mind the physical design.

– Do not place LARGE seldom updated LOBs with frequently updated data.

Note: The highest performance improvement is seen when selecting a large number of
rows in one cursor. For singleton selects, only minimal performance improvement is seen.

Note: When estimating page size, base the decision on average LOB size and not the
maximum LOB size.
256 LOBs with DB2 for z/OS: Stronger and Faster

To avoid complicated recovery, do not put rarely, massively updated LOBs with
frequently updated non-LOB data (in the same base table). For example, in case we
have online logged updates of employee personal details, and a weekly not logged
batch updated picture, you might want to separate this data to avoid complicated point
in time recovery scenarios.

– Do not use LOBS as a means of normalizing data.

We do not recommend that you use LOBs as a technique to obtain performance
improvements that normalization and proper physical design can achieve. Note that:

• Any improvements are entirely application dependent.

• At the physical design stage, you should have been able to identify the columns that
are infrequently accessed and the relationship across the columns. Depending on
the application, there might be a net benefit in placing some columns into its own
base table, that is keyed on application unique identifier and holding the 20 KB
VARCHAR and possibly other infrequently accessed columns.

The additional cost, particularly when processing small LOBs, means you are likely to
create a different bottleneck from the perceived one of logging that you were trying to
solve. Use LOBs only for their intended purpose.

� Use LOAD and UNLOAD for massive LOB update and retrieval.

Notice that DB2 9 introduced a lot of changes to the LOAD and UNLOAD utilities. These
changes were retrofitted to earlier versions as well, making massive LOB updating and
retrieval faster and more efficient.

� Tune VSAM and GRS with data sharing.

In data sharing environments, we observed some contention during drop LOB table space
and unusually high Coupling Facility (CF) CPU activity. We could attribute this to VSAM
making use of GRS. When we specified GRS=STAR, these problems were eliminated. We
recommend that you investigate the GRS setting in data sharing environments if you are
observing high CF CPU activity.

� Use REORG SHRLEVEL REFERENCE.

Starting from DB2 9, you can keep your LOBs readable even during maintenance while
the objects are being reorganized.

� Use CHECK DATA and CHECK LOB with SHRLEVEL CHANGE.

CHECK DATA and CHECK LOB utilities are available with SHRLEVEL CHANGE in
DB2 9.
Chapter 8. Performance with LOBs 257

258 LOBs with DB2 for z/OS: Stronger and Faster

Appendix A. Additional material

This IBM Redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this IBM Redbook is available in softcopy on the Internet
from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247270

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbook form number, SG24-7270.

Using the Web material
The additional Web material that accompanies this IBM Redbook includes the following files:

CLOB examples
File name Description

SGDBC DDL for database and storage group
BASETSC DDL for base table space
BASETC DDL for base table
BASEIXC DDL for base table unique index
AUXTSC DDL for auxiliary table space
AUXTC DDL for auxiliary table
AUXIXC DDL for auxiliary index
BINDC BIND member for BLOB samples
SAMPnC JCL to execute SAMPLEnC, (n between 1 and 9, B)

A

© Copyright IBM Corp. 2006. All rights reserved. 259

ftp://www.redbooks.ibm.com/redbooks/SG247270
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

SAMPLE1C Insert a CLOB using a large host variable
SAMPLE2C Insert a CLOB using a large host variable and one locator chain
SAMPLE3C Insert a CLOB using a large host variable and two locator chains
SAMPLE4C Unload a CLOB using a large host variable
SAMPLE5C Unload a CLOB using a large host variable and one locator chain
SAMPLE6C Delete parts of a CLOB using locators
SAMPLE7C Update parts of a CLOB using locators
SAMPLE8C Load a CLOB using a file-reference-variable
SAMPLE9C Unload a CLOB using a file-reference-variable
SAMPLEAC Update a CLOB using a file-reference-variable
SAMPLEBC FETCH WITH/CURRENT CONTINUE example

All the above files are contained in:
CLOBSAMPLES.zip Zipped Code Samples

BLOB examples
File name Description
SGDBB DDL for database and storage group
BASETSB DDL for base table space
BASETB DDL for base table
BASEIXB DDL for base table unique index
AUXTSB DDL for auxiliary table space
AUXTB DDL for auxiliary table
AUXIXB DDL for auxiliary index
BINDB BIND member for CLOB samples
SAMPnB JCL to execute SAMPLEnB, (n between 1 and 9, B)
SAMPLE1B Insert a BLOB using a large host variable
SAMPLE2B Insert a BLOB using a large host variable and one locator chain
SAMPLE3B Insert a BLOB using a large host variable and two locator chains
SAMPLE4B Unload a BLOB using a large host variable
SAMPLE5B Unload a BLOB using a large host variable and one locator chain
SAMPLE6B Delete parts of a BLOB using locators
SAMPLE7B Update parts of a BLOB using locators
SAMPLE8B Load a BLOB using a file-reference-variable
SAMPLE9B Unload a BLOB using a file-reference-variable
SAMPLEAB Update a BLOB using a file-reference-variable
SAMPLEAB FETCH WITH/CURRENT CONTINUE example

All the above files are contained in:
BLOBSAMPLES.zip Zipped Code Samples

Java CLOB example
File name Description
JavaClobSample.zip Sample Java program with CLOB
260 LOBs with DB2 for z/OS: Stronger and Faster

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 8 MB minimum
Operating System: Windows 95 or Windows NT or Windows 2000
Processor: Intel® 386 or higher
Memory: 16 MB

How to use the Web material
Create a subdirectory (folder) on your workstation and unzip the contents of the Web material
zip file into this folder. Modify JCL to comply with your library definitions.
Appendix A. Additional material 261

262 LOBs with DB2 for z/OS: Stronger and Faster

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 265. Note that some of the documents referenced here may be available in softcopy
only.

� Data Integrity with DB2 for z/OS, SG24-7111

� DB2 UDB for z/OS: Design Guidelines for High Performance and Availability, SG24-7134

� DB2 UDB for z/OS Version 8 Performance Topics, SG24-6465

� Disk storage access with DB2 for z/OS, REDP-4187

� DB2 UDB for z/OS Version 8: Everything You Ever Wanted to Know, ... and More,
SG24-6079

� DB2 for z/OS and OS/390 Version 7 Performance Topics, SG24-6129

� DB2 for z/OS Application Programming Topics, SG24-6300

� DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083

� WebSphere Information Integrator Q Replication: Fast Track Implementation Scenarios,
SG24-6487

� SAP on DB2 Universal Database for OS/390 and z/OS: Multiple Components in One
Database (MCOD), SG24-6914

� How does the MIDAW facility improve the performance of FICON channels using DB2 and
other workloads?, REDP-4201

Other publications
These publications are also relevant as further information sources:

DB2 Version 8
� Enterprise COBOL for z/OS Programming Guide, SC27-1412-04

� DB2 UDB for z/OS Version 8 Data Sharing: Planning and Administration, SC18-7417-03

� DB2 UDB for z/OS Version 8 Administration Guide, SC18-7413-03

� DB2 UDB for z/OS Version 8 Application Programming and SQL Guide, SC18-7415-03

� DB2 UDB for z/OS Version 8 Application Programming Guide and Reference for Java,
SC18-7414-02

� DB2 UDB for z/OS Version 8 Command Reference, SC18-7416-03

� DB2 UDB for z/OS Version 8 Installation Guide, GC18-7418-04

� DB2 UDB for z/OS Version 8 Codes, GC18-9603-01

� DB2 UDB for z/OS Version 8 Messages, GC18-9602-01
© Copyright IBM Corp. 2006. All rights reserved. 263

� DB2 UDB for z/OS Version 8 SQL Reference, SC18-7426-03

� DB2 UDB for z/OS Version 8 Utility Guide and Reference, SC18-7427-03

� DB2 UDB for z/OS Version 8 Internationalization Guide, available from:

http://www.ibm.com/software/data/db2/zos/v8books.html

DB2 Version 9.1
� DB2 Version 9.1 for z/OS Administration Guide, SC18-9840-00

� DB2 Version 9.1 for z/OS Application Programming and SQL Guide, SC18-9841-00

� DB2 Version 9.1 for z/OS Application Programming Guide and Reference for JAVA,
SC18-9842-00

� DB2 Version 9.1 for z/OS Codes, GC18-9843-00

� DB2 Version 9.1 for z/OS Command Reference, SC18-9844-00

� DB2 Version 9.1 for z/OS Data Sharing: Planning and Administration, SC18-9845-00

� DB2 Version 9.1 for z/OS Diagnosis Guide and Reference, LY37-3218-00

� DB2 Version 9.1 for z/OS Diagnostic Quick Reference, LY37-3219-00

� DB2 Version 9.1 for z/OS Installation Guide, GC18-9846-00

� DB2 Version 9.1 for z/OS Introduction to DB2, SC18-9847-00

� DB2 Version 9.1 for z/OS Licensed Program Specifications, GC18-9848-00

� DB2 Version 9.1 for z/OS Messages, GC18-9849-00

� DB2 Version 9.1 for z/OS ODBC Guide and Reference, SC18-9850-00

� DB2 Version 9.1 for z/OS Performance Monitoring and Tuning Guide, SC18-9851-00

� DB2 Version 9.1 for z/OS RACF Access Control Module Guide, SC18-9852-00

� DB2 Version 9.1 for z/OS Reference for Remote DRDA Requesters and Servers,
SC18-9853-00

� DB2 Version 9.1 for z/OS Reference Summary, SX26-3854-00

� DB2 Version 9.1 for z/OS SQL Reference, SC18-9854-00

� DB2 Version 9.1 for z/OS Utility Guide and Reference, SC18-9855-00

� DB2 Version 9.1 for z/OS What's New?, GC18-9856-00

� DB2 Version 9.1 for z/OS XML Extender Administration and Programming, SC18-9857-00

� DB2 Version 9.1 for z/OS XML Guide, SC18-9858-00

� DB2 Version 9 .1 for z/OS Internationalization Guide, available from:

http://www.ibm.com/software/data/db2/zos/v9books.html

Online resources
These Web sites are also relevant as further information sources:

� Unicode site

http://www.unicode.org/

� The Unicode character code charts

http://www.unicode.org/charts/
264 LOBs with DB2 for z/OS: Stronger and Faster

http://www-306.ibm.com/software/data/db2/zos/v8books.html
http://www-306.ibm.com/software/data/db2/zos/v8books.html
http://www.unicode.org/
http://www.unicode.org/charts/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 265

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

266 LOBs with DB2 for z/OS: Stronger and Faster

ronyms
AC autonomic computing

ACS automatic class selection

AIX Advanced Interactive eXecutive
from IBM

APAR authorized program analysis report

API application programming interface

AR application requester

ARM automatic restart manager

AS application server

ASCII American National Standard Code
for Information Interchange

B2B business-to-business

BCDS DFSMShsm backup control data
set

BCRS business continuity recovery
services

BI Business Intelligence

BLOB binary large objects

BPA buffer pool analysis

BSDS boot strap data set

CBU Capacity BackUp

CCA channel connection address

CCA client configuration assistant

CCP collect CPU parallel

CCSID coded character set identifier

CD compact disk

CDW central data warehouse

CEC central electronics complex

CF coupling facility

CFCC coupling facility control code

CFRM coupling facility resource
management

CICS® Customer Information Control
System

CLI call level interface

CLOB character large object

CLP command line processor

CMOS complementary metal oxide
semiconductor

CP central processor

CPU central processing unit

CRCR conditional restart control record

Abbreviations and ac
© Copyright IBM Corp. 2006. All rights reserved.
CRD collect report data

CRUD create, retrieve, update or delete

CSA common storage area

CSF Integrated Cryptographic Service
Facility

CTE common table expression

CTT created temporary table

CUoD Capacity Upgrade on Demand

DAC discretionary access control

DASD direct access storage device

DB database

DB2 Database 2™

DB2 PE DB2 Performance Expert

DBA database administrator

DBAT database access thread

DBCLOB double-byte character large object

DBCS double-byte character set

DBD database descriptor

DBID database identifier

DBM1 database master address space

DBRM database request module

DCL data control language

DDCS distributed database connection
services

DDF distributed data facility

DDL data definition language

DDL data definition language

DES Data Encryption Standard

DLL dynamic load library manipulation
language

DML data manipulation language

DNS domain name server

DPSI data partitioning secondary index

DRDA Distributed Relational Data
Architecture

DSC dynamic statement cache, local or
global

DSNZPARMs DB2’s system configuration
parameters

DSS decision support systems

DTT declared temporary tables
 267

DWDM dense wavelength division
multiplexer

DWT deferred write threshold

EA extended addressability

EAI enterprise application integration

EAS Enterprise Application Solution

EBCDIC extended binary coded decimal
interchange code

ECS enhanced catalog sharing

ECSA extended common storage area

EDM environmental descriptor manager

EJB™ Enterprise JavaBean

ELB extended long busy

ENFM enable-new-function mode

ERP enterprise resource planning

ERP error recovery procedure

ESA Enterprise Systems Architecture

ESP Enterprise Solution Package

ESS Enterprise Storage Server®

ETR external throughput rate, an
elapsed time measure, focuses on
system capacity

EWLC Entry Workload License Charges

EWLM Enterprise Workload Manager

FIFO first in first out

FLA fast log apply

FTD functional track directory

FTP File Transfer Program

GB gigabyte (1,073,741,824 bytes)

GBP group buffer pool

GDPS® Geographically Dispersed Parallel
Sysplex™

GLBA Gramm-Leach-Bliley Act of 1999

GRS global resource serialization

GUI graphical user interface

HALDB High Availability Large Databases

HPJ high performance Java

HTTP Hypertext Transfer Protocol

HW hardware

I/O input/output

IBM International Business Machines
Corporation

ICF internal coupling facility

ICF integrated catalog facility

ICMF integrated coupling migration facility

ICSF Integrated Cryptographic Service
Facility

IDE integrated development
environments

IFCID instrumentation facility component
identifier

IFI Instrumentation Facility Interface

IFL Integrated Facility for Linux

IGS IBM Global Services

IMS Information Management System

IORP I/O Request Priority

IPLA IBM Program Licence Agreement

IRD Intelligent Resource Director

IRLM internal resource lock manager

IRWW IBM Relational Warehouse
Workload

ISPF interactive system productivity
facility

ISV independent software vendor

IT information technology

ITR internal throughput rate, a
processor time measure, focuses
on processor capacity

ITSO International Technical Support
Organization

IVP installation verification process

J2EE Java 2 Enterprise Edition

JDBC Java Database Connectivity

JFS journaled file systems

JNDI Java Naming and Directory
Interface

JTA Java Transaction API

JTS Java Transaction Service

JVM™ Java Virtual Machine

KB kilobyte (1,024 bytes)

LCU Logical Control Unit

LDAP Lightweight Directory Access
Protocol

LOB large object

LPAR logical partition

LPL logical page list

LRECL logical record length

LRSN log record sequence number

LRU least recently used

LSS logical subsystem

LUW logical unit of work
268 LOBs with DB2 for z/OS: Stronger and Faster

LVM logical volume manager

MAC mandatory access control

MB megabyte (1,048,576 bytes)

MBps megabytes per second

MLS multi-level security

MQT materialized query table

MTBF mean time between failures

MVS Multiple Virtual Storage

NALC New Application License Charge

NFM new-function mode

NFS Network File System

NPI non-partitioning index

NPSI nonpartitioned secondary index

NVS non volatile storage

ODB object descriptor in DBD

ODBC Open Database Connectivity

ODS Operational Data Store

OLE Object Link Embedded

OLTP online transaction processing

OP Online performance

OS/390 Operating System/390®

OSC optimizer service center

PAV parallel access volume

PCICA Peripheral Component Interface
Cryptographic Accelerator

PCICC PCI Cryptographic Coprocessor

PDS partitioned data set

PIB parallel index build

PPRC Peer-to-Peer Remote Copy

PR/SM™ Processor Resource/System
Manager

PSID pageset identifier

PSP preventive service planning

PTF program temporary fix

PUNC possibly uncommitted

PWH Performance Warehouse

QA Quality Assurance

QMF Query Management Facility

QoS Quality of Service

QPP Quality Partnership Program

RACF® Resource Access Control Facility

RAS reliability, availability and
serviceability

RBA relative byte address

RBLP recovery base log point

RDBMS relational database management
system

RDS relational data system

RECFM record format

RI Referential Integrity

RID record identifier

ROI return on investment

RPO recovery point objective

RR repeatable read

RRS resource recovery services

RRSAF resource recovery services attach
facility

RS read stability

RTO recovery time objective

RTS real-time statistics

SAN storage area networks

SBCS store single byte character set

SCUBA self contained underwater
breathing apparatus

SDM System Data Mover

SDP Software Development Platform

SLA service-level agreement

SMIT System Management Interface Tool

SOA service-oriented architecture

SOAP Simple Object Access Protocol

SPL selective partition locking

SQL Structured Query Language

SQLJ Structured Query Language for
Java

SRM Service Request Manager

SSL Secure Sockets Layer

SU Service Unit

TCO total cost of ownership

TPF Transaction Processing Facility

UA Unit Addresses

UCB Unit Control Block

UDB Universal Database

UDF user-defined functions

UDT user-defined data types

UOW unit of work

UR unit of recovery

USS UNIX System Services

vCF virtual coupling facility

VIPA Virtual IP Addressing

VLDB very large database
 Abbreviations and acronyms 269

VM virtual machine

VSE Virtual Storage Extended

VSIP Visual Studio® Integrator Program

VWLC Variable Workload License
Charges

wizards Web-based assistants

WLC Workload License Charges

WLM Workload Manager

WSDL Web Services Definition Language

WTO write to operator

XA Extended Architecture

XML Extensible Markup Language

XRC eXtended Remote Copy

z800 zSeries 800

z890 zSeries 890

z990 zSeries 990

zAAP zSeries Application Assist
Processor

zELC zSeries Entry License Charge
270 LOBs with DB2 for z/OS: Stronger and Faster

Index

Numerics
00C900A3 205
00C900D0 205
00C900Dx 244
-423 138
-857 32
-904 201

A
ABAP 126–129
ABAP reports 131–132
ACHKP 196, 200, 229
adding a LOB column 37–38
adding a ROWID 42
Advanced Business Application Programming 126, 129
Altering table 211
APIs 20
application programming xvii, 2, 107, 126
ASCII 33, 54–55, 84, 147, 164, 172
Automatic creation of objects xvii, 6, 24–26, 29, 182, 217
autorel duration 102
aux table 183
AUX WARNING state 50, 227, 231
AUXERROR 201
AUXERROR INVALIDATE 201–202
AUXERROR REPORT 201–202
auxiliary check pending 196–197
auxiliary check pending state 200
auxiliary column 13, 39
auxiliary index 14, 24–26, 28–31, 34, 36, 39, 103, 148,
177–178, 185–186, 195, 216, 259–260

DDL 36
auxiliary LOB table 39
auxiliary table 12–15, 24, 39, 61, 69, 71–72, 83, 87, 90,
96, 105, 143, 150, 213–216, 218, 252–253, 259–260
auxiliary warning 196
auxiliary warning state 200
AUXONLY 201
AUXTBNAME 213
AUXTBOWNER 213, 217
AUXW 47, 50, 196, 200
AVGSIZE 214–215

B
backup and recovery 211
base table 12–15, 24, 31, 39, 44, 61, 69, 71–72, 83, 87,
90, 95–96, 143, 156, 160, 212–216, 259–260
base table locks 95
Binary Large Objects 10
BIT 11, 33, 41, 54–55, 119, 131, 242, 254
BLOB 2, 10–11, 17–20, 24–25, 31–34, 37, 61, 66, 71, 79,
107–108, 114, 117, 119, 121, 126, 128–129, 142,
145–146, 160–161, 163, 212, 214, 217–218, 259–260
© Copyright IBM Corp. 2006. All rights reserved.
BLOB_FILE 18
BLOBs 11–12, 33, 54, 88, 108–110, 120, 126
BP40. 144
BPOOL 216
buffer pools 24, 35, 56–57, 123, 144, 147, 238, 242, 245

C
Call Level Interface 79
CARDF 215–216
CAST 11, 71–72
CCSID 11, 19, 21, 27, 33, 54–55, 84, 146, 160, 164, 172,
212, 238, 241
Character Large Objects 10
check constraints 35, 40, 61
CHECK DATA xvii, 7, 123, 196, 199, 257
CHECK DATA SHRLEVEL CHANGE 202
CHECK INDEX 207
CHECK INDEX SHRLEVEL CHANGE 207
CHECK INDEX SHRLEVEL REFERENCE 207
CHECK LOB 204
CHECK LOB SHRLEVEL CHANGE 205
CHECK LOB SHRLEVEL REFERENCE 205
CHECK LOB sort 6
check pending 196
CHECK-pending 204, 207
CHKP 196
choosing a page size 57
chunk 62–64, 78, 112, 117, 133, 191
chunking 142
CLI 79
CLOB 10–11, 17–19, 24–25, 31, 33–34, 55, 66, 71–72,
84, 87–88, 107, 109, 114, 120–121, 126, 129, 136, 141,
145, 164, 171–172, 214, 218, 259–260
CLOB_FILE 18
codepage 147
COLNAME 213
COLTYPE 32, 214
compression 27, 35, 61, 147, 242
CONCAT 70, 73, 78, 89, 91, 121–122
CONCURRENT copy 178–180
COPY 47, 49, 51, 100, 103, 139, 146, 160–161, 163,
166, 212–213, 218–219
COPY NO 30
COPYDDN 173, 177, 179–180, 185, 189
COPYLASTTIME 218
COPYTOCOPY 180–181
COPYUPDATEDPAGES 219
creating a LOB table space 34
creating a new table with ROWID 41
creating auxiliary table 35
creating LOBs 36

DDL statement 31
CREATOR 216
Cross Loader xvii, 5, 83, 85, 94, 171–172, 176
 271

cross-loader xvii
CS 103, 111, 135, 151
CURRENT RULES 24, 29–31, 60, 112, 146

impact on CREATE and DROP 29
CURRENT RULES = ‘STD’ 29
CURRENT RULES DB2 29, 60
CURRENT RULES STD 30, 60, 112
CURRENTAPPENSCHEM 21
cursor stability 111

D
data conversion 52, 54
Data length 19
data propagation 62
data sharing 60, 102–103, 123, 156, 246, 248, 257
database management system xvii, 93
DATASIZE 218
DB2 Connect 83, 93, 127, 135–136, 141
DB2 Extender 5
DB2-generated file reference variable construct 19
DBCLOB 10–11, 17–19, 55, 66, 72, 84, 107, 114, 117,
119, 126, 128–129, 141, 146–147, 164, 171–172, 214
DBCLOB_FILE 18
DBMS xvii, 126, 144, 147, 149
DBNAME 216
dbsl 151
dbsl profile 139
DBSL trace 150
DBSNDB06 217
DDL 24–25, 126, 139, 145–147, 160, 174, 212, 253,
259–260
Defective LOBs 204
deferred write threshold 244
delete 34, 44, 50, 56, 75, 97–99, 111, 120–121, 138,
174, 176, 185, 239, 260
deleting a LOB 49, 56, 98, 103
deleting part of a LOB 120
DFSMS 59, 178
DFSMSDSS 206
displaying LOB objects 37
Distributed 127
Distributed Data Facility 127
Double Byte Character Large Objects 10
DRDA flow optimization 240
DRDA LOB flow optimization 6
Dropping implicitly created objec 26
DSN1505I 233
DSN1COPY 210
DSN1PRNT 210
DSNACCOR 195
DSNDB06 219
DSNJU003 234
DSNT408I 32
DSNTEJ7 7
DSNTEP2 113
DSNTIAUL 7, 83–84, 169–170
DSNTIJMS 141
DSNTIP7 243
DSNTIPE 21
DSNU1178I 173

DSNU1218I 162
DSNU1504I 197
DSNU1505I 197
DSNU297I 195
DSNU406I 190
DSNU599I 223
DSNU743I 205
DSNUM 215
DSNZPARM 27–29, 243
DSSIZE 27–28, 30, 34, 58–59, 161, 199, 213
DWQT 58, 244
Dynpro 126, 129, 137
Dynpros 129–130

E
efficiency 251
encoding systems 53
Enterprise Resource Planning 125
Exclusive LOB lock 61
exclusive LOB lock 95
extenders 2–3, 83
EXTENTS 218
EXTENTS, 215

F
FETCH xvii, 60, 102, 112, 114, 135–137, 238–239, 242
fetch 60, 66, 112–114, 135, 137, 151, 242
FETCH CONTINUE 6, 113–114, 242
File name length 19
file option variable 20
File reference variables xvii, 5, 7, 10, 18–19, 85, 108,
123, 160, 164, 168, 239, 241, 256
file reference variables 107
FOR BIT DATA 11
FREE LOCATOR 66, 74, 89, 92, 110, 121, 137, 155,
252–253
FREESPACE 34, 191, 193, 214–215
full Imag Copy 49

G
GBPCACHE 28, 30, 34, 59, 123, 143, 146, 160–161,
212–213, 246
GBPCACHE SYSTEM 60, 123, 146, 161, 213, 246
GENERATED ALWAYS 38, 40–42, 161, 170, 176, 212
GENERATED BY DEFAULT 24, 34, 38, 40–41, 94, 177
GRS 257

H
HIDDEN 214
Hierarchical File System 21
HISTORY SPACE 215
host variable 16–19, 42, 60, 66, 71, 73, 85–87, 96, 107,
109–110, 122, 238–239, 260
host variables 10, 18, 66–67, 70, 87, 91, 107, 110, 112,
117, 138, 256
HURBA 193, 214
272 LOBs with DB2 for z/OS: Stronger and Faster

I
IAV Extenders 3
ICLI 127
ICTYPE 48
II13767 123
Image Copy 50, 173, 178, 181, 219
IMPLICIT 216
INCURSOR 176
INSERT 32–33, 44, 50–51, 75, 86–89, 92, 122–123, 134,
136, 139, 230, 241, 260
insert 5, 19, 32–34, 44, 50, 67, 79, 87–89, 97, 99, 107,
110, 122–123, 133, 136, 138–140, 177, 189, 195,
240–241, 252–253, 260
inserting LOBs

using a host-variable 86
using locators 88

intent exclusive 97
intent-share lock 96
internal resource lock manager 99
Invalid LOBs 200, 204
IRLM 61, 99–100
IS xvii, 2, 52, 54–55, 61, 63, 83, 87–88, 96, 107–109,
120, 126–127, 159–160, 212, 238–239, 259, 261
ISO-10646 54
ISOLATION (UR) 56, 97
IX 25, 37, 97–99, 221, 225

J
Java 5, 79, 81, 83, 126–128, 133
Java enhanced LOB 6
Java stored procedures 218
JCC driver 140–141
JDBC driver 113, 127, 140–142
JDBC functions 5

L
large objects xvii, 1–4, 9–10, 12, 15–16, 18, 52–53, 57,
60–61, 70–71, 78, 83, 95, 107, 123, 131, 136, 217
LENGTH 5, 11, 20, 25, 30, 32–33, 37, 39, 41, 47, 55, 57,
61, 70, 72–73, 80, 86–88, 100, 108–110, 114, 120, 127,
131, 160, 162, 165–166, 169, 214, 254
LENGTH2 41, 78, 214
LIKE 2, 11, 33, 38, 53, 56, 61, 63, 70, 72–73, 126, 160,
166, 169, 212, 220, 240
list 70–71, 94, 112, 119, 122, 144, 178–181
list prefetch 112
LISTDEF 178–181, 197
LISTDEFs 235
LOAD xvii, 5, 7, 21, 23, 40, 45, 83, 85, 93, 123, 128–129,
131, 165, 169–171, 215, 218, 257, 260
loading a LOB column 83
LOB column 10, 12–13, 15, 20, 24, 26, 29–30, 39, 61,
66, 70–71, 83, 85, 87, 99, 107, 113, 116, 119, 126, 130,
132, 143, 155, 171, 173, 178, 213–214, 216, 254
LOB data 7, 15–16, 19, 31, 39, 44, 66–67, 74, 83, 87,
107, 109–110, 136, 144, 149–151, 160, 162, 239–240,
244
LOB database 7, 34
LOB indicator 14, 33–34, 178, 182, 196

LOB locators 10, 16–18, 20, 66, 71, 74, 88, 90, 107,
112–114, 134, 141, 239, 256
LOB lock 56, 74–75, 95–97, 111–112, 252–254
LOB lock serialization 97
LOB locks 95
LOB locks avoidance 6
LOB Manager 72, 112, 238, 243
LOB manipulation 120
LOB map page 63–64
LOB materialization 18, 55, 89, 238–242
LOB table 13, 15, 24, 39, 95–100, 123, 143–144, 146,
148, 154, 212, 214–215, 247
LOB table space 6, 12–13, 15, 24, 26, 39, 61–63,
97–100, 102, 123, 143, 148, 160, 212, 214–216, 238, 240,
247

DDL statement 34
LOBFILE 170–171
LOBs xvii, 1–2, 4, 6, 10–11, 15, 17–18, 20, 23, 39,
54–55, 65–66, 70, 83, 107, 109, 112–113, 121, 125–127,
159, 211–212, 215, 237–238, 241–242

allocation 49, 58, 186
delete 121, 196–197, 201
insert 45, 88, 102, 121, 139, 252
processing 79, 87, 102, 109, 245, 247
recommendations 256
update 45, 56, 61, 102, 173, 256

LOBs creation 24
LOBVALA 5, 86, 144, 243
LOBVALS 5, 86, 144, 243–244
LOCATE 209
locator 74
locators 16–17, 66, 71, 73, 78, 80, 85, 88, 107, 109–110,
112, 120–121, 133–134, 137, 239–240, 260

COBOL syntax 17, 20
concatenating 78
concatenation 91
materialization 77
multiple units of work 76
precompiler conversion 17, 20
types 17–18

Locking
DB2 9 101
DB2 V8 95

locking 56, 61, 94–95, 97, 100, 111, 131, 147, 153
LOCKMAX 143, 146, 160–161, 212–213, 216
LOCKRULE 216
locks xvii, 56, 61, 74, 76, 88, 96–97, 111, 154, 156, 216,
252–254
locks with DELETE 98, 105
locks with INSERT 97, 105
locks with UPDATE 99, 105
LOCKSIZE LOB 56, 143, 146, 161, 213
LOCKSIZE TABLESPACE 56, 95
LOG 216
LOGGED 211

combinations of attributes 45
logging 44–45, 122–123, 147, 173, 178, 185, 187, 190,
217, 248
Logical Page List 197
Longer SQL statement 6
 Index 273

LPL 48, 197

M
maintenance xvii, 4, 123, 126–127, 148
map page 50–52, 63–64, 103–104
mass delete 97–99
mass delete statements 97
materialization 16, 18, 55, 73, 77, 89, 110, 150, 238–240

INSERT 239–240
SELECT 239

MAXOFILR 21
MCOD 128–129
MGEXTSZ 148
Missing LOBs 200
Multiple Components in One Database 128

N
NACTIVE 218
NAME, 216
NetWeaver 126
NOT LOGGED 34, 44–45, 49, 160–161, 211–213, 247
NOT LOGGED LOB table space 6, 46, 230, 232
NOT PADDED 146
NPAGESF 216
NULL 20, 25, 31, 33, 38, 40–41, 71, 84, 100, 116, 135,
146, 160, 166, 212, 217

O
object-relational 2
occurrence of a string 71, 119
Online CHECK DATA 7
Online CHECK LOB 6
optimization xvii, 125, 137–138
ORGRATIO 148, 183, 185, 191–192, 214–215
Orphan LOBs 200
Out-of-synch LOBs 200

P
PADDED 146
page size 15, 27–28, 39, 57–58, 63, 256
pageset structure 63, 111
PARTITION 213
Partition Data Set 21
Partition Data Set Extended 21
partition-by-growth table spaces 29
partitioned base table 13, 35, 59, 178, 182, 184, 186,
189, 197, 213
partitioning 35, 40, 44
partitions 13, 15–16, 40, 44, 59, 61, 195
performance xvii, 4, 15, 17, 55–56, 66, 70, 82, 91–92,
101, 113, 125–126, 128, 164, 185, 239, 242, 255
PK10278 5, 21
PK13287 22
PK22887 5, 157
PK22910 21
PK25241 5, 157
PK27029 166
PK29281 22

PK29750 193
POSSTR 11, 70–71, 73, 114, 119–122
PQ90263 5, 85
PQ96956 207
PRIQTY 34, 36, 58–59, 143, 160–161, 185, 187, 199,
212–213
progressive references 136, 141–142
Progressive Streaming 136, 141–142, 255

Q
QUIESCE 178–179, 181–182

R
RBDP 196
read performance 248
Real 212
Real Time Statistics 194, 211–212, 218
REBUILD INDEX 197
rebuild pending 196
REBUILD-pending 204, 207
RECLENGTH 215–216
record identifier 32
RECOVER-pending 204, 207
recovery pending 205
RECP 48, 205
Redbooks Web site 259, 265

Contact us xx
RELCREATED 213
Reordered Row Format 41
REORG xvii, 6, 123, 148, 218, 257
REORGDELETES 218
REORGDISORGLOB 218
REORGINSERTS 218
REORGMASSDELETE 218
REORGUPDATES 218
REPAIR 208
REPORT 36, 182–184, 242
REPORT TABLESPACESET 182
REPORT utility 182
resource 00000907 244
RID 32
row locking 131
ROWID 5, 11, 13–15, 24–26, 30–31, 33, 39–42, 61, 94,
144, 147, 149, 160–161, 170–171, 176–177, 192, 212,
214

adding the column 38
assigning 32
GENERATED BY DEFAULT 38, 40, 177

ROWIDs 10
RTS 194
RUNSTATS 183, 214–216

S
Samples for LOBs 6
SAP

ABAP 129
CLI array input chaining 138
CLI streaming interface 134
274 LOBs with DB2 for z/OS: Stronger and Faster

Computing Center Management System 148
dbsl_lib profile parameter 154
DSNZPARMs 144
Integrated Call Level Interface 127
LOB INSERT performance 157
LOB UPDATE performance 157
LOB usage 126
locator access 133
measurement results 155
monitoring and tracing 150
performance measurements 150
portability 149
programming techniques for ABAP 133
programming techniques with JDBC 140
query rewrite 136
REORG 148
ROWID 144
SGEN 138
Unicode 147

SAP Cluster 128
SAP Data Dictionary 144
SAP Enterprise 128
SAP NetWeaver 2004s 128
SAP Web Application Server 126, 131
SECQTY 34, 36, 58–59, 143, 160–161, 185, 187, 199,
212–213
SELECT SUBSTR 111
sequential files 21
Shared LOB lock 61
SHRLEVEL 123, 148, 177–180, 257
SHRLEVEL options 178
side 79
single LOB DELETE 98
singleton 44, 256
singleton delete 98
S-LOB 56, 74, 95, 97–101, 103, 111–112
S-LOB lock 56, 61, 74, 96–97, 99–100, 102, 106,
111–112
space map pages 44, 49, 63, 105, 196, 246
SPACEF 215–216
SPACEF, 216
spanning pages 15
SPUFI 113
SQL accounting 249
SQL stored procedures 6, 73
SQLCODE - 904 201
SQLCODE -104 21
SQLCODE -171 18
SQLCODE -747 34
SQLCODE -763 45
SQLCODE -766 69
SQLCODE -767 36
SQLCODE -803 38
SQLCODE -904 50, 59, 244
SQLCODE-452 176
SQLSTATE 560A1 45
STAR 243, 257
STATSDELETES 218
STATSINSERTS 218
STATSMASSDELETE 218

STATSUPDATES 218
STATUS 25, 37, 47–48, 72, 173, 178, 185–186, 189,
191, 216, 221

values X and I 216
STORES 10, 24, 35, 57, 85, 103, 173
STOSPACE 216
STYPE 48
SUBSTR 11, 70–71, 73, 80, 110–111, 120–122
SYSIBM.SYSAUXRELS 213, 217
SYSIBM.SYSCOLUMNS 183–184, 214
SYSIBM.SYSCOPY 48
SYSIBM.SYSINDEXSPACESTATS 219
SYSIBM.SYSJARCLASS_SOURCE 218
SYSIBM.SYSJARDATA 218
SYSIBM.SYSLGRNX 48
SYSIBM.SYSLOBSTATS 184, 191, 214–215
SYSIBM.SYSLOBSTATS_HIST 215
SYSIBM.SYSROUTINESTEXT 218
SYSIBM.SYSSTRINGS 54–55
SYSIBM.SYSTABLEPART 215–216
SYSIBM.SYSTABLEPART_HIST 215
SYSIBM.SYSTABLES 34, 182, 184, 203, 206, 215–216
SYSIBM.SYSTABLES_HIST 216
SYSIBM.SYSTABLESPACE 46, 216
SYSIBM.SYSTABLESPACESTATS 218
SYSIBM.XSR 218
SYSTABLEPART 184, 191, 215–216

T
table space

partition sizes 58
table space scans 15
TABLESTATUS 34, 216

values L and P 216
TBNAME 36, 213–214, 217
TBOWNER 213
TEMPLATES 178
Templates 5
Text Extender 3
The 216
TOTALROWS 218
traces 150–152, 242, 251, 254
transparent ROWID 144, 147, 149
triggers 1–3, 61
TRUNCATE 160, 163, 169
TS 25, 37, 47, 59, 168, 221, 225
TYPE 216

U
UCS-2 54
UCS-4 54
UDFs 1–2, 70, 73
UDTs 1–2
UK03226 5
UK03227 5
UK13720 5, 165, 172
UK13721 5, 165, 172
UK15036 5
UK15037 5
 Index 275

undo log records 49
UNICODE 54–55, 78, 84, 146–147, 164, 172
Unicode 54–55, 72, 78, 126, 134, 144, 147
UNICODE support 55
UNIQUE 24, 26, 54, 146, 161, 168, 212–213, 257,
259–260
UNLOAD xvii, 5, 21, 83–84, 107–109, 123, 160–162,
164, 257, 260
unload parts of LOB using locators 112
unloading a LOB 107
unloading a LOB using a host variable 109
unloading an entire LOB using locators 109
UPDATE 5, 19, 34, 40, 42, 44, 47, 50–52, 61, 90, 95, 99,
102–103, 105, 120–122, 134, 186, 196–197, 201, 239,
252–253, 260
user defined functions 1–2
user defined types 2
UTF-16 54–55, 72
UTF-8 11, 54–55, 72, 78
UTRW 206, 208

V
VALUE 11, 14–16, 18, 27, 30, 32–33, 61–62, 64, 70–71,
76, 85–87, 107–109, 120–121, 164, 214, 218, 238–239,
243–244
VARCHAR 2, 10, 12, 32–33, 36, 41–43, 55, 72, 79–80,
84, 131, 136, 145, 147, 160, 164–165, 212, 214, 217, 256
VARGRAPHIC 2, 55, 72, 146–147, 169, 256
VDWQT 58, 244
version number 36, 61, 205–206, 252–254
vertical deferred write threshold 244
VPSEQT 244

W
write performance 248

X
X-LOB 56, 97, 102, 105
X-LOB lock 56, 61, 95, 99, 103, 105–106
XML 3, 72, 81–82, 113–114, 142, 145, 177, 201, 218
XML support 3
XML2CLOB 5, 72

Z
z/OS Conversion Services 55
276 LOBs with DB2 for z/OS: Stronger and Faster

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

LOBs w
ith DB2 for z/OS: Stronger and Faster

LOBs w
ith DB2 for z/OS: Stronger and

Faster

LOBs w
ith DB2 for z/OS: Stronger

and Faster

LOBs w
ith DB2 for z/OS: Stronger and Faster

LOBs w
ith DB2 for z/OS: Stronger

and Faster

LOBs w
ith DB2 for z/OS: Stronger

and Faster

®

SG24-7270-00 ISBN 0738496936

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

LOBs with DB2 for z/OS:
Stronger and Faster

Define LOBs, see how
they work, and see
how to store them

Manage LOBs in
operational
environments

Use LOBs in your
applications and with
SAP solutions

The requirements for a database management system (DBMS) have
included support for very large and complex data objects.

DB2 UDB for OS/390 Version 6 introduced the support for large objects
(LOBs): they can contain text documents, images, or movies, and can
be stored directly in the DBMS with sizes up to 2 gigabytes per object
and 65,536 TB for a single LOB column in a 4,096 partition table. The
introduction of these new data types has implied some changes in the
administration processes and programming techniques. The Redbook
Large Objects with DB2 for z/OS and OS/390, SG24-6571, introduced
and described the usage of LOBs with DB2 for z/OS at Version 7 level.

Major enhancements for LOB manipulation have been introduced with
DB2 UDB for z/OS Version 8 and DB2 Version 9.1 for z/OS (DB2 9 in
this IBM Redbook). These enhancements include performance
functions such as the avoidance of LOB locks and DRDA LOB flow
optimization, usability functions such as file reference variables, FETCH
CONTINUE, and the automatic creation of objects. DB2 utilities provide
integrated support with LOAD and UNLOAD, cross-loader, REORG,
CHECK DATA, and CHECK LOB.

In this IBM Redbook, we provide a totally revised description of the DB2
functions for LOB support as well as useful information about how to
design and implement them. We also offer examples of their use,
programming considerations, and the enhanced processes used for
their administration and maintenance. We also detail how SAP
solutions use LOBs. This IBM Redbook replaces the previous IBM
Redbook Large Objects with DB2 for z/OS and OS/390, SG24-6571,
for DB2 Version 8 and Version 9.1.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Object-relational in DB2 for z/OS
	1.2 Changes with DB2 9
	1.3 DB2 for z/OS and large objects
	1.4 The IBM Redbook contents
	1.5 Pointers to LOB functions after DB2 Version 6

	Chapter 2. Large objects with DB2
	2.1 Introduction to LOB data types
	2.2 The LOB table spaces
	2.2.1 Single LOB column table space
	2.2.2 Multiple LOB column table space
	2.2.3 Partitioned LOB table space
	2.2.4 The full LOB implementation structure

	2.3 LOB locators
	2.3.1 Purpose of LOB locators
	2.3.2 Different types of LOB locators

	2.4 LOB file reference variables
	2.4.1 DB2-generated file reference variable constructs
	2.4.2 Language support for LOB file reference variables
	2.4.3 File local/client support

	Chapter 3. Creating LOBs
	3.1 Alternatives in defining LOBs
	3.1.1 Example of automatic creation of objects
	3.1.2 Using CURRENT RULES STD
	3.1.3 Manual creation of objects
	3.1.4 Adding a LOB column to an existing table

	3.2 Defining ROWIDs
	3.2.1 Creating the ROWID column

	3.3 LOBs and LOG activity
	3.3.1 LOGGED and NOT LOGGED attributes
	3.3.2 Logging for all LOB sizes

	3.4 Additional considerations for creating LOB objects
	3.4.1 Data conversion
	3.4.2 Buffer pools and LOB table spaces
	3.4.3 Locking with LOBs
	3.4.4 Buffer pool and page size considerations
	3.4.5 DSSIZE for LOB table spaces
	3.4.6 GBPCACHE parameter
	3.4.7 Impact on cursors fetching LOB values

	3.5 LOBs are different DB2 objects
	3.6 Physical layout of LOBs

	Chapter 4. Using LOBs
	4.1 Language considerations
	4.1.1 LOB host variables, locators, and file reference variables
	4.1.2 Use of a double or triple SQLDA in dynamic SQL
	4.1.3 Working with LOBs in JDBC and SQLJ applications
	4.1.4 Specific SQL support for LOBs
	4.1.5 Functions such as XML2CLOB
	4.1.6 Stored procedures

	4.2 LOB locators
	4.2.1 Getting to know LOB locators
	4.2.2 Examples of using locators

	4.3 DRDA LOB flow optimization
	4.3.1 DB2 Universal Java Driver

	4.4 Feeding a LOB column
	4.4.1 Loading a LOB column using LOAD or the cross loader
	4.4.2 Inserting LOBs using the host application
	4.4.3 DB2 for Linux, UNIX and Windows import

	4.5 Locking
	4.5.1 Locking for LOBs with DB2 V8
	4.5.2 Locking for LOBs with DB2 9

	4.6 Unloading LOBs
	4.6.1 Unloading a LOB using an application
	4.6.2 Using FETCH CONTINUE
	4.6.3 Finding the nth occurrence of a string

	4.7 Updating LOBs
	4.7.1 Deleting a specific part of a LOB
	4.7.2 Updating a specific part of a LOB
	4.7.3 Updating the entire LOB value

	4.8 General best practices

	Chapter 5. SAP usage of LOBs
	5.1 Overview of SAP usage of LOBs
	5.1.1 Some history of SAP LOB usage
	5.1.2 Basic architecture
	5.1.3 Connectivity
	5.1.4 Why use LOBs
	5.1.5 SAP usage of LOBs in terms of number and size

	5.2 ABAP and Dynpro source and Load
	5.3 Programming techniques for the ABAP stack
	5.3.1 Basic locator access
	5.3.2 CLI Streaming Interface

	5.4 Optimization techniques and query rewrite
	5.4.1 Local LOB buffer
	5.4.2 Retrieve length and maximal data with locator
	5.4.3 Optimizing the free locator statement
	5.4.4 Comparison of different techniques using SGEN
	5.4.5 Chaining

	5.5 Programming techniques with JDBC
	5.6 Data Dictionary considerations
	5.6.1 ABAP stack
	5.6.2 Java stack
	5.6.3 DSNZPARMs for DB2 V8
	5.6.4 ROWID

	5.7 Unicode
	5.8 Some points of SAP LOB usage with CCMS
	5.9 Portability aspects
	5.10 Monitoring and tracing
	5.11 Database interface layer profile parameters
	5.12 Performance measurements
	5.12.1 Locks and SELECT
	5.12.2 Locks and INSERT
	5.12.3 UPDATE improvement

	Chapter 6. Utilities with LOBs
	6.1 UNLOAD
	6.2 DSNTIAUL
	6.3 LOAD
	6.3.1 Loading LOB data as normal data columns
	6.3.2 Loading LOB data using file reference variables
	6.3.3 Using the cross loader
	6.3.4 Impact of logging

	6.4 COPY
	6.5 COPYTOCOPY
	6.6 QUIESCE
	6.7 REPORT
	6.8 RUNSTATS
	6.9 REORG
	6.10 RECOVER and REBUILD
	6.11 CHECK DATA
	6.12 CHECK LOB
	6.13 CHECK INDEX
	6.14 REPAIR
	6.15 DSN1COPY and DSN1PRNT

	Chapter 7. Data administration with LOBs
	7.1 LOBs in the DB2 catalog
	7.1.1 Catalog definitions for LOBs
	7.1.2 LOBs defined in DB2 catalog
	7.1.3 Real Time Statistics

	7.2 Recovery strategies and considerations
	7.2.1 LOGGED base table space with LOGGED LOB table space
	7.2.2 LOGGED base table space with NOT LOGGED LOB table space
	7.2.3 NOT LOGGED base table space with NOT LOGGED LOB table space
	7.2.4 LOBs and SYSTEM RECOVERY
	7.2.5 Conclusions on recovery of LOB data

	7.3 Altering tables containing LOB columns

	Chapter 8. Performance with LOBs
	8.1 LOB materialization
	8.1.1 The different cases of materialization
	8.1.2 Materialization avoidance techniques

	8.2 Virtual storage management for LOBs
	8.2.1 DB2 subsystem parameters for LOBs

	8.3 Buffer pools and group buffer pools
	8.3.1 Virtual buffer pools
	8.3.2 Considerations for a data sharing environment

	8.4 Logging with LOBs
	8.5 Accessing LOBs
	8.5.1 Reading LOBs
	8.5.2 Writing LOBs

	8.6 Comparing SQL accounting profiles
	8.7 Important I/O aspects
	8.8 IFCID enhancements for LOBs
	8.9 DRDA LOB flow optimization performance
	8.10 LOB recommendations for performance

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Abbreviations and acronyms
	Index
	Back cover

